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There has long been a dichotomy between the mathematics that is learned by
trainee teachers ‘for their own personal development’ and the mathematics they
will need to teach to young children. My viewpoint is that a student should be
encouraged to study whatever it is that interests them, but when it comes to pre-
requisites for teaching mathematics to young children, different criteria apply. I
shall provide an analysis of how mathematics grows cognitively in different
ways in different individuals. This will provide a basis to formulate what is
needed for teachers to participate actively in the long-term mathematical
development of their children.

Introduction

The general theme of SEMT 01 is:
“What is meant by the competence and confidence of people involved in the
teaching of elementary mathematics?”

In this presentation I focus not only on the kind of knowledge that teachers need
for their own competence and confidence in mathematics but on how mathematics
develops in the individual so that the teacher may be supportive in the long-term
development of the child. I argue that this is a pre-requisite, not just for exceptional
teachers talented in mathematics, but also for all teachers of mathematics to young
children. I shall consider how this depends on fundamental understanding of
mathematics and its cognitive growth. This involves not only the logic and coherence
of mathematics, but the reconstructions and discontinuities inherent in its learning.

Mathematics has never been regarded as a subject that is easy to teach or to learn.
As I write this presentation, today’s Times newspaper (5th May, 2001), carries yet
another article on the problems of provision for teaching mathematics in England. At
a pragmatic level, it is
difficult to fill posts in
schools with qualified
mathematicians when there
is the lure of greater salaries
in banking, commerce and
computing. At a deeper
level, there is a cumulative
problem in which teachers
with insufficient
competence and confidence
fail to inspire the children,
producing a downward
spiral of interest and
achievement in successive
generations. Figure 1: Teacher shortage



What does it mean for teachers to be competent in mathematics?
Given the possibility of teachers without adequate competence producing a

downward spiral in successive generations, we turn to the positive side. What
qualities are needed for teachers to be insightful in mathematics to create an upward
spiral of performance in successive generations?

It is evident that confidence and competence in mathematics is an essential
ingredient of being a good mathematics teacher. We must ask, however, what kind of
mathematics are we talking about?

In general, the main criterion for judging the competence of teachers in
mathematics has focused largely on the teacher’s knowledge of mathematics itself. A
teacher is usually expected to have knowledge of mathematics beyond that which they
need in the classroom so that they are working well within their area of competence.
Teachers of older children are normally expected to have a degree qualification
including mathematics as a major component, while teachers of younger children
responsible for a broader range of learning are expected to have a minimum level of
mathematical competence. In England, this minimum level is equated with a pass at
examinations at age 16. Recently the government has introduced a computerised test
for all student teachers based on this level (which they had already passed when they
were 16). If the student does not pass within a maximum of four attempts, they must
withdraw from teaching. This year around 23% of student teachers are failing at the
first attempt. Being ‘competent’ at 16 does not guarantee competence later.

Learning ‘more’ mathematics does not guarantee competence either. A range of
research studies in the USA revealed little correlation between the number of higher
mathematics courses studied and subsequent effectiveness in teaching  (Begle, 1979).
There was even a small negative correlation between the number of mathematics
college courses taken by mathematics teachers and the mathematical achievement of
their students. This questions the appealingly intuitive idea that a better grasp of
mathematics itself leads necessarily to a better quality of teaching. It does not imply
that knowing less means teaching better. What matters is the quality of understanding
that the teachers have for the task of teaching mathematics to children.

A Profound Understanding of Fundamental Mathematics
Li Ping Ma (1999) revealed a fundamental insight in the teaching of arithmetic by

contrasting the contexts in the United States and China. All the American teachers
had college degrees and several had MAs, whilst the Chinese students had nine years
of school and three years of normal school to prepare them as teachers—the
equivalent in time of the years in American school without any time at College. Yet,
when it came to explaining elementary arithmetic problems, the Chinese teachers
were able to give much more meaningful explanations of the basic processes while
the American teachers revealed disturbing deficiencies.

