Infinity — the never-ending struggle’

David Tall and Dina Tirosh

Infinity has fascinated mankind since time immemorial. Zeno revealed that, whether we
consider space and time to be infinitely divisible or consisting of tiny indivisible atoms,
in both cases paradoxes appear. Despite this uncomfortable problem, practical
mathematicians continued to use a range of infinitesimal and indivisible methods of
calculation through to the 17th century development of the calculus and beyond. At the
beginning of the 19" century, infinitesimal methods were still widely used.

Dedekind’s construction of the real numbers suggested that the real line consists only
of rationals and irrationals with no room for infinitesimals. He began with the set Q of
rational numbers and proceeded to construct a set R of ‘cuts’ of the set Q which consist of
two subsets A, B where every element of A is less than every element in B. He showed
that these cuts were of two types. The first type corresponded to a rational number r with
rational numbers less than 7 in A and rational numbers greater than r in B. (In this case
the rational number r could be in either A or in B.) The second type did not have a
rational number sitting between A and B. He showed that the set of cuts formed a system
with elements of the first type corresponding to rational numbers and elements of the
second type corresponding to irrational numbers. This construction ‘completed’ the real
line by adding irrational numbers to ‘fill in the gaps’ between the rational numbers. In
such a number line, there is ‘no room’ for infinitesimal quantities.

The arithmetization of analysis by Riemann confirmed this view that no number o on
the real line could be ‘arbitrarily small’, for if O < o < r for all positive real numbers r,
then )5« is positive and even smaller than . Infinitesimals therefore did not fit into the
real number system.

When Cantor constructed the concept of infinite cardinal and ordinal numbers, he
developed a remarkable extension of counting finite sets to define the cardinal number of
an infinite set with an operation of addition corresponding to the union of two sets and
multiplication corresponding to the Cartesian product of two sets. Two infinite sets are
said to have ‘the same cardinal number’ when they can be put in one-one
correspondence. This was not without its difficulties. For instance, in the infinite case, a
set and a proper subset could now have the same cardinal number, which contradicts
finite experience and continues to cause confusion in those learning the theory today. The
arithmetic of cardinals also has no use for infinitesimals because infinite cardinals do not
have multiplicative inverses.

By the beginning of the twentieth century, infinitesimal ideas were theoretically under
attack, but they still continued to flourish in the practical world of engineering and
science, often as a ‘fagon de parler’, representing not a fixed infinitesimal quantity, but a
variable that could become ‘arbitrarily small’.
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Matters became interesting in the mid-twentieth century when Abraham Robinson
introduced his theory of ‘non-standard analysis’; infinitesimals were formulated on a
logical basis. However, this too was not without its critics for it invoked the axiom of
choice to assert that such entities existed without being able to give a specific finite
construction.

To this day the debate continues. Although the infinite cardinals are generally
accepted by the mathematical community, there are mathematicians who fully embrace
the theory of infinitesimals in non-standard analysis, those who deny their existence and
assert the pre-eminence of standard analysis, and an even greater number who do not
agonise over the foundational problems and simply get on using mathematics for
practical purposes.

In this volume of papers we consider the contribution of the psychology of
mathematical thinking to the debate. It proves to shed considerable light on vexed
questions surrounding the concept of infinity, for it reveals the human basis for the
understanding of infinity and infinitesimals, not only in students, but in the minds of
mathematicians themselves.

Initial pioneering work of Efraim Fischbein (1978) revealed the conflicting nature of
intuitions of infinity widespread in our students. His empirical research ranged over the
potential infinity of the limiting process and the actual infinity of cardinal number theory.
He found that students’ intuitive conceptions of limiting processes tended to focus more
on the infinity of the process than on the finite value of the limit. For instance, students in
grades 8 and 9 were asked the following question:

(i) Given a segment AB = 1m. Let us add to AB a segment BC = Sm. Let us continue
in the same way adding segments of +m, gm, etc. Will this process of adding
segments come to an end?
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(i1) Let us consider question (i). What will be the sum of the segments
AB+BC+CD+... etc. ?

He found that 84% of students surveyed thought that the process in (1) would never end
14% thought it would. In (i1) only 6% thought the sum of the segments would be 2, 17%
thought it would be less than 2 and 51% thought it would be infinity (Fischbein, 1978, p.
68). This ‘never-ending struggle’ with the potential infinity of the process proved to offer
a serious cognitive obstacle to students’ understanding of the limit concept.

Fischbein identified similar paradoxical conflicts in the intuition of cardinal infinity.
He argued that

(1) our intellectual schemes are genuinely built on our practical, real life experiences
and therefore propositions like “the whole may be equivalent to its parts”
contradict our usual, mental schemes;

(2). our intuitive interpretation of infinity is that of pure potentiality and this
interpretation naturally lead to the conclusion that all infinite sets have the same
(infinity) number of elements.



