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This paper investigates the development of university students' understanding
on ‘equivalence relations & partitions' over a period of time. Although these
ideas are taught in the same topic, they have quite different cognitive
properties. We find that, although the concept of ‘relation’ can be visualised,
an ‘equivalence relation’ is more subtle. A partition, however, is more easily
visualised than remembered formally. Our focus is on if and how these
different properties influence students' concept development.

I ntroduction

Chin & Tall (2000) focused on a theory in which informal mathematics becomes
formalised by introducing definitions, proving theorems and compressing formal
concepts into cognitive units appropriate for powerful formal thinking. The theory was
tested by a questionnaire filled in by 36 students after 6 weeks studying the formal
theory of equivalence relations and partitions. It was found that:

Less than half gave formal responses in terms of definitions or theorems. [...] This confirms a
picture in which the mgjority of students following aformal course at a highly rated university
responded at an informal level after several weeks' experience of formalism. At the same time,
two able students worked in a different way using the compressed concept that encompassed
both equivalence relation and partition. Chin & Tall, 2000, p. 183

In this paper we follow the development over alonger time period to gain further insight
into the students’ constructions. We focus on fifteen students, of whom ten were tutored
by the first author for an hour per week during the first two terms and on into the second
year. Data was collected through audio-taping tutorials and in-depth interviews, with a
second application of the questionnaire to determine long-term changes in conceptions.

An evaluation of the Foundations course by the students at its conclusion in the first
year revealed that the students considered ‘relations’ to be the most difficult topic—a
comment that had been repeated for several previous years of assessment. Summarising
the perceptions of the students, the annual report commented that ‘Euclid’ s algorithm
and symbolic logic were well understood, basic set theory and functions generally
required extra work, but the topic on relations was often poorly understood.” On an
average, only about 20% of students declared that they understood relations well with
nearly a third of students claiming that, even after extra study, they only understood the
topic poorly. It was this observation that drew us to study the topic of ‘equivalence
relations and partitions’. We considered that an understanding of students' difficultiesin
this topic that they found most problematic might shed light into wider difficultiesin the
understanding of formal mathematics. In particular, why do the students claim to have
such difficulty with ‘relations ? We now focus on the longer-term development from the
first to second year of the course.
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Analysis and comparison

The subjects are 15 second year mathematics students following a course in the highest
ranked pure mathematics department in the whole of the UK. Their marks for the first
year are widely distributed—three are over 80, four between 70 to 79, four between 60 to
69, one between 50 to 59, three between 40 to 49. They answered the same questionnaire
on the topic of ‘equivalence relations & partitions' that they have already learnt for about
awhole year and were interviewed during the first term in their second year.

The formal definition of equivalencerelation

The formal definition of equivalence relation in terms of being ‘symmetric, reflexive,
transitive’ proves to be relatively easy for students to learn and reproduce, though the
precise use of quantifiers in each part of the definition is a little more subtle. Table 1
shows that 14 out of the 15 students reproduced a definition although only 5 of these
gave the full quantified definition, 4 gave the formal definition without quantifiers and 5
gave an informal response in terms of the three words ‘reflexive, symmetric, transitive'.

First Year (N=15) | Second Y ear (N=15)
Formal/detailed 5 9
Formal/partial 4 5
Informal/outline 5 1
Total definition 14 15
Example 0 0
Picture 0 0
Other 1 0
No response 0 0

Table 1: Responsesto ‘ equivalence relations

Only one student—whom we shall call *Arthur’— did not give the formal definition in
the first year. He explained later that he could not remember the definition at the time;
instead he attempted to explain the notion of equivalence classes in terms of a partition:
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Note the imprecision of the language here, for example ‘ generates a subset’ and ‘divides
the set into partitions . Arthur obtained 50% in the end of year examination and had to
resit one of his courses. Nevertheless, even he was able to give a formal detailed
response in the second year. This gives us our first major piece of evidence: all of the
students could reproduce the definition of equivalence relation; 9 out of 15 gave a
complete version, the other 6 at least remembered ‘reflexive, symmetric, and transitive’.

