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In this paper we consider the theory of ‘cognitive units’ introduced in
‘Cognitive Units, Connections and Mathematical Proof’ (Barnard and Tall,
1997) and compare it with other theories of cognitive construction. We find
that it includes a theory of ‘cognitive compression’ to reduce the cognitive
strain involved in thinking about more complex concepts that is related to the
‘varifocal theory’ of Skemp. It generalises the notion of process-object and
schema-object encapsulation to give a broader theory of rich cognitive units,
with connecting links that minimise cognitive strain and maximise thinking
power.

Cognitive units, connections and compression

The notion of ‘cognitive unit’ that we consider here is ‘a piece of cognitive structure that
can be held in the focus of attention all at one time’ (Barnard and Tall, 1997). We are
particularly interested in cognitive units with rich internal links that allow them to be
thought of as a single entity. For instance, the equations
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may initially be conceived as three separate items, together with links between them
carried out by performing the same operation to both sides.  Later this perception may
become compressed into a single relationship between the quantities involved, seen as
different ways of saying the same thing (Barnard, 1999).

Such pieces of cognitive structure do not exist in a vacuum. Intimately connected with
them are other ideas in the mind that may readily be called to the focus of attention in
turn. Our theory is that rich, compact cognitive units allow the thinker to manipulate
these ideas in efficient, insightful ways, whereas students with diffuse structures will not
find it so easy to make connections between concepts that are themselves diffuse and
vague. There is already considerable evidence to support this thesis (Barnard & Tall,
1997; Chin & Tall, 2000; Crowley & Tall, 1999; McGowen, 1998). Not only do such
units operate as a form of short-hand, linking many aspects of a complex structure, they
also carry along with them connections that are able to guide their manipulation. Such
activities may set up new links which may in turn become increasingly strong so that
new cognitive units may be formed, building a network of nested mental structures that
may span several layers of thought. This offers a manageable level of complexity in
which the thought processes can concentrate on a small number of cognitive units at a
time, yet link them or unpack them in supportive ways when necessary.
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These ideas are closely related to Skemp’s (1979) “varifocal theory” of cognitive
concepts, where a concept may be conceived either as a global whole, or viewed under
closer scrutiny to reveal various levels of detail. He referred to this conceptual detail as
the interiority of the concept. Powerful cognitive units have a rich interiority appropriate
for the task in hand.

The building of cognitive links in such a way that one item in the focus of attention
can refer at will to a variety of closely connected pieces of knowledge will be termed
compression. In some cases a physical compression is known to occur in brain activity:

As a task to be learned is practiced, its performance becomes more and more automatic; as this
occurs, it fades from consciousness, the number of brain regions involved in the task becomes
smaller. (Edelman & Tononi, 2000, p.51)

More generally, however, a process of long-term potentiation occurs in which
connections between neurons become more easily activated and therefore resonate
together as a single structure (Carter, 1998, p. 159). As mathematicians we see an
analogy in which the brain has not only ‘substructures’ that work as a unit, but also
‘quotient-structures’ caused by the identification of separate units. A possible example is
the cortical system for vision which has twenty or so separate regions each of which
perform a specific task (eg recognising colours, changes in shade, edges, orientation of
edges, movement of edges, identifying objects, and so on). We suggest the manner in
which these disjoint areas are connected together to give a unified visual perception may
be considered as such a quotient structure. As mathematics educators involved in
thinking we have no physical evidence for this, so we pass the metaphor on to
neurophysiologists to evaluate its usefulness. Meanwhile it is our role to collect evidence
that intimates how mathematical structures may be held as manipulable cognitive units
with an interiority that is able to both guide manipulation of the unit and also be
subsequently expanded without loss of detail.