For instance, when asked to explain the processes involved in subtraction of one
decimal number from another, all the teachers could do the problems given correctly,
however, fewer than 20% of the US teachers had a conceptual grasp of regrouping
process decomposing a ten into ten ones. In contrast, 86% of Chinese teachers were
able to explain the decomposition procedure. On a second problem involving multi-
digit multiplication, only 40% of the US teachers could explain the correct method of
aligning the partial products while over 90% of the Chinese teachers showed a firm
grasp of the place value ideas that prescribe the alignment procedure. This shows that
it is not just a question of a teacher being able to do the processes in the mathematics
they teach, they also need to be able to describe the underlying principles.



Howe (1999) summarizes three major areas where Ma’s observations are critical.
The first is that Chinese teachers receive good teacher training that produces good
learning—the virtuous cycle that we earlier suggested should be sought. The second is
that mathematics teaching in China is a specialism, focusing on the subtleties of
mathematics itself. Thirdly, while US teachers spend virtually the whole day in front
of a class, Chinese teachers have time within their school day away from their classes
to share their difficulties and insights with others, creating a culture for improving
their own expertise and the quality of mathematics teaching.

The cognitive development of mathematics as a whole
The work of Li Ping Ma shows how a fundamental understanding in basic

principles can pay off in the teaching of arithmetic to young children. However, if we
consider wider issues such as economic prosperity, the current positions of China and
the USA show that simply being good at arithmetic is not the whole story. We need to
look beyond the development in arithmetic to consider a wider picture. In this
presentation, I restrict my response to mathematics, but broaden the perspective to
look at the longer-term development of the child.

In Tall (1995), I formulated a theory of how the individual builds up mathematical
ideas based on perception, action and reflection. Figure 2 (taken from Tall et al.,
2001) suggests how this leads to three essentially different kinds of mathematics:

• space and shape (geometry) based on theorizing about the (geometric) objects
we perceive and construct at increasing levels of sophistication,

• symbolic mathematics where actions on objects (such as counting) are
symbolised giving new mathematical concepts (number)

•  axiomatic mathematics (built by reflection on the properties of the first two
forms of mathematics in terms of formal definitions and logical deductions).
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Figure 2: Various types of mathematics

Our interests in this presentation focus on the development of young children,
particularly in the symbolic mathematics of the arithmetic of fractions and whole
numbers. However, we will also look a little further to see the cognitive way in which
arithmetic moves into algebra, and take a brief look at the development of space and
shape. Further details of the broader picture can be found in Clements & Battista
(1992) (for the van Hiele development of shape and space), Tall et al( 2001) (for the
development of symbols), Tall, (2001) (advanced mathematical thinking).



Symbolic mathematics
The development of symbolic mathematics begins with arithmetic. This occupies

several years of a young child’s development. It builds by operating with physical
objects (which we term the base objects in this particular activity) and continues as
follows:

a) preliminary activities such as manipulating and sorting the base objects,
b) the coordination of counting words and pointing at objects to give the step-by-

step procedure of counting,
c) the realisation that counting in different ways always give the same result, so

essentially different methods represent the same process of counting,
d) the use of the number symbol as a mental concept to be manipulated in

arithmetic as an entity in itself giving the concept of number.

The use of a symbol as a pivot between a process (carried out by some particular
procedure) and the mental concept produced by the process is termed a procept (Gray
& Tall, 1994). This sequence of building actions on base objects to give a step-by-
step procedure, interiorised as a process and conceived as a mental object is called
encapsulation (Dubinsky, 1991) or reification (Sfard, 1991). This gives a sequence of
learning involving

a) base objects that are operated upon to give
b) step-by-step procedures that are interiorised as
c) processes conceived as a whole, and encapsulated as
d) procepts represented by symbols that pivot between process (counting) and

concept (number). Such procepts may then be used as base objects to operate
upon at a higher level.

The biological basis of cognitive development
The steady process of learning happens by biological developments in the human

brain. In general, when links between neurons are stimulated, they are temporarily set
on alert and so respond more readily to similar stimulations. If stimulated again whilst
on a state of alert, the connections are strengthened, so that in time separate firings are
coordinated into a single entity. This biological process—the basis of all human
learning—is called long-term potentiation. (See, for example, Carter, 1999.)

