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Concepts of infinity usually arise by reflecting on finite experiences and
imagining them extended to the infinite. This paper will refer to such personal
conceptions as natural infinities. Research has shown that individuals’
natural conceptions of infinity are ‘labile and self-contradictory’ (Fischbein et
al., 1979, p. 31). The formal approach to mathematics in the twentieth century
attempted to rationalize these inconsistencies by selecting a finite list of
specific properties (or axioms) from which the conception of a formal infinity
is built by formal deduction. By beginning with different properties of finite
numbers, such as counting, ordering or arithmetic, different formal systems
may be developed. Counting and ordering lead to cardinal and ordinal
number theory and the properties of arithmetic lead to ordered fields that may
contain infinite and infinitesimal quantities. Cardinal and ordinal numbers
can be added and multiplied but not divided or subtracted. The operations of
cardinals are commutative, but the operations of ordinals are not. Meanwhile
an ordered field has a full system of arithmetic in which the reciprocals of
infinite elements are infinitesimals. Thus, while natural concepts of infinity
may contain built-in contradictions, there are several different kinds of formal
infinity, each with its own coherent properties, yet each system having
properties that differ from the others.

The construction of both natural and formal infinities are products of human
thought and so may be considered in terms of ‘embodied cognition’ (Lakoff
and Nunez, 2000). The viewpoint forwarded here, however, is that formal
deduction focuses as far as possible on formal logic in preference to
perceptual imagery, developing a network of formal properties that do not
depend on specific embodiments. Indeed, I shall show that formal theory can
lead to structure theorems, whose formal properties may then be re-
interpreted as a more subtle form of embodied imagery. Not only can natural
embodied theory inspire theorems to be proved formally, but formal theory
can also feed back into human embodiment, now subtly enhanced by the
underlying network of formal relationships.
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Introduction

After many centuries conceptualising various notions of infinity, and encountering puzzling

conflicts, such as the Zeno paradoxes and logical difficulties of infinitesimals, matters came

to a head at the end of the nineteenth century. Cantor (1895) developed a theory of infinite

cardinals in which division was not possible, and he denied the theoretical existence of

infinitesimals. Cantor’s theory, however, fell foul of the wrath of Kronecker who accused

him of claiming that certain mathematical objects (such as cardinal infinity) existed without

showing how they could be constructed. Kronecker’s view blossomed into the school of

intuitionism led by Brouwer in the early twentieth century.

Two other major schools of thought grew at around the same time, each of which began

approaches that encompassed formal definitions of infinite concepts. Hilbert (1900), in his

celebrated address at the International Congress of Mathematicians, announced his list of the

major problems for twentieth century mathematics. He also endorsed the formal approach to

mathematics using the axiomatic method. This involves specifying a finite list of axioms to

act as a foundation for a particular theory. He envisaged that such a strategy could lead to a

total axiomatisation of mathematics, free from logical blemish. What mattered to him was not

what concepts such as infinite cardinals are, but the consistency of the axiomatic theory that

supports them. The third school of thought—the logicist approach led by Bertrand Russell,

Gottlieb Frege and others—desired to define mathematical concepts purely in terms of logic1.

All these theories encountered difficulties. The intuitionist school purposefully refused to

use proof by contradiction, and this denied them a major tool used widely in twentieth

century mathematics. Bertrand Russell found inconsistencies in aspects of Cantor’s set theory

and suggested technical devices to overcome them. His pristine approach to logic was much

admired, but pragmatic mathematicians carried on posing and solving research problems in

ways that suited their problem context.

Gödel (1931) dealt what was apparently a mortal blow to both the logicist and formalist

viewpoints. He proved that any axiomatic system that includes the natural numbers must

have properties whose truth or falsehood cannot be deduced from the axioms of the system2.



Hilbert’s formalist programme, therefore, cannot be completed in its entirety. In particular,

any theory of infinite sets will include theorems that may be true but cannot be proved using

only the techniques available in that system. Of course, one may add more axioms to the

given theory (for instance, adding the axiom of choice to the limitations imposed by

intuitionists). Such a tactic may prove a desired theorem, but the new axiom(s) allow the

formulation of even more theorems that cannot be proved in the extended system. This is the

Achilles’ heel of the formalist approach. Essentially an axiomatic system that attempts to talk

about infinite structures has ‘too many’ properties to be able to prove them all by finite

proofs using the available techniques.

This weakness did not destroy the desire to have an accepted axiomatic foundation for the

many theories of modern mathematics. Mathematicians found that they can still prove a vast

number of useful theorems in their axiomatic systems, even though some intractable

problems may remain.

To explain ideas of infinity in a manner appropriate for a wide range of readers, the

language used here will initially involve everyday colloquial meanings for a concept such as

‘set’, and whether that set is ‘finite’ or ‘infinite’. In everyday terms, a set is finite if we can –

in principle – count it in the usual way, otherwise it is infinite. When mathematics is

introduced to undergraduates, a formal concept – such as a ‘function’, ‘group’, ‘topological

space’, ‘cardinal number’, ‘infinitesimal’, or whatever – is given in terms of a definition (or a

list of axioms) in words and symbols, from which the properties of the given concept are

deduced by mathematical proof.

Our exposition begins by considering the various ways in which individuals construct

formal systems. Our quest for formal notions of infinity starts with the Peano postulates as a

formal definition for the natural numbers, and outlines a formal development of number

concepts. This extends to the formal concepts of infinite cardinals and ordinals on the one

hand and the very different construction of infinitesimals and their infinite reciprocals on the

other. We then show how formal ideas of infinitesimals can be re-interpreted in a visual

manner as points on a geometric number line. This reveals how an embodied conception may



be founded on a formal construction, complementing the more usual direction in which

natural embodied conceptions are used to suggest axioms and proofs in a formal theory.

The cognitive construction of formal systems

The human mind is finite. By thinking about the possibility of performing a process again

and again, we can easily reach out towards the potentially infinite. The counting sequence, 1,

2, 3, … is a potentially infinite collection. Given any whole number, there is a next one. The

decimal notation allows us to represent whole numbers of arbitrarily large size. As a

consequence, we humans can easily imagine a potential infinity as a process that goes on

without end. But how do we think of the whole system in total, including all the numbers, all

at one time? The answer is, of course, we don’t.

The human brain is not only finite, it copes with complexity by using a small conscious

focus of attention, alighting on important information to assess a situation and take

appropriate action. We therefore do not consciously focus on all the information at a given

time, but move between different aspects, connected together mentally in a variety of ways.

For a given concept, we develop a whole concept image in the brain consisting of ‘the

total cognitive structure that is associated with the concept, which includes all the mental

pictures and associated properties and processes,’ (Tall & Vinner, 1981, p.152). This concept

image grows and changes with experience and reflection. Such a biological entity cannot be

totally coherent, for the various parts of the concept image develop at different times and in

different ways; connections used on one occasion may be different from those evoked on

another. Our concept images are full of partial experiences, focusing on a few aspects of a

situation, linked together by various associations. What we attempt to do in mathematics is to

rationalize the various experiences to build up as coherent an image as possible.

My colleague, Eddie Gray, observed James, aged six, in a group of children asked to type

a sum with answer 8 into a graphic calculator. Whilst his friends typed in problems like 7+1,

4+4, 10–2, James typed:

1000000 – 999992.



How did he know that the answer to this problem is 8? He certainly did not do it by counting.

James has sensed that there are patterns for the ‘next number’. After 9 comes 10, 11, 12, …

after 19 comes 20, 21, 22, … after 99 comes 100, 101, 102, … after 999 comes 1000, …, and

after 999,999 comes 1,000,000. He knows that 1,000 is ‘a thousand’ and 1,000,000 is ‘a

million’ and he can type ‘a million’ into the calculator as 1000000. He has never counted a

million. But his ideas of place value allow him to give it a meaning, and know that 999992+8

is ‘a million’ just as 2+8 is 10 and 992+8 is 1000. His brain does not contain ‘all the

numbers’, but it does contain many sophisticated connections that give him strategies for

giving meaning to any numbers that he cares to consider. It is from such a complex concept

image that individuals attempt to build a shared system to be communicated in gestures,

pictures, words and symbols, in ways that are mutually agreed to be appropriate.

Towards formal theories

For the young child, the construction of knowledge involves building on perceptions of the

world using the growing sophistication of the concept image. The more sophisticated thinker

notices properties of structures and relationships between them. Formal thinking begins when

selected properties are isolated and used as concept definitions from which other properties

may be deduced by mathematical proof. Pinto (1998), building on the natural/alien

distinction of Duffin and Simpson (1993), identified two fundamentally different approaches

to constructing axiomatic systems. A natural approach builds on concept imagery to give a

personal meaning to the formal definition. This means constructing examples of the

definition that are sufficiently generative to be used as a basis for thought experiments to

imagine possible theorems and possible strategies for proving them. A formal approach, on

the other hand, focuses essentially on the definitions, using formal deductions to build

theorems in a manner that attempts to avoid any appeal to intuition. (Figure 1.)