This was reflected in responses to an informal question asking if the relation ‘ has the
same surname as' is an equivalence relation on the set of studentsin the class (Table 2).
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First Year (N=15)

Second Y ear (N=15)

Informal Informal Definition 2 1
Other 0 1
No response 0 0
Formal Definition 12 13
perhaps with some Theorem 0 0
informal language Partition 1 0

Table 2: Responses to the informal ‘surnames’ question

Both the students giving informal responses in the second year were able to give a full
formal response in interview. Both thought the question too trivial to merit a detailed
response in writing. For instance, John (whose response was classified as ‘ other’) wrote:

Sinez ot velodhon is to de wille “ecv.,mhl-j“ a* oo
sumane | it nmust be as o.a‘/u-ival.nur.e_ relah enn ,

He was a talented student with a mark of 68% in the first year examination who showed
his understanding to be definition-based on all his assignments and in tutorials. Thus all
fifteen students were capable of aformal definition response by the second year.

Table 3 shows the responses to the following question:

A relation on a set of setsis obtained by saying that a set X isrelated to aset Y if thereisa
bijection f: X — Y. Isthisrelation an equivalence relation?

First Year (N=15) Second Y ear (N=15)
Informal Informal Definition 3 0
Other 1 1
No response 0 0
Formal Definition 7 2
perhaps with some Theorem 3 12
informal language Partition 1 0

Table 3: Responses to the formal *bijection’ question

This data shows that after being given a period of time to digest what they had been
taught, whilst only 3 were theorem-based in the first year test, 12 are able to upgrade
their understanding to the theorem-based level in the second. This is consistent with the
successive move from definition-based conceptions to theorem-based conceptions over a
time in which the ideas are being used formally.

The definition of equivalencerelation on a set S as a subset of SxS

When responding to the notion of equivalence relation, none of the selected fifteen
students used the general notion of relation as a set of ordered pairs in their definition.
Only one student (Nathan) in the first year alluded to the idea as follows:
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Even here the notion is an afterthought following the definition in terms of the notation
apb, for the relation p rather than the notation (a,b)&p which was given initialy in the
lectures. Notice that even here Nathan used the notation {a,b} (used in the course for
unordered pairs) rather than the correct notation (a,b).

In the second year, only one student (Simon, the most successful with a mark of 85%)
referred to arelation as ‘a subset of AxA’ in his response to the meaning of ‘equivalence
relation’. He al'so was the only student to give a satisfactory answer to the following:

A:{(x,y) eR? |0=x=<10,0=sy=< 10} . IsA an equivalencerelation on R?

In the first year no student responded positively to this question. Several wrote explicitly
that they did not understand what the question meant:

A={{x.¥) = R? | =x =10, 0=y =10}. s A an equivalence relation in R?
Answer (ves or no or don’t know):. Qen'E fasvd.

Full Explanation: ﬁ\ i 1 . P:“-‘?“"'Fj in the ploce x - 3
'U£ L ,5_ .

In the second year, Simon responded as follows:
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He described an equivalence relation as ‘a subset of AxA’ with reflexive, symmetric and
transitive properties that can divide a set into a partition. He also offered the formal
definition with all the detail. He therefore had a conception of equivaence relation and
partition as arich cognitive unit.

We therefore obtain our second major piece of evidence: all but one of the students
did not relate the notion of relation as a set of ordered pairs with the notion of
equivalence relation.

The gap between relations and equivalence relations

We see that all fifteen students could work with the notion of equivalence relation using
the notation a~b, but only one evoked the notion of relation on a set S as a subset R of
SxS. On reflection, one can see that the notion of ‘equivalence relation’ on a set S does
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not have an easy visual image. Seen as a subset R of SxS the reflexive law can be
pictured by saying that the diagonal elements (x,x) are al in R, the symmetric law can be
seen in terms of reflection of the element (a,b) ER in the diagonal to also give (b,a) ER,
but the transitive law (a,b), (b,c) ERimplies (a,c) €R is alittle more sophisticated. (The
transitive law moves horizontally from (a,b)—maintaining the second coordinate b—to
the diagonal then vertically to the point (b,c), completing the rectangle to give the third

point (a,c).)(Figure 1).
|
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Figure 1: Visual representations of the three axioms for an equivalencerelation Ron aset S

The complexity of the visual representation is such that it was not taught in the course.
Thus, although the notion of relation on aset Sis given in terms of a subset of SxS it is
never represented as a visual picture. In thisway there is a complete dichotomy between
the notion of relation (interpreted as a subset of SxS) represented by pictures and the
notion of equivalence relation which is not.