In the development described above, disparate activities (such as sorting, pointing,
saying number words in sequence) become coordinated into an action-schema
(counting) that is later conceived as an entity (number). These entities (numbers) then
may become base objects at a new level of activity on which to perform the process of
addition and develop the concept of sum. At the next level, the process of addition
may be repeated to give the process of multiplication and the concept of product.

Cognitive development in arithmetic
In practice, the biological process of mathematical learning does not occur in a

neat sequential fashion with each stage being completed before the next is begun. For
instance, the formation of mental entities (numbers) is usually still in progress as the
child develops a succession of procedures for counting including:

count-all (counting one set, then the other, then putting them together to count all)
count-both (a quick count of the first set, followed by a counting-on of the second)
count-on (considering the first number as an entity and counting-on the second)
count-on from larger (a more efficient form of count-on).



In terms of the procedure-process-procept development, these may be considered
as distinct procedures for the process of addition. How far the child has developed
when new techniques are introduced radically effects what the child can do. All
children learn a variety of known facts, such as ‘3+2 is 5’ or ‘5+5 is 10’. Some
children, but not all, see these facts as thinkable entities allowing them to build new
derived facts from known ones. For instance, knowing ‘5+5 is 10’ may be used to
work out ‘5+4’ is one less than ‘5+5’, so 5+4 is 9. Gray & Tall (1994) found that the
more successful children use a flexible mixture of efficiently chosen counting
procedures and derived facts. However, they found that none of the children
employing even a single case of ‘count-all’ was able to generate any derived facts. A
divergence in performance seems to be setting in between those who develop
proceptual flexibility and those who remain entrenched in primitive counting.

This spectrum of performance begins to take its toll when multiplication is
introduces. Those who sense 3+3 is an entity (6) and 3 lots of three is an entity (9) are
likely to see that 4 lots of 3 is ‘three more than nine’, namely, 12. The concepts they
think about are entities that they can manipulate in their mind. Those still using
mainly counting procedures may, of course, make some sense of multiplication.
However, it involves a great deal more cognitive activity. A child who counts 4 times
3 by one of the counting procedures (say count-on) might say ‘3 and 3 is … 4, 5, 6,
and another 3 is … 7, 8, 9, and another is 10, 11, 12.’ The cognitive strain of such an
extended procedure is evident. It leads to a spectrum of possible success and failure in
which some become increasingly expert handling richer and richer cognitive units
whilst others struggle with a greater number of isolated pieces of information.

Figure 3, expanded from Gray, Pitta, Pinto & Tall (1999), represents the widening
spectrum of performance. It shows how a single procedure may be applied to solve a
routine problem: – a widening range of procedures enables the child to be more
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Figure3: A spectrum of performance (based on Gray et al, 1999, p.121).



flexible and efficient, whereas the ability to think about symbols and manipulate them
in a proceptual manner offers a basis for future development.

This warns us about the subtleties of testing children and drawing inferences from
the tests. Routine problems may be solved by a wider range of children without
distinguishing between those who use isolated procedures and those with proceptual
thinking processes ready for more sophisticated study. It is also consistent with the
idea that using unreflected routine procedures may give children procedural tools that
lack the flexibility for more subtle developments.

The Case of Fractions
To illustrate the analysis of growth in terms of ‘base object-procedure-process-

procept) we now turn to the elementary arithmetic of fractions which proves to be
easy for some, but impossibly difficult for others.

The notion of a fraction begins with a fraction of something. This ‘something’ is a
base object or a collection of base objects that may be a cake, a length of cloth, a
group of children or any other of a wider range of possibilities. The process of
calculating a fraction of something consists of a two-stage procedure: first subdivide
the base object(s) into a certain number of equal pieces, and then take a specified
number of them. For instance, 3

4  of a cake consists of dividing the cake into 4 equal
parts and taking three of them; 3

4  of a class of 24 consists of dividing the class into 4
equal parts, in this case consisting of 6 children in each part, and taking three of them,
so that 3

4  of the class is 18 children. Implicitly, a fraction of a cake is less than the
whole cake and a fraction of a class is less than a whole class. However, in the latter
case the result is 18 children, which is more than one child. Because of the variety of
contexts in which the fraction concept is used, the perceptual idea of a fraction can
have a variety of apparent meanings.