Most mathematicians use both natural and formal thinking processes, whichever is

appropriate in a given context. For instance, it is natural to use a variety of conceptual ideas

to build ideas for formal theories, and then to use a formal approach to prove theorems. Some



mathematicians tend more towards a natural approach (particularly in subjects such as

geometry and topology where mental pictures suggest theorems to be proved); others prefer

an overall formal approach (for instance, in abstract symbolic theories). Nevertheless, it is a

common goal to produce written formal proofs of theorems, whether constructed formally or

underpinned by natural imagery.

axioms/definitions

Formal ideas

Examples/images CONCEPT
DEFINITION

CONCEPT IMAGE

FORMAL
DEDUCTIONS

proof: theorem:mental conception:

THOUGHT
EXPERIMENTS

Natural 
experiences

Figure 1: Some constituents in constructing a formal theory

Pinto found that the students she studied often preferred one approach or the other and that

both approaches were capable of producing success in developing formal written theories



(Pinto, 1998; Pinto & Tall, 1999, 2001). However, many students failed to use the formal

concept definition as a basis of deduction, instead preferring to build on their own personal

version of the definition, sometimes inadequate, sometimes distorted, with the result that

there was a broad spectrum of success and failure.

Before meeting axiomatic theories, the individual will already have some kind of

informal (concept) image. Research shows that such concept images often persist long after

formal ideas are introduced (Fischbein et al., 1979). Personal informal images may involve

essentially contradictory features. For instance, informal experiences invariably suggest that

‘the whole is greater than the part’, so that the whole set N of all natural numbers {1, 2, 3,

…} is clearly greater than the part consisting of the set E of all even numbers {2, 4, 6, …}.

Yet in the formal theory of cardinal numbers, two sets are defined to have ‘the same cardinal

number’ if there is a one-to-one correspondence between them. The relation n´2n gives a

one-to-one correspondence between N and E and so, in this case, the whole and the part have

the same cardinal number.

Some natural learners find this experience alien and reject the theory of cardinal numbers,

as did Kronecker in the early history of the subject. Some keep the informal ideas in a

separate compartment, a strategy common to those formal learners who focus only on the

formal theory without any desire to link it to informal knowledge. However, a powerful way

forward for both natural and formal thinkers is to attempt to reconstruct their knowledge to

resolve the conflict between old experiences and new evidence. For instance, the old

experience that ‘the whole is greater than the part’ is still true for finite sets. The new

evidence that this is false for the natural numbers may be turned to advantage; in a formal

theory, we can define a set to be ‘infinite’ if and only if it can be put in one-to-one

correspondence with a proper subset.

Given a list of axioms to specify a formal concept, we define the formal image to consist

of that part of the concept image that is formally deduced from the axioms. Since both formal

and informal image are contained in the same biological brain, interconnections are bound to

occur and confusions are likely to arise. However, the links may also be used to positive

advantage by relating the formalism to appropriate imagery:



Who does not always use along with the double inequality a > b  > c the
picture of three points following one another on a straight line as the
geometrical picture of the idea ‘between’? (Hilbert, 1902, p.442)

In this sense, embodied meanings are at the root of mathematics. However, a formal system

may have more than one particular embodiment. In a formal system, only a small number of

explicit properties are selected as the basis for deduction. Any deductions that are made,

depending only on these initial axioms, must also apply to any other situation where the

axioms happen to be satisfied. If a system satisfies the axioms of a vector space, it does not

matter what the elements of the system are. They could be vectors in a plane, in n-

dimensional space, solutions to a system of differential equations, a particular collection of

functions. All that matters is that the structure involved satisfies the axioms for a vector

space, with the immediate implication that it also satisfies all the properties deduced from the

definition of a vector space.

Fully formal expositions of a mathematical theory have been proposed by various

mathematicians and logicians, (eg Russell & Whitehead, 1910–1913). In this sense, it would

be possible to speak philosophically of a ‘formal concept’ that arises purely within such a

formal theory. However, such a formal concept, as conceived by a human being, must arise

as an essential part of that individual’s biological and cognitive development. In practice, it is

therefore difficult—even impossible—to base one’s conceptualisation solely on formal

deduction—as Hilbert, the founder of the Formalist school was fully aware. In my use of the

term formal concept, I therefore also acknowledge the existence of an underlying cognitive

structure supporting that concept.

Formal structure theorems and embodied representations

Even though a formal theory is designed to prove results by formal deduction, the resulting

theorems may then provide the basis for new visual images. Some theorems may be classified

as structure theorems in that they prove that the defined concept must have a certain explicit

structure. Structure theorems are essential building blocks for the development of a theory,

not only because they stand as important staging posts in the formal development, but also



because they may allow the individual once more to give the formal concept some kind of

underlying embodied representation. (Figure 2.)

Natural 
experiences

axioms/definitions

Formal ideas

Examples/images

structure 
theorem

formal 
embodiment

CONCEPT
DEFINITION

CONCEPT IMAGE

FORMAL
DEDUCTIONS

proof: theorem:mental conception: formal embodiment:

THOUGHT
EXPERIMENTS

Figure 2: Building new formal embodiments from a formal theory

For instance, the Peano postulates are three carefully crafted properties used to formulate the

definition of the system of the natural numbers. A powerful structure theorem shows that any

system satisfying the Peano postulates is essentially the same as (isomorphic to) the familiar

natural numbers 1, 2, 3, … Hence the formal theory of the Peano postulates gives a structure

theorem that allows us to visualize the axiomatic system once more as the numbers on a

number line.



These ideas resonate with the recent development of ‘embodied cognition’ in the form

described by Lakoff and his colleagues (Lakoff and Johnson, 1999; Lakoff and Nunez, 2000).

In particular, Lakoff and Nunez (2000) give a compelling and insightful account of ‘where

mathematics comes from’, in terms of bodily experience and physical perception, supported

by the devices of language. In doing so, however, they are closer to the natural part of the

spectrum described here than the formal approach distilled through the abstract thoughts of

axiomatic thinking. It is my contention that their theoretical position is better at describing

‘where mathematics comes from’ rather than ‘where mathematics goes to’.

Natural learning explicitly grows from the individual’s perceptions, actions and

reflections, and grows in rigour by transmuting embodied thoughts into formally presented

mathematics, often linked intimately to its natural source. Formal learning also occurs within

a human brain. However, formalists and logicists struggle to divest themselves of misleading

concept imagery, to focus as closely as is humanly possible on the precise interpretations of

concept definitions and logical deductions. Although vast tracts of the brain are engaged in

perception and construction of imagery, there are also huge areas of the cortex that are plastic

and useable for a variety of activities including the many processes involved in thinking

mathematically. All mathematical thought of necessity occurs in the human brain, but this

does not mean that all thought is related to embodied perception.

As an example, Lakoff (1987) suggests that the ‘container metaphor’ (that A contained in

B and B contained in C automatically gives A is contained in C) underlies the use of logical

implication in mathematics. Formal thinkers are aware of naïve uses of implication, but they

explicitly seek to manipulate symbols according to specified rules. An axiom such as ‘a < b

and b < c implies a < c’ can readily be interpreted as relationships between three points in

order on a line, as Hilbert observed. However, the identical form ‘a ~ b and b ~ c implies a ~

c’ is also used as part of the definition of an equivalence relation, which has an entirely

different underlying concept image.

There is physical evidence that different brain areas are used for natural and formal

thought. Houdé et al. (2000) obtained brain scans of individuals who were asked to solve



logic problems that required them to inhibit perceptual concepts to activate a logical

reasoning process. The pictures of the changes in brain areas activated are impressive.

The main finding is a striking shift in the cortical anatomy of reasoning from
the posterior part of the brain (the ventral and dorsal pathways) to a left-pre-
frontal network including the middle frontal gyrus, Broca’s area, the anterior
insula, and the pre-SMA. This result indicates that such brain shifting is an
essential element for human access to logical thinking.

(Houdé et al. 2000, p. 721)

Thus, there is a genuine physical shift in thought processes to use areas of the cortex that

are not so directly related to embodied perception. Not only does formal thought attempt to

divest itself of informal imagery, the formal thinker is aware of the danger of endowing a

given list of axioms with a particular embodied image, specifically because this may limit

thought processes to that particular context. However, having once proved a theorem by

formal deduction, it may then be opportune to interpret the results of the theorem in a visual

embodied manner which provides more sophisticated images available for thought

experiments. It may have subtle implicit visual elements that deceive, but it is also supported

by the explicit network of formal properties that enhance thought experiments and suggest

useful new directions for formal deduction. In this way, not only can embodied thought be

used for thought experiences to support formal thinking, but formal thinking can also produce

logically based structure theorems that lead back to a more sophisticated kind of embodied

thought.

The potential and actual infinity of counting numbers

One, two, three four five,
Once I caught a fish alive,
Six, seven, eight, nine, ten,
Then I let him go again.

In this section, we begin with the human activity of counting and consider how natural

experiences and formal ideas can build first a definition (the Peano postulates) and then a

formal structure for the theory in the sense of the diagram given in figure 2.