Process-object duality

Process-object duality is at the heart of several theories of mathematical development,
for instance the encapsulation of process into object (Dubinsky, 1991) or the reification
of process into object (Sfard, 1991). Unlike Skemp’s theory which sees the schematic
structure consisting of object-like concepts which are linked by properties and processes,
these encapsulation theories describe how sequences of activities can become routinized
into thinkable processes which are then in turn conceived as mental objects. This is
described by Asiala et al (1997) as follows:

According to APOS theory, an action is a transformation of mathematical objects that is performed
by an individual according to some explicit algorithm and hence is seen by the subject as externally
driven. When the individual reflects on the action and constructs an internal operation that performs
the same transformation then we say that the action has been interiorized to a process. When it
becomes necessary to perform actions on a process, the subject must encapsulate it to become a
total entity, or an object. In many mathematical operations, it is necessary to de-encapsulate an
object and work with the process from which it came. A schema is a coherent collection of
processes, objects and previously constructed schemas, that is invoked to deal with a mathematical
problem situation. (Asiala et al, 1997, p. 400.)
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Sfard (1991) proposed a corresponding sequence, affirming that operational mathematics
(use of processes) almost invariably precedes structural mathematics (use of objects).
Dubinsky and his colleagues followed the process-object sequence for several years
before the strict sequence was loosened:

… although something like a procession can be discerned, it often appears more like a dialectic in
which not only is there a partial development at one level, passage to the next level, returning to the
previous and going back and forth, but also the development of each level influences both
developments at higher and lower levels. (Czarnocha et al, 1999, p. 98.)

Gray & Tall (1994) took a different view of the relationship between process and object.
They saw the role of the symbol as being pivotal in the thinking process in a very special
way. A symbol such as “3+4” could act as a pivot between a process (of addition) and
the concept (of sum). This immense power—which is characteristic of symbolism in
arithmetic, algebra and calculus— allows the thinker to switch between using the symbol
as a concept to think about or as a process to calculate or manipulate to solve a problem.
They formulated the notion of procept as a combination of process and concept evoked
by a single symbol. This theory saw the notion of procept becoming richer (in interiority,
to use Skemp’s terminology) as different symbols and processes represented the same
object, for instance, 6 as  5 1+  or 2 4+ . From this range of associations it is possible to
compute, say 8 6+ , because 6 is 2 4+  and 8 2+  gives 10, and 10 and 4 gives 14. The
notion of ‘procept’ was extended to include all the triples of process-object-symbol that
have the same object in a given cognitive context. For instance, 6 is a procept which
embraces 3 3+ , 5 1+ , 2 4+ , and so on. Later in the development of the individual, it
might also come to embrace 12 2, 36, 3 5 2 5⋅ + ⋅ . In our terminology, a procept is
therefore a special case of a cognitive unit that grows with interiority as the cognitive
structure of the individual gets more sophisticated. This compression of mental schemas
or schemes into a cognitive unit features in a range of theories of cognitive development.

Schema-concept duality

Mathematical thinking involves two different kinds of mental activity which are both
referred to as schemas or schemes. One is a sequential action scheme that occurs in time
and is stabilized by long-term potentiation, strengthening and coordinating cognitive
links such as the “see-grasp-suck” scheme in the young child. Another refers more
specifically to the physical structure of the brain which offers a multi-connected schema
in which many possible links are available at any given time. The process-object theories
seem to focus more on the first of these, theorizing that sequential schemes are
encapsulated or reified as mental objects. The second type of schema offers a more
subtle way of building up mental concepts that can operate flexibly as cognitive units.

Crowley and Tall (1999) consider how the “linear equation schema”, for formulating
and solving linear equations may represent the same idea in different forms:

• the equation y x= +3 5, • the graph of y x= +3 5 as a line,

• the equation 3 5x y− = − , • the line through (0,5) with slope 3,

• the equation y x− = −8 3 1( ) , • the line through the points (1,8), (0,5).
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For some college algebra students these may all be compressed into a single cognitive
unit, with the various representations just alternate ways of expressing the same thing.
But it is also clear that there are students who see the structure as consisting of distinct
ideas with procedures (that they may not be able to carry out) required to get from one
thing to another. A student with such a diffuse view of linear equations may therefore
have a partial schema for relating the various representations but not a global schema
that easily sees them all as essentially the same cognitive unit.