Kerslake (1986) asked a number of ‘average’ British thirteen-year olds which of
the following alternative drawings would help someone who did not know what 3

4  is:

10 3
4

3÷4

100%

13%

83%

35%

63%

Figure 4: Percentage of average 13 year-olds recommending representations of 3
4

All the children recommended conceiving 3
4  as a fraction of a disc; most related it

to a point on a number line, fewer were happy with other contexts and a tiny minority
recommended it as’3 divided by 4’. Several conceived division as a property of whole
numbers, so 3÷4 was simply ‘not possible’. When the fraction was changed to 3

5 , the
percentages were similar, but none of the children suggested relating 3

5  to 3÷5.



Kerslake then asked fourteen children to share three cakes equally between four.
This has a practical solution by cutting the cakes in half to give six halves, four of
which can be shared one at a time and the remaining two can be cut into four quarters,
which neatly share out so that everyone gets a half and a quarter. All fourteen could
see that the half and the quarter gave a total of three quarters of a cake.

However, when an extra person was introduced and the problem became sharing
three cakes between five, only ten children out of fourteen could see that each child
got three-fifths of a cake and of these, only six could see 3

5  related to 3÷5. The four
who did not see the answer as three-fifths all used their practical method to divide the
cakes in half, giving six cakes, which meant one half for each person and an odd half
left over. This was cut into roughly five pieces and given one to each child. None of
these four children could see that the amount given to each person (half a cake plus a
fifth of half a cake) was equal to 3

5 . Nor could they relate the solution of the problem
“divide 3 cakes between 5 people” with the fraction 3

5  or the division 3÷5.
Analysing this data in terms of base objects and sharing procedures, we see that all

the children could operate in a real world situation to give a practical and imaginative
method of sharing the base objects reasonably fairly. However, some did not see the
procedure as related to the fraction concept and even fewer related it actually to
division of one number by another.

The development to the full fraction concept has a procedure-process structure.
The fractions 3

4  and 6
8  are very different as step-by-step procedures. To get 3

4  of a
bar of chocolate involves dividing it into 4 equal pieces and taking 3 of them; 6

8

involves dividing it into 8 equal pieces and taking 6 of them. The second activity has
more pieces of chocolate and is a different procedure, both in terms of the sequence of
activities and also in terms of the final result. This can act as an obstacle for
procedurally focused children who sense the difference between the procedures rather
than the sameness of the final quantity.

In essence, the fractions 3
4  and 6

8  invoke different procedures but are effectively
the same process. Children who grasp the ‘sameness’ of equivalent fractions have a
great advantage. For instance, 1

3  is the same as 2
6  and 1

2  is the same as 3
6  so ‘a

third plus a half’ is ‘two sixths and three sixths’. This operates like ‘two apples and
three apples’, which is ‘five apples’; so  ‘two sixths and three sixths’ is ‘five sixths’.
Paradoxically, a familiarity with the mental properties of whole numbers provides a
link back to operating with fractions in much the same practical way as with whole
numbers. It gives those with a proceptual feeling for whole number a huge built-in
advantage dealing with fractions.

Many theorists focus attention to performing mathematics in realistic situations.
Our analysis suggests that this can give greater success initially but it may also
unwittingly imprison some children in the physical world where activities become
increasingly complex. If children remain at the level of procedure, seeing a fraction as
a double process of dividing and sharing then 1

3 + 1
2  may be interpreted as ‘divide

into three and take one of them’ and ‘divide into two and take one of them’. Children
at this level will find the arithmetic of fractions exceptionally difficult and fail to go
beyond pragmatic real-world sharing.