Natural experiences of number involve learning the number names in sequence, initially to

say the first few numbers one after the other, and then building up the succession of whole



numbers in decimal notation. To select appropriate axioms for a formal version of these

‘natural’ numbers proves (in retrospect!) to be subtly simple. We need:

(a) to start somewhere (with the number 1),

(b) for each number, we need to have a ‘next number’,

(c) these numbers need to be all different,

(d) they are all the numbers we get.

To translate these into formal mathematical axioms, we begin with a set N considered as a

formal concept in an axiomatic theory, and a function s:N NÆ  which gives the set-theoretic

idea of the ‘next number’ (or ‘successor)’ s(x) for each x Œ N . This takes care of (b).

Properties (a), (c), (d) can then be formulated, starting from an element 1 (written in bold face

to show it is a specific element in the set N, rather than the number ‘one’ from childhood).

Suitable axioms are as follows:

(i) there is at least one element (denoted by 1ŒN) which is not a successor, i.e. no kŒN
satisfies s(k) = 1.

(ii) s is one-to-one, i.e. a π b implies s(a) π s(b),

(iii) For any subset S of N satisfying
1 Œ S, and, whenever k Œ S so also is s(k) Œ S,

then S = N.

These three axioms are based on the Peano Postulates, formulated by the Italian

mathematician Guiseppe Peano in around 1895 and published in his magnum opus (Peano,

1908; Kennedy, 1973). The last of them (axiom (iii)) is called the ‘induction axiom’. It is

formulated to say that the succession of elements starting from 1 gives the full set N, in that if

a subset S contains the starting element 1 and, whenever it contains an element k it also

contains its successor s(k), then S is the whole of N.

Here is a brief informal explanation of how these axioms may be used to build a formal

theory of whole number arithmetic. During this discussion, remember that N is not the

familiar system of natural numbers, but a purely theoretical concept that satisfies the three

axioms.

Axiom (i) states ‘there is at least one element which is not a successor’. We may use the

other axioms to show that there is precisely one element, namely 1. For if not, there would be

another element c π 1 in N where c π s(k) for any k Œ N. Consider the set



S = { n Œ N | n π c}

of all elements in N except c. Then 1 Œ S (because 1 π c). If k Œ S then, because s(k) π c, it

follows that s(k) Œ S . The induction axiom (iii) then gives S = N , contradicting the

assumptions c Œ N but c œ S.

Thus, there is only one ‘first’ element in N, namely 1. We denote its successor s(1) by 2,

s(2) by 3, s(3) by 4, and may continue in this way to build the usual decimal notation for

elements of N (although this is easier to do in practice than to write out formally) .

To formulate the arithmetic in N, we begin by ‘adding one’ to define m+1 to be s(m) for

every m Œ N. By definition, we get 1+1 = s(1) = 2, 2+1 = s(2) = 3, 3+1 = s(3) = 4, and so on.

To define m+n in general we use induction, as follows.

Consider the set S of elements n for which it is possible to define m+n (for all mŒN).

First, note that 1 ŒS (having just defined m+1 = s(m) for all mŒN). Suppose now that

kŒS. Then m+k will already have been defined for all mŒN. Then we define m+s(k) to

be the successor of m+k, namely m+s(k) = s(m+k). This in turn shows that s(k) ŒS.

Using axiom (iii), we deduce that S = N. So, m+n can be defined for all m, n ŒN.

As examples of this, we obtain:

1+2 = 1+s(1) (because 2 = s(1), by definition of 2)

= s(1+1) (using the definition m+s(n)=s(m+n) for m = n = 1)

= s(2) (because 1+1 is defined to be s(1)  = 2)

= 3 (because 3 is defined to be s(2)).

Similarly:

2+2 = 2+s(1)  = s(2+1)  = s(3)  = 4.

In this way, we have proved that

2+2 = 4

(where 1, 2, 3, 4 are the initial elements of the set N rather than the usual numbers of

childhood).

By these techniques it is possible to build up a formal system N which has the familiar

properties of the ‘natural numbers’ we have known since childhood.



Is it worth it? For most people, probably not. After many years building up a concept

image of whole number arithmetic with all its familiar properties, it seems hardly worthwhile

repeating all the detail for all the other arithmetic facts, such as 4+4 = 8  or 123+9 = 132,

using the formal numbers of N. It is not something that I have done in full, nor something I

wish to do in future. Once it is seen to be possible, mathematicians usually revert to the

familiar notation for numbers and simply use the familiar rules of arithmetic, such as 2+2 = 4,

in the belief that any of these results could be proved from the Peano axioms, wherever it is

really necessary. In essence, one accepts that, once the generative nature of the Peano axioms

have been realized, the informal image can be used for thinking about whole number

arithmetic.

However, in some ways it is of enormous importance. For instance, the so-called ‘law of

commutativity’ is something that is encountered by experience in everyday arithmetic. We

‘know’ that m+n = n+m for all natural numbers m and n, but may sense some unease because

we cannot ‘prove’ it true using our informal experience alone. However, it can be proved

from the Peano axioms, although the proof is somewhat tedious. (First prove that m+1 = 1+m

by induction on m, then extend it to m+n = n+m by induction on n.)

A more powerful idea is to realise that proof by induction need no longer be considered

as a potentially infinite process (start at 1, and having established the general step from k to

k+1, use this to get from 1 to 2, from 2 to 3, and so on).

Given a property P(n) that is true or false for every nŒN, define:

S = {nŒN | P(n) is true},

Axiom (iii) above then becomes:

The induction axiom: If P(1) is true and the truth of P(k) implies the truth of
P(k+1) (for all kŒN) then P(n) is true for all natural numbers n,

To prove a statement P(n) by induction, it is only necessary to do three steps:



(a) Prove that P(1) is true.

(b) Prove that the truth of P(k) implies the truth of P(k+1).

(c) Quote the induction axiom to give P(n) true for all n ŒN.

A proof about the potential infinity of the natural numbers can be formulated as a finite three-

stage proof based on the Peano axioms. The difficulty in shifting from potential to actual

infinity is therefore avoided by the technical device of focusing on the finite sequence of

steps in a proof by induction.

This may cause warning bells to ring in the back of the mind! How can we suddenly step

from potential to actual infinity in this way? The answer relates to the manner in which the

human brain operates by switching focus from one viewpoint to another. The three axioms

(i), (ii), (iii) contain within them the implication that the set N  must have an infinite

succession of different elements. However, instead of focusing on the infinite qualities of the

set N, we focus on the finite nature of the three axioms. This is a considerable conceptual

gain. It does not make all proofs about the natural numbers into finite proofs, but it does

allow induction proofs to be considered finite.

So where does Gödel’s theorem fit in this scheme of things? This may arise for a

statement P(n), known to be true or false for every natural number n, but for which the

induction step from P(k) to P(k+1) is not available. A possible candidate is Goldbach’s

conjecture where P(n) states that ‘every even number 2n is the sum of two primes’ (where, in

this case, 1 is considered as a prime). For example,

2 = 1+1
4 = 1+3 = 2+2
6 = 1+5 = 3+3
8 = 1+7 = 3+5

10 = 3+7 = 5+5

and so on. Every case P(k) that has ever been investigated has turned out to be true. But no-

one has ever found a general way to make the deduction from P(k) to P(k+1). As I wrote this

article, I thought about the problem, and got excited to find that sometimes the move from

P(k) to P(k+1) can be accomplished by adding 2 to one of the primes concerned. For instance,

6 = 1+5 leads to 6+2 = 1+5+2 so 8 = 1+7.



This method obviously depends on 2n being the sum of odd primes m+n where at least one of

m+2 or n+2 is also prime. It fails for 14 = 7+7 where the next odd number 9 is not prime.

Perhaps one can salvage the situation by using a different decomposition, say,

14 = 3+11, leading to 16 = 5+11 or 16 = 3+13.

Regrettably, although this works in this particular case, it doesn’t seem to lead to a general

method that works for all cases. After a while, I gave up trying.

After this exercise, I still cannot say if Goldbach’s conjecture is true or false. I don’t

know. Nor (at the moment) does anyone else. Just because no-one has found a proof (yet),

however, does not mean that there is not a proof of some kind. Were someone eventually to

find one, perhaps by some clever application of induction, it would only tell us for sure that

Goldbach’s conjecture is not a member of the list of arithmetic truths with no finite proof

using the familiar axioms of arithmetic. Gödel’s theorem confirms that this list is non-empty.

This discussion highlights a flaw in hoping that induction proofs can always be used to

prove statements about whole numbers. If there is no proof to link the general case P(k) to

P(k+1), then induction is not an available option. This should not be a total disappointment.

As finite beings, we cannot cope with an infinite number of totally different cases at the same

time. At best, we can use finite proofs that have a general pattern applying to an infinite

number of similar cases. Goldbach’s conjecture illustrates the possibility of formulating a

general theorem in such a way that it applies to an infinite number of cases, but may lack a

finite proof that applies to all of them.