Dubinsky and his colleagues extended their APOS theory so that, in addition to a
process-object construction, there was also a schema-object construction:

As with encapsulated process, an object is created when a schema is thematized to become another
kind of object which can also be de-thematized to obtain the original contents of the schema.

(Asiala et al, 1997, p.400)

In this way, highly connected mental structures are built up at different levels of detail,
connected in various ways.

The distinction between procedural thinking that allows limited success in familiar
contexts and conceptual thinking that is more adaptive in new problems has long been a
subject of study. Hiebert and Carpenter (1992) proposed two alternative metaphors for
cognitive structures—as vertical hierarchies or webs:

When networks are structured like hierarchies, some representations subsume other representations,
representations fit as details underneath or within more general representations. Generalisations are
examples of overarching or umbrella representations, whereas special cases are examples of details.
In the second metaphor a network may be structured like a spider’s web. The junctures, or nodes,
can be thought of as the pieces or represented information, and the threads between them as the
connections or relationships. (Hiebert & Carpenter, 1992, p. 67.)

Skemp’s formulation would allow the nodes in a web to be seen as varifocal hierarchies,
thus allowing the two structures to be used together. Likewise a concept could be
considered as a web of connected ideas, allowing both hierarchical and web-like
structures to coexist in a single structure.

However, the notion of webs and nets are still simplified metaphors for a far more
sophisticated mental system. Greater subtlety is essential to be able to reflect on the way
we think in mathematics. Consider for example, the statement:  sin60 3

2
o = . This may

be conceived by an individual as a cognitive unit and
linked to a picture such as that in figure 1.

This in turn is related to many other ideas such as “the
angles in an equilateral triangle are all equal”, “the angles
in a triangle add up to 180°”, “an angle in an equilateral
triangle is 60°”, “the line joining the vertex to the
midpoint of the base (of an isosceles triangle) meets it at
right angles”, “if the side is two units, half a side is 1
unit”, “Pythagoras’ Theorem”, “a b c2 2 2+ = ”,
“b c a2 2 2= − ”, “the square of 3  is  3”,
“1 32 2 22+ ( ) = ”, “the sine of an angle is opposite over

60°

2

1

√3

Figure 1: Relationships within
an equilateral triangle
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hypotenuse”, “the opposite is 3, the hypotenuse is 2”, etc. In this way we see a single
cognitive unit linking theorems about triangles, definitions of the trigonometric
functions, algebraic representation of a sum of squares, numerical facts about a specific
triangle, and so on. It is possible to formulate these partly in terms of hierarchies, for

instance, Pythagoras’ Theorem has “1 3 22 2 2+ ( ) = ” as a special case, the definition of

sine also includes this special case in terms of 3 2 as “opposite over hypotenuse”. The
many links involved also relate to other ideas; the definitions of trigonometric formulae
relate to notions of similar triangles having sides in the same ratio; the trigonometric
functions have relationships between them such as sin cos .2 2 1+ =  Processes of the
brain allow these ideas to become intimately connected in such a way that they are easily
linked and manipulated.

Professional mathematicians build up highly subtle cognitive units packed with
meaning. By focusing on commonly occurring properties which prove useful in making
deductions, they build up a range of different theories based on generative concepts
translated into chosen systems of axioms. For example

... the concept of a group captures the essence of the notion of symmetry and is connected in a
precise way to the concept of an equivalence relation, which itself is a precise abstract formulation
of the notion of ‘sameness’ with respect to a given property. Not only are the properties defining a
group sufficiently general to be satisfied by a large variety of relatively concrete mathematical
objects, but they are also sufficiently special to have lots of powerful consequences at the abstract
level. Thus a group is a precisely defined concept which sits at a major junction in the mathematical
network of relations. Indeed, one of the most beautiful features of mathematics is the way it allows
such precision at even the deepest levels of abstraction. (Barnard, 1996)