Moving on to Algebra
The difficulties of introducing algebra also benefit from an analysis in terms of

‘base objects - procedures - processes - procepts’. In this case, the base objects are
actually numbers, but they are no longer explicit. The procedure ‘double the number



and add six’ can be represented as the expression 2n+6, but now the symbol n
represents a base object that is either ‘unknown’, or ‘variable. This is quite unlike
arithmetic where there can be actual physical objects to count and share. It can
bewilder many children who need a concrete referent to operate on—a difficulty that
has been recognised by using apparatus for algebra, such as a physical balance to
represent a linear equation. However, such apparatus, which can give an initial boost
by linking to the real world, can act as an insight for some but a severe limitation for
others.

The notation used violates certain standard conventions, such as reading from left
to right. The formula 2+3 n does not mean “add 2 and 3, then multiply by n’, but
‘first multiply 3 by n, then add 2 to the result.’ Then there are formulae such as 2n+6
and 2(n+3) that look very different but always give the same output for any given
value of n.

The notion of equivalence again has a process-procedure interpretation. The
procedure ‘double the number and add 6’ involves a different sequence of steps from
‘add 3 to the number and double the result’. When written down, they are expressed
in different ways, such as 2 n+6 and (n+3) 2, or the more standard notations 2n+6
and 2(n+3). However, for any value of n, they give the same result. They are different
procedures that give the same process.

Once again, many children struggle to interpret algebraic symbols in a manner that
has genuine personal meaning. On the other hand, those with a friendly (proceptual)
feel for numbers, who can see that the two expressions are essentially the same
process, are well on their way to manipulating them as entities in their own right.
Thus, equivalent procedures become processes whose symbolism has the dual role of
process (of evaluation) and manipulable concept (as algebraic expression). This
allows the symbols to operated as meaningful base objects for algebraic manipulation,
leading on to more subtle forms of mathematics.

Discontinuities in Cognitive Growth
The mathematical simplicity of successively wider number systems—whole

numbers, integers (positive and negative), (positive) fractions, rationals, irrationals,
reals, and complex numbers—is evident to mathematicians. The situation for growing
children is very different. The (whole) number after 2 is 3, so there are no other
‘numbers’ between 2 and 3; when the move is made to fractions; there are many
numbers in this gap. In whole number arithmetic ‘addition makes bigger’, when
negative numbers are introduced, adding a negative number will ‘make the result
smaller’. In whole number terms, 8÷4 has the solution 2 but the problem 3÷4 does not
have a (whole number) answer. For many young children 3÷4 ‘cannot be done.’ In
every case, moving to a more general context produces cognitive conflict.

How do human beings react to danger? For those with self-confidence born from
success that has produced a range of strategies of action, the brain produces
neurotransmitters to heighten the senses of attention. For those with less confidence,
the primitive reaction on sensing danger is to produce neurotransmitters to enhance
automatic reactions for flight. The consequence is the suppression of reflective
thought. The discontinuities that occur in cognitive growth therefore exaggerate the
differential effects on success and failure.

Many teachers themselves will have experienced such failure. It is therefore
essential for them to reflect on the reasons underlying their difficulties. These are
genuine cognitive difficulties arising from moving into a new context where old
implicit beliefs no longer hold. In the development of whole number arithmetic,



fractions, and algebra, not only are there necessary processes compressing step-by-
step procedures into symbolic concepts (procepts), but also each development has
potential conflicts with previous knowledge.

Teaching children therefore requires more than being able to do the procedures of
mathematics. Being competent in mathematics may increase a teacher’s confidence in
their own ability but a fuller understanding of how children learn and the difficulties
they face is an essential part of increasing their competence to teach.

What about Geometry?
There is insufficient space here to give the same attention to the development of

geometry in this presentation. In outline, the understanding of shape and space occurs
through initial perception of and interaction with objects in the real world along the
lines expressed long ago by van Hiele (1986) However, in essence, what happens in
geometry is the same as what happens in other broad areas of cognitive development.
It depends not only on visual perception and physical action but also on reflection
using the most powerful tool that distinguishes Homo Sapiens from all other species
— language. The young child’s perception of the world is quite different from their
representation. Figure 5 for example is a picture of me (on the left) and my wife, as
drawn by my four-year old grandson Lawrence. If you look carefully, you can see
every letter of his name in his own style. He can also describe verbally every part of
his representation. He explains he started with my (big) body and tummy button, then
he added a head (with beard and glasses), two arms and two legs.