Despite this set-back, there are still plenty of properties that can be proved by induction

(including all the usual rules of arithmetic, such as m+n=n+m, mn=nm, m(n+r)=mn+mr, and

so on.) For this reason, the axiomatic method continues to be used. It cannot prove all

theorems for the natural numbers, but it can prove a wide range of useful ones. In particular,

it leads to a formulation of axioms for the natural numbers in which the general laws of

arithmetic are not just natural observations of what happens in the real world, but now recast

as formal deductions from the specified axioms.



Cardinal numbers

The shift of attention, from the natural numbers as a potentially infinite collection going on

and on, to a single entity—the set N, given axiomatically—leads to considering the

relationships with other infinite sets. The theory of comparison of infinite sets developed by

Cantor is generated by starting with the definition that:

Two sets A, B are said to have the same cardinal number if there is a bijection
f A B: Æ .

Here the term ‘bijection’ means a function f which is one-one, (ie if a a1 2π  then

f a f a( ) ( )1 2π ) and onto (ie, for every y Œ B there is an xŒA such that f(x)  = y).

Note that the definition, as given here, does not say what a cardinal number is, it only

defines when two sets have the same number. For finite sets, the cardinal number may be

taken as the counting number of elements in the set. For infinite sets we must invent new

names for cardinal numbers, for instance ¿0 (aleph zero) is the name given to the cardinal

number of the set N. The question arises as to which other sets have cardinal number ¿0.

Certainly, the odd numbers O and the even numbers E can be put in one-to-one

correspondence with N, as seen in figure 3.

1 n:N ……32

2 2n:E ……64

↔ ↔↔↔

Figure 3: A one-to-one correspondence between the natural numbers and the even numbers

To extend the notion of addition to infinite cardinals, all that is necessary is to formalise the

natural ‘count-all’ technique of childhood: count one set, count another and put them together

and count all the elements in both sets. For cardinals a and b (finite or infinite), the sum a+b

is found by selecting a set A with cardinal number a, a set B with cardinal number b (where

A, B  have no common elements) and defining a+b to be the cardinal number of A»B.

Because A»B = B»A, then a+b = b+a, so that addition of cardinals is commutative.

For instance, if we take A to be a set with a single element a (which is not in N), then

there is a bijection between N and A»N. (Figure 4).



1 n:N ……32

a n–1:A∪N ……21

↔ ↔↔↔

Figure 4: A one-to-one correspondence between the natural numbers
and the same set ‘plus one’.

This shows that the cardinal numbers of A»N and N are the same, so:

1+¿0 = ¿0+1 = ¿0.

Replacing A by a set with n elements shows that:

n+¿0 = ¿0+n = ¿0 for any natural number n.

Also, because the union of odd and even numbers gives O»E = N, it follows that:

¿0+¿0 = ¿0.

The equation

¿0+x = ¿0

can therefore have many solutions, including 0, 1, 2, 3, … and ¿0. So, subtraction involving

infinite cardinals cannot be uniquely defined.

Similar phenomena occur with attempts at defining multiplication of cardinals. For any

two sets A, B, the cartesian product A¥B is defined to be the set of all ordered pairs (a, b)

with a Œ A, and b Œ B. The product of two cardinal numbers a, b can be defined by taking

sets A and B with cardinals a, b, respectively, and defining ab to be the cardinal number of

A¥B. For instance, if we take a set A with two elements, say A = {1,2} and B a set with three

elements, B = {1,2,3}, then the cartesian product has six ordered pairs:

(1,1), (1,2), (1,3), (2,1), (2,2), (2,3),

corresponding to the fact that 2 times 3 is 6.

Notice that, in this case, the cartesian product B¥A consists of

(1,1), (1,2), (2,1), (2,2), (3,1), (3,2),

and is not the same set as A¥B (for instance, (2,3) Œ A¥B, but (2,3) œ B¥A). In general, A¥B,

B¥A are not equal, but the correspondence (a, b) ´ (b, a) sets up a bijection between A¥B

and B¥A, so the two sets have the same cardinal number.



If A is a set with two objects, x and y, then A¥N is the set of ordered pairs of the form

(x, n) or (y, n) for any natural number n and, by definition, it has cardinal number 2¿0.

However, this set may be put into one to one correspondence with N as in figure 5:

2n–1:N ……

(x,n):A×N ……

1

(x,1)

↔ ↔

2

(y,1)

↔

3

(x,2)

↔

4

(y,2)

↔

2n

(y,n)

↔

Figure 5: A one-to-one correspondence between the natural numbers
and a set with ‘twice as many’ elements

This proves that 2¿0 = ¿0.

A similar argument shows that n¿0 = ¿0 for any n Œ N. A bijection f :N N NÆ ¥  may be

defined by counting down the successive ‘backward diagonals’ as in figure 6 (where

f(1) = (1,1), f(2) = (1,2), f(3) = (2,1), f(4) = (1,3), f(5) = (2,2), …). This proves that

¿0¿0 = ¿0.

(1,1) (1,4)(1,3)(1,2) …

(3,1) (3,4)(3,3)(3,2) …

(2,1) (2,4)(2,3)(2,2) …

(4,1) (4,4)(4,3)(4,2) …

Figure 6: ‘Counting’ the set of all ordered pairs (m,n) of natural numbers m, n

The equation ¿0 ¥ x = ¿0 therefore has solutions which include x = 1, x = 2, … and  x = ¿0.

So, division by infinite cardinal numbers cannot be uniquely defined.

At this point all the examples given are of sets with the same cardinal number as the set N

of natural numbers. However, for any set S, we can construct another set T whose cardinal

number is strictly larger. The set T consisting of all subsets of S is a good candidate. Clearly

the set S has cardinal number less than or equal to T (because the map from S to T mapping

the element x to the single element subset {x} is a bijection onto a subset of T). Now consider

any map f S T: Æ . We will show that it cannot map onto the whole of T. Consider the subset

K x S x f x= Œ œ{ | ( )}. If K were in the image of f, then K f x= ( )0  for some x S0 Œ . and we

ask whether x f x0 0Œ ( ). If x f x0 0Œ ( ) then, by definition of K, we have x Kœ , contradicting



K f x= ( )0 . On the other hand, if x f x0 0œ ( ) then, again by definition of K, we have x KŒ ,

once more contradicting K f x= ( )0 . Thus, no map from S to T can be a bijection, so T must

have a strictly larger cardinal number than S.

By repetition of this construction, we get an unending sequence of cardinal numbers, each

one strictly bigger than the one before.

Ordinal numbers

Natural numbers are not only used for counting, but also for putting a (finite) set into an

order, saying ‘this element is the first’, this is the second’, and so on. Just as the counting

property can be extended to infinite sets using the cardinal number concept, there is an

infinite extension of ordering numbers to ordinal numbers. This is done using ordered sets

where a set A is said to be ordered if there is a relation denoted by a < b between some pairs

of elements a, b ŒA , such that:

• Given a, b Œ A, precisely one of the following hold:

a < b or b < a or a = b,

• If a < b and b < c, then a < c.

Examples of ordered sets include the set of integers Z = {…, –2, –1, 0, 1, 2, …} and the set N

= {1, 2, 3, …} with their usual order.

To define the notion of ordinal number requires the ordering also to satisfy the definition:

• an ordered set A is said to be well-ordered if every non-empty subset S of A has a
least element, that is there is an element l Œ S where l £ s for all s Œ S.

Of the two examples given, N in its usual ordering is well-ordered, but Z is not, because the

set Z itself fails to have a least element in the given ordering.

A function f A B: Æ  is said to be ‘order-preserving’ if a < b implies f(a) < f(b).

Two well-ordered sets A, B have the same ordinal number if there is an order-preserving

bijection f A B: Æ .

The map in figure 7 between the natural numbers N and the even numbers E clearly preserves

order, so the sets N and E have the same ordinal number, denoted by w (omega). (A different



symbol is used from the cardinal number because it happens to have very different properties,

as we shall shortly show.)

1 n:N ……32

2 2n:E ……64

↔ ↔↔↔

Figure 7: An ordered correspondence between the natural numbers and the even numbers

We can build a mental image of a well-ordered set A, as a thought experiment, by considering

successive elements in turn. Either A is empty (with ordinal number 0), or contains a least

element a1. On removing a1, the remaining subset of elements is either empty, or contains a

least element a2. Continuing in this way, either A is finite with n elements in order a1 < a2 <

… < an, or it contains an infinite set F of elements, a1 < a2 < … < an < … . In the latter case

there is an order-preserving bijection f F:N Æ  where f(n) = an, showing that the ordinal

number of F is w. Thus every well-ordered set S is either finite, or begins with a set with

ordinal number w. (It can, of course have further elements that come after the elements in F

in the given order.)

The addition of two ordinal numbers, corresponding to well-ordered sets A and B, is

performed by ordering A»B by placing the elements in A before the elements in B. For

instance, to obtain a set with ordinal number 1+w, we give the set {c}»N an order in which

the element c comes before all the elements of N, so c < 1 < 2 < … < n for all n Œ N. This

can clearly be put in a one-to-one order preserving relationship. (Figure 8.)