Performing cognitive compression

A common method of compression is to use words and symbols as tokens for complex
ideas. In particular, words can be used in a way that allows a hierarchical structure to be
conceived. For instance, a square is a special case of a rectangle, which is itself a
parallelogram, which is a quadrilateral. In the early stages a square and a rectangle may
be seen as quite different entities, both having four right angles, but a square has all sides
equal, whereas a rectangle has only opposite sides equal. The cognitive unit “rectangle”
develops greater sophistication and interiority, growing from meaning just a perceived
figure, to a whole collection of rectangular figures (including squares) in any orientation.
The realization that squares are special cases of the class of rectangles is an example of
cognitive compression where one class of objects is subsumed (for certain purposes)
within another.

Language supports the communication and refinement of ideas, both between
individuals and within the mind of the individual. It allows verbalized properties of
perceptions to be used as a foundation for the development of cognitive units that are
sophisticated mental idealizations. These include the notion of a point having position,
but no size, or a line having arbitrary length and no thickness. These go on to play their
role in proving relationships in elementary Euclidean geometry and perhaps later in more
abstract forms of geometry.
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A cognitive unit may, or may not, be associated with a natural visual label. For
example, in contemplating a mental image of angles written around a circle, in degrees
and in radians, there is no need to convert, say, π

4  radians to 45 degrees (by multiplying
by the factor π

180 ). The symbols π
4  and  45o  are simply different labels for the same

angle. On the other hand, the steps of algebraic manipulation involved in seeing that ‘a
linear combination of a linear combination of quantities x and y is a linear combination
of x and y’ is an idea that may be compressed into a cognitive unit without there being a
clearly defined label associated with the manipulation process.

Compression can also occur in other ways. For instance, when a collection of ideas or
symbols is ‘too big’ to fit into the focus of attention, it can sometimes be ‘chunked’ to
group into a single unit using some kind of alternative knowledge structure. The four
digit number 1914 may be seen not just as a number, but as the year at the beginning of
the first world war. This kind of associative link may be used to chunk numbers together
into sub-units that can now be held in the limited short-term memory. Most individuals
would find the 12-digit number 138234098743, impossible to remember on a single
hearing. However, the twelve-digit number 246819141918 can be ‘chunked’ and
remembered as the sequence ‘2, 4, 6, 8’ followed by the dates 1914–1918 of the First
World War.

Although it is possible to formulate a range of possible compression strategies,
individuals do not use them all to the same extent. This leads to different individuals
processing mathematical ideas in ways which may have very different outcomes that
may lead to success in some and failure for others. Gray and Tall (1994) noted that
children who use the longest counting process—count-all (count one set, count the
second, put them together and count them all)—could also remember certain “known
facts” such as 1+1 is 2 or 2+2 is 4. But none of these ever put together “known facts” to
obtain “derived facts”, such as “4+3 is 7” because “4+4 is 8”, or “12+2 is 14” because
“2+2 is 4”. Instead, they always computed arithmetic problems (whose answers were not
immediately known facts) by counting. We hypothesize that the sums performed by
these children are seen as counting processes and not as meaningful cognitive units with
any interiority. The “known facts” for them were isolated and not in a sufficiently rich
compressed form which could be mentally manipulated as cognitive units. On the other
hand, children who were able to derive new number facts from known related ones were
able to perform arithmetic in a far more flexible way which used numbers as compressed
cognitive units with powerful interiority.

Another bifurcation occurs in elementary algebra. Here an expression such as
“2 3+ x” stands for a potential arithmetic operation such as “add 2 to the product of
three times whatever x is”. This can cause discomfort for students who feel that a
problem “must have an answer” as it does in arithmetic. They are therefore faced with
manipulating expressions as mental objects that have only a potential, rather than an
actual, internal process of evaluation. This can lead simply to procedural compression in
which students learn to carry out a solution process by rote (“collect together like terms”,
“get the numbers on one side and the variable on the other”, “simplify to get the
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solution”, etc). Others are able to conceive the algebraic expressions as entities that can
be manipulated. They may go on to conceive of the equation itself as a cognitive unit
expressing a given relationship, with a “solution process” as a cognitive unit that can be
unpacked to give an efficient route to the solution.