Consequently, Fischbein anticipated that students’ responses to various questions
concerning the comparison of infinite quantities would fall into two opposite categories:
“Infinite” answers (e.g., “all infinite sets are equivalent”) and “Finite” answers (e.g., “a
proper subset of a given set is not equivalent to the set”). These hypotheses were
confirmed in a series of studies (Fischbein, Tirosh and Hess, 1979; Fischbein, Tirosh and
Melamed, 1981). He concluded that individuals’ conceptions of infinity are ‘labile and
self-contradictory’.

Tall (1980) made a step forward in clarifying the issues by noting that, while counting
and measuring concepts were consistent in the finite case, they had distinctly different
properties in the infinite case. The infinite extension of counting gives the theory of
infinite cardinals while the infinite extension of measuring concepts gave rise to a
different form of infinity which he termed ‘measuring infinity’, arising in a range of
theoretical contexts including non-standard analysis.

In this set of papers we follow the distinction between measuring infinity and cardinal
infinity by focussing on the difference between the infinities and infinitesimals in the
calculus on the one hand and the cardinal infinities introduced by Cantor on the other.
Our study begins with the historical development of these two separate strands, considers
the different ways in which they are extrapolated from finite experience to various
theories of infinity, reviews literature in empirical studies on students’ conceptions and
considers different curricular approaches appropriate for limits in the calculus and for
infinite cardinals in formal mathematics.

HISTORICAL DEVELOPMENT

In the first of our two historical studies, Israel Kleiner considers the role of infinity and
infinitesimals in the development of the calculus. He characterizes the evolution of three
major elements of calculus: a set of rules or algorithms (a “calculus™), a theory to explain
why the rules work, and applications of the theory and of the rules to fundamental
problems in science. He describes three major periods in the development of calculus: the
naive period (in the 17" century), the formal (in the 18" century) and the critical (in the
19" century), and proceeds to discuss four stages in the historical development of the
related mathematical ideas: discovery (or invention), use, understanding, and
Jjustification. Kleiner then draws some implications from the historical account relevant to
the teaching and learning of calculus, for instance, “To begin a calculus course with a
definition of limit may be logically constructive but pedagogically destructive. In general,
rigor for rigor’s sake will defeat the student.” He also raises some critical issues, for
example, “We can teach calculus without function, as Newton, Leibniz, and their
immediate successors have shown. Should we?” The last part of Kleiner’s article is
devoted to a description of the historical development of the non-standard analysis of
Robinson, and to the related, unavoidable didactical issue: “Should we teach calculus via
the method of non-standard analysis?”

In the second paper on the historical development of cardinal infinity, Hans Niels
Jahnke considers the epistemological and didactic views of the genesis of Cantor’s
cardinal and ordinal infinities. He presents the story of the development of Cantorian set
theory from both mathematical and epistemological perspectives. He goes on to describe
and reflect upon the various arguments that Cantor himself used to defend and legitimate



his innovative, intuitively disturbing ideas, and to attempt to convince his contemporaries
that the transfinite numbers are coherent generalizations of finite notions. Based on this
evidence, Jahnke draws three major epistemological and didactic lessons from the
Cantorian story:

(1) The essentially new dimension in Cantor’s approach to infinity is the creation of a
notion of infinity fundamentally divorced from the idea of continuity.

(2) Cantor’s theory is a generalization of finite expressions, yet, many of his ideas are
so strongly opposed to common sense that they may lead to the perception of the
infinite as artificial and unnatural.

(3) Cantor’s discussion of the nature of mathematical generalizations and the
importance of the freedom of pure mathematics has implications in mathematics
instruction.

He concludes by putting the case that reference should be made to Cantor’s commitment
to his fundamental theoretical vision and to the important contribution of such an
approach to the development of innovative mathematical ideas.

CONCEPTUAL DEVELOPMENT

After these papers on historical and epistemological considerations we turn our attention
to the conceptual development of infinity. In the first article in this section, David Tall
considers how the finite human mind contemplates infinite concepts. He distinguishes
between ‘natural’ concepts of infinity that arise through extending finite experiences to
the infinite case and ‘formal’ concepts of infinity framed in modern axiomatic
approaches. He details how the axiomatic method provides a context in which selected
finite properties can be formulated to give corresponding axiomatic theories. Individual
theories may then be coherent in themselves whilst having significantly different
properties from other theories. For instance, non-standard analysis has a complete
arithmetic in which infinite quantities have infinitesimal inverses but cardinal infinity
does not. This reveals not one ‘self-contradictory’ concept of infinity, but several
different formal concepts of infinity, each coherent within its own context. Thus
prejudices which may arise through a natural focus on a particular infinite concept (such
as cardinal infinity) must be seen in their own context and not used to denigrate concepts
in other contexts (such as the notion of infinitesimal). He explains how thought
experiences (built on concept images) may suggest theorems that may be proved by
formal deduction (based on concept definitions). He also reveals that the reverse path
from formalism to natural images can also occur through the proof of ‘structure
theorems’ that have imagistic interpretations suitable for more sophisticated thought
experiments. As an example, he shows how any ordered field F' that contains the real
numbers (defined in a purely axiomatic manner) satisfies a structure theorem that enables
it to be represented visually as a number line with infinitesimal detail revealed by
magnification. This shows that the apparent limitation of the visual number line to
represent only real numbers is a restriction imposed by the manner in which it is
interpreted. A more sophisticated interpretation can “see” infinitesimals on a number line.
He uses these ideas to refocus the discussion on how the student can be assisted to come
to terms with particular concepts of infinity in a various clearly defined contexts.