1 n:N ……32

c n–1:{c}∪N ……21

↔ ↔↔↔

Figure 8: An ordered correspondence between the two given sets

The cardinal number of {c}»N is thus the same as the cardinal number of N, giving:

1+w = w.

Just as in the cardinal sense, we seem to get the same ordinal once more. However, the

situation with ordinals is more subtle. To get an ordered set with ordinal number w+1, we

order N»{c} so that 1 < 2 < … < n< … < c where the element c now satisfies n < c for all



n Œ N. If we try to put this ordered set in one-one ordered correspondence with N, then c

must correspond to some k Œ N as in figure 9.

1 < 2 < … < c:N∪{c} ?

 … < k  <  k+1 < …:N

↔↔

Figure 9: There is no ordered correspondence between these ordered sets

But there is no element in N»{c} exceeding c in the order, so there is no element in N»{c}

which can correspond to k +1 in N . Hence there is no possible order preserving

correspondence between N»{c} and N, so w+1 is different from w. This gives the unexpected

results for ordinals that

1+w = w,

but

w+1 π w,

which in turn gives

1+w π w+1.

Addition of ordinals is, therefore, not commutative.

This discussion shows that cardinal infinity and ordinal infinity have different properties

from each other and both differ from finite experiences of number. So strange were these

ideas to the mathematical community when first announced that Kronecker prevented the

initial publication of Cantor’s theory of infinite cardinals and ordinals. Such pressures

subsequently caused Cantor to have a nervous breakdown. Now the theory is widely accepted

but this does not make it any easier for the learner, who must negotiate a minefield of

conflicting intuitions and resolve them by a reconstruction of personal knowledge. Although

there are many theorems about cardinal and ordinal numbers, an intuitive grasp of their

structure invariably comes after developing the formalism and reconstructing personal

knowledge, not before.

These types of infinity have very different properties from those that arise in other areas

of mathematics, particularly those that arise naturally in the calculus from imagining



‘arbitrarily large’ and ‘arbitrarily small’ numbers in the calculus. It is to this different type of

infinity we now turn.

The number line

The number line is met visually in a natural embodied sense as a straight line with a chosen

unit measured from 0 to 1, then repeated at equal intervals to 2, 3, … as on a ruler. (Figure

10.)

321 …

Figure 10: Numbers as points on a line

By marking negative numbers in the other direction and positive and negative fractions in

between, this may be further refined to give the ‘rational’ number line. (Figure 11.)

–2 3210–1 ……

–1
2

3
1

2

Figure 11: Inserting rationals and negatives

The points on the number line are intimately connected to the line segment measured from

the origin. The length of the line segment, taking direction into account, is also used to label

the point as well. When students are assumed to be familiar with this idea, teachers reveal

that there are points other than rational points on the number line. For, if an isosceles right-

angled triangle has side-length 1, its hypotenuse is of length ÷2, and this length measured

from the origin does not end up at a rational number.

At this stage, a sleight of hand occurs. As students, we are told that those points on the

number line, which are not rational, are called ‘irrational’. The theoretical ‘real’ line therefore

consists of rational and irrational points. In essence, this ‘explanation’ is no explanation at

all! It does not say what an irrational number genuinely is, only what it is not. (It is not

rational.)

Students therefore must use their intuitions of the number line to give meaning to the

notion of ‘irrational’. But individuals have many different intuitions, depending on their

previous experience, and one which is commonly held is the belief that quantities exist which



can be ‘arbitrarily small’, for instance the difference between 0.999…(‘nought point nine

recurring’) and 1 is extremely small, but not zero (Cornu, 1991). Most students, many

teachers, and some mathematicians (certainly many physicists), do good work by imagining

‘infinitesimally small’ quantities.

The idea that there is a clearly defined ‘number line’ shared intuitively by everyone is

therefore not acceptable. Despite the efforts of many mathematicians, including Cantor, to

outlaw infinitesimals from mathematical analysis, they are alive and well today and continue

to be used fruitfully by many experts. What we must do, therefore is to explain in what sense

an ‘infinitesimal’ can be said to ‘exist’, both in a formal sense, and also as a natural embodied

object that we can imagine in our mind’s eye.

Infinitesimals

… to conceive a quantity infinitely small, that is, infinitely less than any
sensible or imaginable quantity, or than any the least finite magnitude is, I
confess, above my capacity. (Bishop Berkeley, (reprinted 1951) p. 67.)

How can any sensible person conceive of something smaller than any sensible quantity? The

answer is that we have great difficulty if we use only the perceptions of things in the world

we live in. But we do not just perceive, we reflect on our perceptions to create new cognitive

images within our personal cognitive structure. It turns out that many students who have

experiences of quantities ‘becoming’ small in limiting processes, begin to imagine a ‘variable

quantity’ that can be ‘as small as you like’ (Cornu, 1981, 1991). The language used in the

calculus classroom tends to promote such thoughts, leading to individuals thinking of

variables tending to zero as being ‘arbitrarily small’. Certainly, the early pioneers in the

calculus thought in such terms (see Kleiner, this volume).

In the following sections we begin with an informal image of the number line, select

appropriate fundamental properties of the arithmetic and order as axioms for an ‘ordered

field’, then deduce a formal structure theorem which applies to all systems satisfying the

axioms. This structure theorem then leads to a visual embodiment of the formal idea of an

infinitesimal as a point on a number line.



Ordered fields

We begin our formal journey by recalling the notion of ordered field as defined in an

undergraduate mathematics course. This is given in terms of a set F with two operations +, ¥,

which, for every pair of elements x, y Œ F, there are elements x+y, x¥y Œ F, where x¥y is

usually written as xy. The arithmetic axioms are as follows:

• x+y = y+x, xy = yx, (x+y)+z = x+(y+z), (xy)z = x(yz) (for all x, y, z Œ F).

• There are (different) elements 0, 1 such that 0+x = 0, 1x = x for all x Œ F.

• x(y+z) = xy+xz, for all x, y, z Œ F.

• For each x Œ F there is u Œ F such that x+u = 0 and (if x π 0) there is v Œ F such that

xv = 1. [The elements u and v are usually written as –x and x–1, respectively.]

The ‘order axioms’ can be formulated in various ways. Here, they will be given in terms of a

subset P of F (which may be considered as the ‘positive’ elements of F) satisfying the

following:

• If x,y Œ P then x+y and xy are also in P.

• Every x Œ F satisfies one and only one of these properties:

x Œ P, or –x Œ P, or x = 0.

The order relation x > y (also written as y < x) is then defined to hold if and only if x–y Œ P.

An illustration of the axiomatic method is to use these axioms to derive the ‘usual’ order

properties of the relation >. For instance, given a, b Œ F then the second property implies one

and only one of the following hold:

a–b Œ P, or –(a–b) = b–a Œ P, or a–b = 0.

Hence, a > b or b > a or a = b.

Given

x > y and y > z,

then

x–y, y–z Œ P,

so, adding them, we get



(x–y)+(y–z) = x–z Œ P,

which gives

x >z.

Hence x > y and y > z implies x > z.

This latter deduction is highly significant in terms of whether thinking is embodied or not.

It establishes this order property not by the mental image of points on a line or by the Lakoff

container metaphor, but by substitution of the symbols into specific order axioms prescribed

for the set P.

Similar arguments allow other standard properties of order relations to be built up

formally from the axioms.

If a field F also satisfies the axioms of order, then the system is said to be an ‘ordered field’.

Such systems include the rational numbers Q and the real numbers R.

The real numbers also satisfy a further axiom, the axiom of ‘completeness’:

An ordered field is said to be complete if any non-empty subset S of F with an
upper bound k Œ F (meaning x £ k for all x Œ S) has a least upper bound l
(that is an element l that is both an upper bound of F and smaller than any

other upper bound of S).

(For further details, see for instance, Stewart & Tall, 1977).

There is an interesting reversal that occurs in formal theory. A system with more axioms

usually applies to fewer examples. For instance, there are many different ordered fields,

including Q and R. However, there is essentially only one complete ordered field, the familiar

field of real numbers. (This follows from a structure theorem proving that, given two systems

satisfying the axioms for a complete ordered field, then there is a bijection between them that

is also a direct translation between arithmetic and order. In formal terms, any two complete

ordered fields are isomorphic.)

Theorems proved about complete ordered fields therefore apply only to the single system

of real numbers R. However, any theorems proved without the use of the completeness axiom

will automatically apply to every ordered field.



There are many ordered fields, including some that contain the real numbers R  as a

subfield. Given that the mental image of the real numbers is essentially to ‘fill in the gaps’ on

the number line (for instance using the theory of Dedekind cuts), it may come as a surprise to

find that it is possible to fit in even more points than the real numbers on a visual number

line.

This is addressed in the next section, by presenting a specific example of such an ordered

field expressed formally. This example is given two distinct visual representations. The focus

then turns to the axioms for any ordered field containing the real numbers R, leading to a

structure theorem that enables us to visualize any such ordered field as a visual number line.