Furthermore, the topic of ‘relations’ also includesorder relations. We hypothesise that
the typical student will find it difficult to give a coherent overall meaning to the notion of
‘relation’ that encompasses both order relations and equivalence relations. Partial
support for this hypothesis is the students almost total failure to respond to the
equivalence relation defined as a set of ordered pairs compared with almost total success
with questions using the form a~b.

After interviewing 10 of the 15 students, the authors find that these students learnt the
definition of relation on a set formally as: ‘a subset of the cartesian product of the set
itself’. But they learnt the definition of ‘equivalence relations’ focused on the three
properties of reflexive, symmetric and transitive. The following conversation recorded in
an interview with two students (whom we name Jack and Nathan, respectively) offers
some evidence. Jack and Nathan were being asked about the question in which the

relation A is defined asthe subset A={(x,y)ER* |0=x=<10,0=y <10} of R’
Jack: Sorry! | can’t understand what this question means?
Interviewer: O. K. Nathan, can you understand it?

Nathan: Well, umm...(Pondering for a while.) No, | don’t think so.
I: Can you think of the formal definition of ‘relations’ first?
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They started trying to recall their memory of ‘relations’.

N: | think it's a sort of ordered pairs, isn't it?

I: Yes. You areright. Can you say it more formally?

J. Let methink. It'sages ago, | don’t think | can remember it.

I: How about you, Nathan?

N: (Shaking his head.)

I: O.K. Let mewriteit down on the board.

The interviewer wrote the definition (Stewart & Tall, p.69) on the board and explained it to them.
J Yes. | see. That should be what we learnt in the lecture along time ago.

I: O.K. Now, can you try to answer this question again?

Nathan immediately made the whole deduction, answering ‘yes after checking the three conditions
although he did not include the quantifier in ‘reflexivity’ . Jack still seemed confused.

A={(xy) e R? | 0sx =10, DS}'SI% A an equivalence relation in R?
Answer (yes or no or don't know)...r54. ..
Full Explanation: ”
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J | still can’t see how to check Ais an equivalencerelationin R.

I Y ou can understand the definition of ‘relations’ we just reviewed, can’t you?

J Yes. | think so.

I “Equivalence relation’ isjust akind of ‘relation’ but with some more properties, isn't it?

J Yes.

I Just add the three properties to the definition of ‘relation’, then try to answer this question again.
Jack was stuck checking ‘reflexivity’.

J: I’'m getting confused. What’ s the point of checking ‘reflexive' ?

I: Nathan has finished his deduction. Let’s have alook at his answer then I'll answer you, Jack. Do
you think Nathan’s answer is correct?

J. mmm...(Pondering for a while.) Yes, | think so.

I: O. K. Let’shave acareful look at ‘reflexivity’. What is the quantifier for it?

N: For al the elementsin A?

I: What do you think, Jack?

J: Should be ‘for al theelementsinR'.

I: Do you agree with Jack, Nathan?

N: mmm...Yes. Yes. | think he'sright.

I: So, do you think Ais‘reflexive’ now?

J: | see. No. Because A doesn’t cover the whole plane, so it won't be ‘reflexive'.

N: mmm... So the answer should be ‘no’.

I: 1 think you both get the point. Now can you check if Ais‘symmetric’ or ‘transitive’ ?
N: Yes, both of them. | think | used the wrong notations. They should be A, not R.

I: Well done! Jack, could you make a conclusion of this question?

J: You mean A is not an equivalence relation because it is symmetric and transitive but not reflexive.
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Thisdataseemsto suggest that even studentswho do not have aformal conceptimageof a
formeridea(like theideaof ‘relations’) canstill build up their understandingof thenext
relevantideawithout having much particular difficulty (like theideaof ‘equivalence
relations’) if thetwo definitionsarenot directly related.