Krutetskii (1976) studied this curtailment of mathematical reasoning, in which capable
students would compress their solutions in a succinct and insightful manner.

… mathematical abilities are abilities to use mathematical material to form generalized, curtailed,
flexible and reversible associations and systems of them. These abilities are expressed in varying
degrees in capable, average and incapable pupils. In some conditions these associations are
performed “on the spot” by capable pupils, with a minimal number of exercises. In incapable
pupils, however, they are formed with extreme difficulty. For average pupils, a necessary condition
for the gradual formation of these associations is a system of specially organized exercises and
training. (Krutetskii, 1976, p. 352.)

Great success in calculation may be developed with a huge range of connected ideas,
some meaningful, some rote-learnt, as Nobel Prizewinner, Richard Feynman reports:

I memorized a few logs and began to notice things. For instance, if somebody says, “What is 28
squared?”, you notice that the square root of 2 is 1.4 and 28 is 20 times 1.4, so the square of 28
must be around 400 times 2, or 800. If somebody comes along and wants to divide 1 by 1.73, you
can tell them immediately that it’s .577 because you notice that 1.73 is nearly the square root of 3,
so 1/1.73 must be one-third of the square root of 3. And if it’s 1/1.75, that’s equal to the inverse of
7/4 and you’ve memorized the repeating decimals for sevenths: .571428… .

(R. Feynman, 1985, p. 194.)

Mathematical proof

Mathematical proof involves cognitive units and connections of a more general type than
those encountered in elementary mathematics. (Barnard & Tall, 1997). In addition to
sequential procedures of calculation or symbol manipulation found in arithmetic and
algebra, mathematical proof often requires the synthesis of several distinct cognitive
links to derive a new synthetic connection. For instance, in the standard proof that 2  is
irrational, having written 2 = a b as a fraction in its lowest terms, the step from

“ 2 = a b” to “a b2 22= ” is an elementary sequence of algebraic operations, but the

step from “a2 is even” to “a is even” requires a subtle synthesis of other cognitive units,
such as “ a2 is either even or odd” and “if a were odd, then a2 would be odd.” These
synthetic links constitute an essential difference between elementary procedures in
arithmetic or algebra and more sophisticated linkages involved in mathematical proof.

Students often say that they can follow proofs when the lecturer goes through them in
class, but they are unable to construct proofs for themselves when required to do so for
homework. One explanation of this phenomenon (Barnard, 2000) has to do with the
shifting of focus through the different layers of detail in the cognitive units to be
manipulated: statements, statements within statements, expressions within statements,
symbols within expressions, etc. In a lecture, the lecturer may implicitly specify the level
of items that are to be the primary objects of thought at any stage. For example, in a
proof by induction on n of a statement P n( ), the distinction needs to be made as to when
P n( ) is to be thought of as a compressed item within the statement, “P n( ) implies
P n( )+ 1 ”, or when it is to be unpacked for a finer grained manipulation.
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It is this focus shift of compression and expansion that often lies at the heart of the difficulty when
students try to construct proofs for themselves. It is a bit like knowing when and how to change
gear while driving. When students ask the seemingly bizarre question, “How do you do proofs?”,
they may simply be reacting to a predicament similar to that of trying to drive without awareness of
the existence of gears. (Barnard, 2000.)

The wider challenge in mathematics education is how we can help students to construct
appropriately linked cognitive units that are flexible and precise to help them build
mathematics as a coherent and meaningful structure. These cognitive units arise
naturally in human thinking and take on a wide range of roles – general strategies,
specific information, routinized sequences of steps, linked together to produce
mathematical thinking. Without cognitive units of appropriate manipulable size, thinking
becomes diffuse and imprecise and is far less likely to be successful. Even with the
development of manipulable cognitive units in individuals that give current success,
there will still be challenges requiring intelligent reconstruction to cope with novel
situations.
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