An example of an ordered field containing the real numbers

Consider the set R(x) of rational expressions in a variable x, of the form
a a x a x

b b x b x
n

n

m
m

0 1

0 1

+ + +
+ + +

K

K

where the coefficients ar and bs are all real numbers, with bm π 0. These rational expressions

have the familiar algebraic properties of addition, subtraction, multiplication and division and

satisfy all the axioms for a field. Moreover, given a Œ R, by taking a0 = a, b0 = 1 and all

other coefficients zero, we may consider the real numbers as a subfield R Ã R(x), or

equivalently, seeing R(x) as a larger system containing the real numbers R.

The student may already be familiar with these expressions, simply through manipulating

them in school algebra. However, our natural experience of school algebra does not put these

elements in an order that turns R(x) into an ordered field. We may do this either by a formal

or natural approach. The formal approach simply makes a definition of a subset P of rational

functions that satisfies the properties of an ordered field, in the strict sense of Hilbert’s

programme. The alternative, a natural approach, attempts first to motivate the idea with a

practical example.

A natural approach might be to interpret rational functions embodied as graphs and try to

put some kind of order on them, or, equivalently, to specify a set P of rational functions that



is to be taken as the ‘positive’ elements. As rational functions are capable of being positive in

some places and negative in others, a little cunning is in order.

A rational function is either the zero function, or it is the quotient of two non-zero

polynomials, each of which has only a finite number of places where it can be zero. Thus a

non-zero rational function has only a finite number of points where it is zero or undefined.

Take an interval 0 < x < k to the right of the origin (where k Œ R) which contains none of

these places. Then in the interval 0 < x < k the function is neither zero nor infinite. It cannot

be negative at one point in the interval and positive somewhere else in the interval, otherwise,

being continuous, it would be zero in between. It is therefore either strictly positive or strictly

negative in this interval to the right of the origin.

A rational function is declared to belong to P if there is a real number k such that the

function has positive values for all real numbers 0 < x < k. Figure 12 shows three rational

functions that are positive in an open interval to the right of the origin. The rational function

f(x)=x is positive for x in an open interval from 0 to k for any positive k, g(x)=x(1–x) is

positive in the open interval from 0 to 1, and h(x)=1/x is positive in any positive interval from

0 to k.

f(x)=x h(x)=1/xg(x)=x(1–x)

k kk

Figure 12: Examples of rational functions in the set P of ‘positive’ elements
(positive in an interval to the right of the origin)

This definition satisfies the axioms for an order given above and, in common with

convention, we say that an element in P is ‘positive’.

This particular example has an instructive purpose. The rational function is not ‘positive’

in the everyday meaning of the term, but purely in terms of the formal definition that it is a

member of the set P. However, such a definition is meaningful in a different embodied sense,



in that it relates the new meaning of the term ‘positive’ to a specific visual property of a

graph. This shows that formal mathematics is not a meaningless activity that only works by

moving symbols around. During theorem-proving it is essential to focus on the deductive

argument. However, in performing thought experiments, or interpreting formal theorems in

an embodied sense, the formalism may be given any meaningful embodiment that satisfies

the formal definition. This is particularly important when a given formal structure can have

more than one informal embodiment.

Having defined what it means to be ‘positive’, the ‘order’ between rational functions f, g

is specified by saying:

 f > g if and only if f – g Œ P.

This does not mean that the graph of f is everywhere greater than g, simply that the graph of f

is higher than that of g in an interval immediately to the right of the origin.

In this new sense x > 0 and r > x for any positive real number r (because x Œ P and

r – x Œ P). Thus 0 < x < r using the new order defined in the larger ordered field R(x). The

element x is therefore ‘positive’ yet ‘smaller’ than any positive real number r . It is an

infinitesimal.

This construction poses some possible problems. The formal learner may be satisfied with

the formal symbolic approach to the definition of the ordered field R(x) and have no need for

the picture. The natural learner who has a predisposition for thinking of an infinitesimal as a

‘very small quantity’ may have difficulty because the embodiment is a graph, not a number,

or a point on a line.

There are several ways of visualising infinitesimals as points on a line. One is to imagine

a vertical line near the origin through the point x = t. In figure 13, the line meets the constant

graph f(x) = c at the point C, the straight line l(x) = x at L, and the parabola p(x) = x2 at P. As

the value of t gets close to zero, the line moves near to the y-axis, the point C stays at a fixed

height c above the x-axis, but L moves below C and P moves below L. In this sense, one can

imagine C as a constant point on the vertical line, with L and P  as ‘variable points’ that

remain positive but are ultimately below any positive real constant c. This thought



experiment allows the novice to ‘see’ infinitesimals as ‘variable points’ that are ‘arbitrarily

smaller’ than any positive real constant c. This is analogous to the notion prevalent at the

beginning of the nineteenth century when Cauchy described infinitesimals as ‘variable

quantities that tend to zero’.

p(x) = x2

f(x) = c

l(x) = x

P

L

C

x = t

Figure 13: Variable quantities seen as infinitesimals on a moving vertical line

Such an image may be helpful to some natural learners, but it can be very unhelpful to others.

It fails to represent an infinitesimal as a genuine fixed point on a number line.

A formal image of an ordered field with infinitesimals as fixed points

The individual who has developed a formal concept image of an ordered field, involving only

deductions from the axiomatic definition, can prove a number of formal properties that

provide a context for the meaning of an infinitesimal. First one can prove the structure

theorem that F contains a subfield (isomorphic to) the rationals Q. (The proof begins with

1 Œ F. Forming successive sums 1, 1+1, 1+1+1, … using an induction argument generates N,

including negatives and multiplicative inverses generates the subfield Q.)

By thinking of Q  as a subset of F, an element x Œ F is said to be a infinitesimal if

–r < x < r for all positive r Œ Q. This includes the case x=0. However, no other positive



rational number x Œ Q can be infinitesimal because then r=x/2 ŒQ would satisfy r < x,

contrary to the definition. A similar argument holds for x negative, so there are no non-zero

infinitesimals in Q, although there may be infinitesimals in F that are not in Q.

If we try to represent the elements of F as points on a number line, we could begin by

marking the elements in the subfield Q as rational points. But where do we fit the other

elements of F? Our experience tells us that they might be irrationals as in R, or some other

kind of element we need to think more about.

To simplify our discussion, we consider now only an ordered field F, such as R(x), which

already contains all the real numbers R. An infinitesimal will then satisfy –r < x < r for all

positive r Œ R. By the same argument as for Q just given, we have the following theorem:

A non-zero infinitesimal is not a real number; it is an element of a larger
ordered field.

An element x Œ F is defined to be positive infinite if x > r for every r Œ R , and negative

infinite if x < r for every x Œ R. A finite element x ŒF satisfies a < x < b for some a, b Œ R.

With these definitions, we can use the completeness of R to prove a structure theorem

that describes the structure of any ordered field containing the real numbers:

Structure Theorem: Every ordered field F with the real numbers R  as a
proper subfield contains both infinitesimals and infinite elements. Every finite
element is of the form c+e where c Œ R  and e Œ F is infinitesimal. Every
infinite number is of the form 1/e where e is infinitesimal.

Proof: F has at least one element x Œ F not in R. This element x must either be

finite or infinite. If x is infinite, a simple calculation shows that 1/x is
infinitesimal.

If x is finite, then it satisfies a < x < b for a, b Œ R. Consider the set

S = {t ŒR | t < x}.

Then S is non-empty (because a Œ S) and is bounded above (by b Œ R), so by

completeness it has a least upper bound c Œ R. Let e = c–x, (so that x = c+e).

If c < x, and there can be no k Œ R in c < k < x, as the definition of S gives

k Œ S where k then exceeds the upper bound c of S. For x < c there can be no

k Œ R in x < k < c since then, for all t Œ S, we have t < x, so t < k, implying k is

an upper bound for S that is smaller than the least upper bound c. In either
case there is no real number between x and c. So e  =  x–c is an infinitesimal.



A visual embodiment of infinitesimals in any ordered field containing R

The structure theorem we have just proved has been established by deduction from the formal

definition. It does not depend on any embodied visual properties. However, it allows us to

translate the formal statement into a visual embodiment as a ‘number line’. The structure

theorem implies every element of F is either infinite, which would seem ‘too far off’ in one

direction or the other to see in a finite picture, or it is of the form

x = c+e, (c ŒF, e infinitesimal)

which seems ‘too close’ to c to be visually distinguishable from it.

–1/ε
(negative
infinite

quantity)

1/ε
(positive
infinite

quantity)

c–ε c+ε

c

Figure 14: An ordered field F with infinitesimals and infinite elements that seem difficult to see!

We are, apparently, in a worse dilemma than in attempting to distinguish visually between

rationals and irrationals. However, unlike Bishop Berkeley, who attempted to make sense of

infinitesimals purely from his perception and intellect, we have a formal image of a complete

ordered field with formal structure theorem to give us support.

The problem in ‘seeing’ infinitesimals is not essentially different from the problem of

‘seeing’ distinct real numbers on the real number line. To distinguish visually between the

irrational number ÷2 and the rational number 1.41421, we use a sufficiently large scale.

The same idea works for visualising the difference between c and c+e for c Œ R and e

infinitesimal. We introduce the formal function m:FÆF given by:

m
e

( )x
x c= -

.