Partitions
Thedevelopment of the notion of partitionalsoimproved over theyear (table4).
FirstYear (N=15) | SecondY ear (N=15)
Formal/detailed 2 8
Informal/outline 6 3
Total definition 8 11
Example 0 0
Picture 1 1
Other 4 3
No response 2 0

Table4: Responsesto ‘ partitions

Thenumber of detailedformal definitionsincreasesfrom2to 8 and theoverall definitions
increasefrom 8to 11. However, 4 studentsfail to giveadefinition for partitionwhenall can
giveadefinitionfor‘equivalencerelation’. Looking closely at theresponsesreveal sthat the
magj ority of studentstried to usetheir ownlanguageto interpretthedefinitionof ‘ partitions’ so
that their answerswerehighly varied.

Interestingly, all tenstudentsinterviewedsaid they had amental picture of apartition. Nine
of themthought they understood  partitions’ better than‘equivalence relations' . The
exception, Jack, explained that although hecould picturepartitions, hestill didnot knowthe
formal definitionand washappier handlingthe formal definition of equivalence relation. Of
theother nine, Arthurwastypical in saying that hefelt he understood’ partitions' better than
‘equivalencerelations becausehecould visualisepartitions’ but not ‘equivaence
relations’.

Whenasked to giveexampl es of partitions, twel veout of fifteengavesatisfactory answers.
Theother threereveal ed aninteresting misconception. Jack wrote:

5. Write down twao different partitions of the set with four elements, X={a,b.c «/}. For the lirst of these,
please write down the eguivalence relation that it determines.

= £Qg( (’12‘ Ebﬁ*d?ﬁ
a~a a kb, adtc, arid .
pac od

At first sightthismay seemasif Jack haswritten downonecorrect partition. However,in
interview, heexplainedthat hethought that histwopartitionswereP, andP,. All three of the
studentsgiving unsatisfactory responsessharedthe samemisconception: that theterm
‘partition’ referredto eachindividual subset, not to thecollection of all subsets.
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Inthisway weseethat theclassas awholeretaintheir understandingof ‘ equivalencerel ation’
atthedefinitionlevel andapparently shift their perception of partitionto thetheorem-level,
whilstsomeare still having difficulty with the definitionof partition.

Conclusion

Inthispaper wehavebeen considering thedevel opment of ‘ equivalencerelations and
‘partitions’ ayear after thestudents first met theconceptsin theFoundations course. During
thistimethey would havemet theideasinother coursesandrevised for theend of year
examinations. We guestioned why thestudents claimedthat the notion of * relation’ wasthe
most difficult inthewhole of theFoundationscourse. Wefound that, after ayear, although all
15studentscould givethe definitionof equivalencerelation using thenotation a~b, only one
couldrespondto aquestionwherean equiva encerelationwasgivenin termsof asubset of the
cartesian product. We showedthat, althoughthenotion of relation iseasily visualised, the
notion of equivalencerelationisdifficult tovisualise but easy to remember as a verbal
definition. Weal so hypothesi sed that theintroduction of thevery different notion of order
relationsat the sametimegives littlecommonground amongsttheexamples of relationto
allow acoherentlink to be madebetween the exampl esandthe general concept.

Wenotethat nine out of ten studentsinterviewed claimed that they felt they understood
partition better thanequivalencerel ation, whereasin facttheir performanceon thetest
showedthat they wereableto handleequivalencerelation better thanpartition. Thisis
accompanied by the observationthat they say they can visualiseapartition, but not an
equivalencerelation. Weconsider thistob e consistentwiththe notion of ‘embodied
mathematics' (Lakoff & Johnson,1999; L akoff & Nunez, 2000) giving adeeper humansense
of meaning. Thusthe devel opment of theformal thinking characteristic of the* rigour prefix’
(Alcock & Simpson, 1999) ishereunderpinned by the embodied concept-imageand formal
concept-useinthesenseof Moore(1994).

Overtheyearthereisageneral shift from*definition-based’ deductionreferring
specificallyto theformal definitionto ‘theorem-based’ deduction, usingalready proven
theorems. Onestudent clearly had the composite notion of equivalencerelationandpartition
asarich cognitiveunit. Theinvestigationof whether others havesuch acognitivestructureis
morelikely toariseininterview rather than standard writtenquestions. Thisremainsatopic of
our current research.
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