Figure5: Grandpa and Nana

As he gets older, his drawing technique will improve, although it may never be
perfect, but the meaning of what he sees in pictures will get more sophisticated.

In geometry, children begin by recognizing shapes perceptually, and sense their
similarities and differences. They are told about circles, squares, triangles, rectangles
and so on. Imagery is initially based on perceptual clues in the form of specific visual

prototypes. For instance,  and  could be prototypes for a rectangle, with 

a prototype square and  a prototype circle. For a child at an early stage, this is a



rectangle: 
 
but this:  is not (because it is a square). This:  may not be a

square (because it is a “diamond”, or because it is not “square” with the paper).
As the child’s cognitive apparatus matures and language develops, it becomes

possible to talk about such prototypes; for instance, a rectangle has four sides, all its
angles are right angles and the opposite sides are equal. A square has all four sides
equal, so it is different from a square. Names fit visual prototypes and verbal
descriptions, and they are not initially hierarchical.

Language becomes more sophisticated and conceptualisations begin to allow
hierarchies to be developed. For instance, a square has all angles right angles and four
equal sides, so in particular its opposite sides are equal and it is also a rectangle.

As the descriptions become more firmly meaningful, deductions of various kinds
become possible. Given a paper triangle with two sides equal, if it is folded along the
line through the top vertex and the middle of the base, then, physically, the sides
match, so the base angles match as well. In this way, for some children, definition and
deduction comes into play: if I know this is true (that the triangle has equal sides) then
I know that something else is true (the triangle has equal base angles). In the later
parts of secondary school, this can lay the basis for more sophisticated Euclidean
proof.

Geometric shapes develop more sophisticated meanings. Initially a straight line is
something drawn with a pencil and has thickness. Later it represents something that is
perfectly straight, with no width, but with length that can be extended as desired. The
child begins with a physical, perceptual view of geometric figures and may, over a
period of years construct a perfect platonic figure in the imagination. (Even Plato was
unable to speak when he was born and he had his own development to Platonism).
Proof plays its role in the Euclidean geometry of perfect platonic figures (though it
can also operate at the physical level too).

A further development is possible in which axioms are written down for a
geometrical context and formal deductions are made in a logical context (figure 6).
This level is only met by experts, but it is an advantage for even a teacher of young
children to have some insight into the development from perception through the
increasing sequence of growing sophistication to formal proof.
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Figure 4: cognitive development of geometrical concepts (Tall et al, 2001)



Competence and Confidence in Teachers of Primary Mathematics
In preparing students to be teachers of primary mathematics, I have advocated that

they need to have a real insight into how mathematics develops cognitively. This
means more than how to do mathematics, it requires more than a sophisticated
reasoning why it works. It means an awareness of how children do mathematics in
different ways and why they encounter conflicts and difficulties. Such a study is more
than refreshing one’s knowledge of school mathematics in the same way that it was
formerly learnt by the individual. It is more than simply covering more modules in
more advanced mathematics. It means starting to reflect on one’s own experiences to
see why certain things were difficult, or even impossible, at the time.

Such a strategy can be assisted by re-thinking how arithmetic works at the simple
and profound manner of Li Ping Ma. This requires time and sharing of ideas, not only
during a training course but on a continuing basis throughout one’s career, so that the
new teacher can be inducted into the culture of helping children learn and the
experienced teacher can grow reflectively through a life-time of improvement.

In summary, competence in being able to do school mathematics and confidence in
doing it well are essential for the teacher of mathematics. However, confidence and
competence in teaching young children requires more. We have identified a
bifurcation in mathematical growth in which more sophisticated thinkers have built-in
engines to support even greater sophistication whilst slower children use isolated
procedures that work for a time but fail to generalise. Coping with this conundrum
and developing methods to help all children in suitable ways continues to be a focus
of study for us all.
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