Then m(c) = 0, m(c+e) = 1, so m maps c and c+e to the (visibly) distinct points 0,1.



0

c

c–ε

µ

c+ε

µ(c–ε) µ(c+ε)µ(c)

–1 1

Figure 15: Visualising the function m as a mapping of a number line with infinitesimals

In map-making the location of a place (eg ‘New York’) on a map is denoted by its name

(New York). Replacing the names of the images by the names of the original points in the

same way gives the picture in figure 16.

c

c–ε

µ

c+ε

c–ε c+εc

Figure 16: A magnified portion of number line, showing infinitesimals

This technique allows the formal map m to be visualised in terms of a process that rescales

and separates the points c and c+e.

More generally, for any a, d Œ F, the map m:FÆF given by

m a
d

a d d( ) ( , , )x
x

F=
-

Œ π 0

is called the d-lens pointing at a. This operation defined purely in symbolic terms, based on

the operations available in a field, has a visual interpretation that maps any two points a and

a+d onto visibly distinct points in a finite picture. By taking a or d to be finite, infinite, or

infinitesimal, we obtain a visual method of seeing different parts of the extended number line

rescaled to be seen in a finite picture. Remarkably, this translates a formally defined

construction into an embodied visual representation. It is more than just an informal



representation, it is a visual interpretation of the formal construction, and, as such, has quite

explicit formal properties that can be used in formal deductions.

Precisely what is seen using a d-lens can be explained using the following definition:

l Œ F is of higher order detail than d Œ F if l/d is infinitesimal, it is the same

order if l/d is finite (but not infinitesimal) and lower order if l/d is infinite.

A d-lens pointed at a reveals details which differ from a by the same order as d; a point

which differs from a by higher order difference is ‘too close’ or ‘too small’ to see, and lower

order differences are ‘too far away to be seen’.

The same ideas extend to two or more dimensions using a lens on each coordinate. For

instance, a d-lens pointed at (a, a2) reveals a nearby point (a+h, (a+h)2) on the graph of y = x2

as:

m
d d

d d d

r r r r d

( ,( ) )
( )
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( )
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a h a a h a
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2  where 

If d is infinitesimal and h is of the same order, then r is finite and hr is infinitesimal. The

standard part of the image is therefore

st  st(( ), ) ( , )r r r2 2a h r ar+( ) =  where r = st(r) Œ R.

Looking at the standard part of an image is the same as looking at real numbers. We define

the composite of d-lens m followed by taking the standard part to be called an optical d-lens

(Tall, 1980b, 1982). The finite part of the image of an optical d-lens is called the optical

image. An optical d-lens maps part of a line with infinitesimal detail to a picture that reveals

detail of the same order as d, as a picture in the real plane.

 In the case just mentioned, the optical image is the set of points ( r, 2ar2) for r Œ R. This is

precisely the real straight line, gradient 2a, through (0, 0) = m(a, a2). We therefore have the

following theorem:

The optical image of a differentiable function under infinite magnification is a
straight real line.



As the infinitesimal parts have been suppressed, the optical image is not nearly straight, but

really straight.

(a+h,(a+h)2)

(a,a2)

(a,a2)
optical microscope

Figure 17: Infinite magnification of infinitesimal portion of a graph as a visual image

One small step for man, one giant leap for mankind

When Neil Armstrong stepped on the moon, he moved our conceptualisation of space a great

leap forward by making human imagination of the moon a reality, for himself at least. For the

rest of us, of course, it is still imagination, but imagination founded on the actual experience

of another.

In mathematics the step that we take in saying, ‘let there be a set N satisfying the Peano

postulates,’ is one which none of us can take in actuality, for we cannot hold an infinite

number of concepts in our finite mind. Yet, it is a step that many of us take easily in our

imagination.

Nevertheless, there is an even greater step taken by some mathematicians, who say:

Let us suppose that we have a collection of sets (possibly infinite) where none
of them is empty, then simultaneously it is possible to choose a single element
from each set in the collection.

This is the axiom of choice. It is a powerful conception that gives great power in

mathematical proof. Some sceptical individuals, including those from the school of

intuitionism, point to its subtle weakness, that it asserts the existence of a choice without

saying how it is to be done. This leads to diverging views of formal mathematics, those who

accept the axiom of choice as a legitimate tool in mathematical proof, and those, including



the school of intuitionism, who reject it. In the latter case, all existence proofs need to involve

actual constructions given by specified algorithms, as in the approach of Bishop (1967).

The twist in the tale came in the nineteen sixties when Paul Cohen (1966) proved that the

axiom of choice is independent of the other axioms of set theory. Using it allows the proof of

more theorems than would be possible without it, but adding it gives no new contradictions

that are not present in set theory without the axiom of choice. From this viewpoint, it would

seem that the intuitionist approach is just as liable to contain contradictions as a formal

approach with the axiom of choice added. However, the proof of this argument uses the

axiom of choice, and so it would be unlikely to be accepted from an intuitionist viewpoint.

The axiom of choice has powerful uses in analysis. For instance, it can be employed to

prove the existence of a field *R called a hyperreal field, which is an extension of R and is

logically appropriate to perform all the usual tasks of mathematical analysis in a field

containing infinitesimals (Robinson, 1966). In this theory, each subset S of R has a ‘non-

standard extension’ *S  where S  Õ *S Õ *R  and every function f S: Æ R extends to

* :* *f S Æ R where f(x) = *f(x) for all x ŒS.

In simple cases, such as an open interval

S = {x Œ R | a < x < b},

the extension satisfies the same formulae in the larger system:

*S = {x Œ *R | a < x < b}.

In the same way, a polynomial function such as

f(x) = x2 (x Œ R)

is extended to

*f(x) = x2 (x Œ *R).

Other more general extensions are guaranteed by a theorem proved using the axiom of

choice, essentially ‘choosing’ the extension to have the appropriate properties (e.g.

Lindstrøm, 1988).

Appealing to the axiom of choice asserts the existence of new sets that we can attempt to

imagine and talk about, even deriving their properties. For instance, the set of natural



numbers N has a natural extension *N which has infinite elements. The new infinite elements

in *N are called (non-standard) infinite natural numbers. If N is an infinite natural number,

then so are N+1, N+2, …; N–1, N–2, …; 2N, 2N+1, … and even bigger numbers such as N2

or even NN, and so on. This gives a new theory of infinite natural numbers whose properties

are quite different from Cantor’s cardinal infinities (Tall, 1980a). The non-standard natural

numbers have a full and satisfactory arithmetic. If N is infinite, then N+1 is the ‘next’ natural

number and is strictly bigger than N. There is a preceding natural number, N–1, and an

infinitesimal reciprocal 1/N. By extending the axioms of ordered fields using the axiom of

choice, we therefore get a powerful new extension to the infinite that complements the

notions of infinitesimals.

This theory can be used to give powerful formal images of ideas that already appeal to the

intuitive senses. For instance, any sequence (an) of real numbers is a function from N to R

and so can be extended to a function from *N to *R. The limit of the convergent sequence

(an) is then the standard part of aN for any infinite element N Œ*N.

This theory gives a new way of speaking about analysis. It does not give any new

theorems in everyday analysis, but it can prove them more efficiently. It does, however, give

new theorems about non-standard ideas that are not part of the traditional e-d approach.

For a function f defined in an open interval containing x Œ R, then *f(x+e) can be defined

for x+e Œ *R where x is real and e is infinitesimal. By computing the ratio (*f(x+e)–*f(x))/e

and taking its standard part, one can calculate the derivative of f at x. In the simple case

f(x)=x2, we have

* ( ) * ( ) ( )
.

f x f x x x
x

+ - = + - = +e
e

e
e

e
2 2

2

Taking the standard part suppresses the infinitesimal e and gives the derivative as 2x.

Likewise, any sequence (an) of real numbers is a function from N to R and so can be

extended to a function from *N to *R. If (an) is convergent, then the limit is defined to be the

standard part of aN for any infinite element N Œ*N. This gives an alternative approach to the

standard theory.



What’s in a name?

The notation of non-standard analysis is seen by some as beginning to get messy and over-

fussy. For every (standard) set or function we have a non-standard extension which we notate

with a preceding ‘*’. The essential fact is that, restricted to the standard case, the ‘*’ notation

becomes redundant. So why introduce a new notation? Why not just extend the old one?

As ideas are extended, we invariably extend the old language to include the new. For

instance, a ‘number’ may first be encountered meaning a ‘natural number’, then fractions,

negatives, rationals, irrationals, even complex numbers, are all eventually called ‘numbers’.