John Monaghan complements this viewpoint by considering a range of research
studies on the views of infinity conceived by young people without experience of formal
mathematical ideas. He begins with a description of two potential pitfalls that may affect
research in young peoples’ ideas of infinity. First, the real world is finite and there are no
real referents for discourse on the infinite. Therefore, the researcher has to provide the
context, and this involves using concepts that may not necessarily make sense to the child
in the manner intended by the researcher. The second, essentially similar, pitfall involves
the meanings of the language used when talking with the child about infinity.

Monaghan goes on to describe and discuss several studies on children’s understanding
of infinity, from the early research of Piaget & Inhelder (1956) and Taback (1975), a
study of the contradictory nature of infinity (Fischbein, Tirosh & Hess, 1979) and studies
of young children’s conceptions of infinite numbers (Falk, Gassner, Ben Zoor & Ben
Simon, 1986). He then describes the result of his own study, examining young people’s
conceptions of infinity (Monaghan, 1986), and several studies that investigate notions of
number that children perceive as infinite (Fischbein, Jehiam & Cohen, 1995; Vinner &
Kidron, 1985). This leads into a discussion of the impact of various contexts (numeric
versus geometric, counting versus measuring, static versus dynamic) and how the nature
of the task affects students’ responses.

TEACHING APPROACHES

The next two articles turn to the teaching of infinities in different contexts. Joanna
Mamona-Downs presents a didactical approach to the teaching of limiting processes of
real sequences and Pessia Tsamir describes and analyses a research-based approach to the
teaching of cardinal numbers.

Mamona-Downs suggests three didactical steps in the teaching of the concept of limit.
In Stage 1, students are presented with several typical tasks aimed at uncovering their
intuitions of limit processes of real sequences. She describes the tasks, the rationale for
their presentations and the major issues to be debated and discussed in the classroom.
She argues that such discussions expose the learners to opposing views of limits that may
be used to attempt to develop a more coherent appreciation of the formal definition. In
Stage 2, the formal definition of the limit of real sequences is introduced and analysed,
discussing the role of each of the symbols and explaining the nature of the formal
definition. Stage 3 is devoted to a careful evaluation of the intuitive beliefs evoked in
Stage 1 in light of the formal definition presented in Stage 2. Mamona-Downs argues that
such a discussion is designed to lead to the refinement of intuitions and a more complete
understanding of the limit concept.

Pessia Tsamir focuses her study on student concepts of cardinal infinity. She
demonstrates how research-based knowledge about students’ inconsistent responses to
different representations of infinite sets can be used to raise their awareness of
contradictions in their own reasoning and to guide them toward using the one-to-one
correspondence as the unique criterion for the comparison of infinite quantities. She
begins by briefly summarizing the results of previous studies on students’ responses to
different representations of the comparison-of-infinite-sets tasks (e.g., Tsamir, 1999;
Tsamir & Tirosh, 1999). The main result is that a student’s decision as to whether two
infinite sets have the same number of elements largely depends on the specific
representation of the given infinite sets in the problem. The main part of the article



describes an empirical study using a research-based “It’s the Same Task” activity.
Taking part in this activity led most of the participating students to realize that producing
contradictory reactions to the same mathematical problem is problematic. Moreover, the
vast majority of the participants avoided the contradictions inherent in an informal
approach to cardinal infinity by using the one-to-one correspondence as the unique
criterion for comparing infinite sets. Finally, Tsamir discusses her findings in the light of
Fischbein’s recommendations for instruction of intuitively based conceptions.

CLOSING THOUGHTS

Our collection of articles on infinity closes with the last paper of Efraim Fischbein, who
passed away during the early stages of preparation of this volume. It was left in final draft
form and has been prepared for publication by the editors assisted by Tommy Dreyfus. It
reveals Fischbein linking long-held philosophical views of infinity with more recent
empirical evidence and theoretical analysis. The never-ending journey that he began in
analysing conceptions of infinity over a quarter of a century ago is left for us to continue.
We dedicate this publication to his memory.
David Tall
Dina Tirosh
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