In the same way, the name ‘real number’ may be extended to encompass the set of non-

standard real numbers. Where necessary we can distinguish between the everyday real

numbers by calling them standard real numbers, and the extended set non-standard real

numbers. With this linguistic change, the number line can be seen in two different ways. It

can be visualised as the (standard) complete ordered field R, or as a full field of non-standard

real numbers with infinitesimal and infinite detail. Using optical lenses, we can visualise

appropriate detail of the full (non-standard) real line as a standard real picture. In this way,

we obtain a visualization of a purely formal version of this extended real line in a manner that

has echoes of the intuitions of the great mathematicians in history, still found in our students

today. Of course, to construct the system formally requires the individual to work through the

axiomatic construction of the hyperreals using the axiom of choice (e.g. Lindstrøm, 1988;

Robert, 1988). Even then, individuals may not feel that the mental construction makes sense

(including those who hold an intuitionist view). Those who do achieve the cognitive

reconstruction can communicate to each other about the wonders of non-standard analysis.

Others must be content with an informal concept image of these powerful ideas.

The limit concept

This paper began with the potential infinity of a recurring process and the idea of potential

infinity and then constructed several distinct infinite extensions of the number system. Many

in our current culture have the experience of e-d analysis and of Cantor’s theory. The latter



has no role for infinitesimals, and this, wrongly, has led to a belief that there is something

highly suspect about using infinitesimals. Non-standard analysis provides an alternative,

which, whilst not concerning itself with the infinite cardinality of sets, has a full arithmetic of

infinite integers and infinitesimal quantities.

It is therefore opportune to close this paper with a discussion of the limit concept in the

light of these differing paradigms. The limit notion occurs in a number of different guises. It

may involve the behaviour of a sequence of real numbers a1, a2, … , an, … as n increases, the

continuous limit of a function f(x) as x approaches a particular value a , or a more

sophisticated limit such as the Riemann sum of areas of rectangles under a curve. All of these

have in common a process of getting arbitrarily close to a fixed value (the limit). In every

case, the same symbolism is used both for the process of convergence and also for the

concept of limit. For instance

1
21 nn =

•Â
evokes both the process of calculating the limit of the sum of the series and also for the

numerical limiting value. Likewise

lim
x a

x a

x aÆ

-
-

3 3

also evokes both the process of calculating the limit as x gets close to a and also for the

limiting value 3a2.

Mathematical concepts where a process and the output of that process are represented by

the same symbol are called procepts (Gray & Tall, 1994). Limit procepts are very different

from other procepts met previously by the student (Tall et al., 2001). Arithmetic procepts,

such as the process of addition coupled with the concept of sum, or the process of

multiplication and the concept of product, usually have a built-in (finite) algorithm of

computation which readily give the answer. Algebraic procepts, such as the expression 3+2x

have only a potential process of evaluation, which can only be performed explicitly when x is

given a numerical value. Such a view of the expression as an incomplete process gives a

sense of ‘lack of closure’; an expression sensed as an incomplete process is not easily



conceived as a ‘thing’ that can be manipulated. The uneasiness felt by individuals often

seems to lead them to learn procedural rules without understanding what is going on.

However, even procedural rules do at least provide strategies in school algebra to simplify an

expression or solve an equation.

The limit procept is even more subtle. Apart from a few simple cases such as the sum of a

geometric series, there is no finite algorithm to compute the value of the limit. Instead, the

process of convergence seems to be potentially infinite, often giving a sense of ‘going on

forever’, ‘tending to the limit’, ‘approaching the limit’, but never seeming exactly to get

there.

The literature abounds in describing cases of cognitive obstacles caused by sensing the

infinite ongoing process rather than the finite limit value. (See the summaries in Cornu 1991;

Tall, 1992). The idea of ‘getting closer and closer’ carries an embodied sense of ‘nearly there,

but not quite’, giving a sense of an unattainable conclusion to the limit process. The natural

idea of a limit therefore has built-in cognitive obstacles.

The formal idea, with its multiple layers of quantification, has other difficulties. For

instance, the full definition of continuity of f D: Æ R is:

" Œ " > $ > " Œ - < fi - <a D x D x a f x f ae d d e0 0 : ( ) ( ) .

This is so complex that it is usually broken down into stages, first say that the function is

continuous at the point a:

" > $ > " Œ - < fi - <e d d e0 0 x D x a f x f a: ( ) ( ) ,

perhaps in a more ‘friendly’ linguistic form, such as:

given any e > 0, there is a d > 0 such that f x f a( ) ( )- < e  whenever x a- < e .

We then say that a function is continuous (on D) if it is continuous at every a Œ D.

The value of d here depends not only on e, but also on the value of a. If a single value of

d can be found to satisfy every value of a Œ D, the function is said to be uniformly continuous

on D. This is formulated in the definition:

" > $ > " Œ - < fi - <e d d e0 0 x a D x a f x f a, : ( ) ( )



The equivalent non-standard definition of continuity is of the form:

" Œ - fi -a x D x a f x f a, : ( ) ( ) .  infinitesimal   infinitesimal

If a is restricted to being a standard element of D, this is equivalent to point-wise continuity

at a. Otherwise if x, a are both allowed to be non-stardard, then it is equivalent to the

definition of uniform continuity.

The evident simplicity of this idea has led to a number of non-standard approaches to

teaching calculus (eg Keisler 1976; Henle & Kleinberg, 1979; Lindstrøm, 1988; Robert,

1988). Various mathematics educators have tested such an approach and shown an apparent

improvement in understanding (eg Sullivan, 1976; Artigue, 1991; Frid, 1994). Criticism of

the use of the axiom of choice in the non-standard approach however, draws extreme

criticism from those such as Bishop (1977) who insisted on explicit construction of concepts

in the intuitionist tradition. The vast majority of mathematicians do not take such an extreme

view, however, there remains an entrenched suspicion of infinitesimal methods in analysis.

The main body of mathematicians seem to remain pragmatic formalists, solving problems in

any way that gives a solution, then seeking the clarity and security of formal definitions and

mathematical proof to give a logical structure to the relationships.

Summary

In this article, a distinction has been made between natural concepts of infinity, developed

from experiences in the finite world, and formal concepts of infinity, built from formal

definitions and deductions. Initial natural concepts often involve conflicting ideas, however,

by building from different formal definitions, different formal notions of infinity can be

constructed, each consistent in itself.

Two different methods of developing the formal theory are identified. ‘Natural thinking’

builds from concept imagery towards formalism. ‘Formal thinking’ builds from the concept

definition, marginalizing imagery and focusing on logical deduction. Natural thinking is

appropriate for thought experiments that suggest possible theorems; formal thinking is

appropriate for establishing formal proofs. Individuals may prefer one approach or the other,



or use each method as appropriate. It was shown that, not only can natural thinking be used to

imagine possible theorems, but formal thinking may also lead to ‘structure theorems’, whose

properties may be used to develop more subtle visual imagery, now enhanced by a network

of formal relationships.

The natural idea of the potential infinity of counting was axiomatized as a formal infinity

defined by the Peano postulates. A structure theorem shows that this uniquely defines a single

structure formalizing the natural numbers and reformulating potentially infinite repetitions as

a finite application of the principle of induction. The focus then turned to the comparison

between sets, extended to the formal theory of infinite cardinals. These have commutative

and associative operations of addition and multiplication, but no corresponding operations of

subtraction or division. The correspondence between well-ordered sets leads to the theory of

infinite ordinals, again with operations of addition and multiplication. Although these are

associative, they are no longer commutative.

An alternative focus on the familiar properties of arithmetic and order of number systems

leads alternatively to the formal definition of an ordered field. Adding the axiom of

completeness gives the notion of a complete ordered field. There are many different ordered

fields, but (up to isomorphism) only one complete ordered field, namely the field of real

numbers. A structure theorem shows that any ordered field contains (a subfield isomorphic

to) the rational numbers. A second structure theorem about ordered fields that are bigger than

the real numbers, shows that the finite elements are of the form a+e where a is real and e is

infinitesimal (possibly zero), and the infinite elements are of the form 1/e where e is

infinitesimal. Such ordered fields may be visualised as number lines, with formal

transformations (d-lenses) that can be used to reveal infinitesimal or infinite detail.

Using the axiom of choice, it is possible to construct an extension ordered field of R that

includes not only infinitesimals and infinite elements, but also additional structures such as

infinite non-standard integers. The latter satisfy not only the usual rules of addition and

multiplication, but, unlike cardinal and ordinal numbers, they can be subtracted, to give a

standard or non-standard integers, and divided, yielding infinitesimals.



The moral of this tale is that there is not a single concept of infinity, but several distinct

ones, and that it is not appropriate to assign to any one of these concepts the title of ‘the’

concept of infinity. In particular, it is not appropriate to consider infinite cardinal number

theory (with its lack of subtraction and division) as the only mathematical infinity. There are

other infinite concepts, including the intuitive infinities and infinitesimals in the calculus, that

can be given formal theories of their own, consistent in themselves and yet different from the

notion of infinite cardinal.

Notes

1. Elementary descriptions of intuitionism, formalism, logicism may be found on the World

Wide Web, eg, at:

http://www.objectivistcenter.org/pubs/F_phimat.asp.

2. There are a number of elementary pages on the World Wide Web on Gödel’s

Incompleteness Theorem, which can be found by typing Goedel, incompleteness into a search

engine. These currently include:

http://www.miskatonic.org/godel.html

 and

http://pespmc1.vub.ac.be/ASC/INCOMP_THEOR.html.
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