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What do we “see” in geometric pictures?
(the case of the blancmange function)

David Tall & Silvia Di Giacomo

In geometry, and more generally in pictures representing mathematical
ideas, it is important not only to look at the picture, but also to know of the
context it is drawn in. Here, for instance is a freehand sketch representing a
tangent touching a circle.

Figure 1: A tangent touching a circle

It does not look like a very accurate representation, indeed, the circle is not
circular, the line is not straight and the line doesn’t “touch” the circle, yet in
some way, a sketch such as this drawn on a piece of paper or a blackboard can
provide the basis of a mathematical discussion.

In A Mathematician’s Apology, the well-known Cambridge Mathematician,
G. H. Hardy addressed this question as follows:

Let us suppose that I am giving a lecture on some system of geometry,
such as ordinary Euclidean geometry, and that I draw figures on the
blackboard to stimulate the imagination of my audience, rough drawings
of straight lines or circles or ellipses. It is plain … that the truth of the
theorems which I prove is in no way affected by the quality of my
drawings. Their function is merely to bring home my meaning to my
hearers, and, if I can do that, there would be gain in having them redrawn
by the most skilful draughtsman. They are pedagogical illustrations, not
part of the real subject matter of the lecture. (Hardy, 1940/1967, p. 125)

What matters therefore, is not the picture that is drawn in a physical
representation, but the picture that we imagine in our mind. Let us use this idea
to travel on a flight of fancy. Here are two pictures we have drawn of certain
graphs using a computer graph plotter. Without us telling you the formulae we
have in mind, can you tell us which graph is “smooth”, (in formal terms, which
one is everywhere differentiable) and which one is not. In informal terms, you
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might think about which one might not be smooth, perhaps because it has
“corners” where the graph suddenly changes direction.

Graph (a) Graph (b)
Figure 2 : Which of these graphs is "smooth"?

Immediately you are likely to say “the first one looks like sinx, so it is clearly
smooth”. The second may take a little longer to suggest that perhaps it is the
graph of the absolute value of sinx, found by reflecting the negative bits below
the x-axis up above to give a curve; this is smooth in most places, but clearly
has corners at 0, ±π, ±2π, and so on. This is a very sensible interpretation, given
the information that you have available.

Introducing a very wrinkled function

The “sensible” interpretation, however, depends on the fact that those drawing
the graph have used the regular sine curve that we all know. The only
information we have given you is a single picture of the graph of each curve;
we never told you the formula for either function, so you are just guessing from
what you can see. We have a much more devious idea in mind and we will now
begin to unfold it. Let us begin by introducing you to a function you may never
have seen before, called the blancmange function. This name was suggested by
John Mills, one of our colleagues, who saw a similarity in shape to an English
pudding made of flavoured milk jelly. Figure 3 (taken from a late nineteenth
century Victorian cook-book entitled Warne's Every-day Cookery) shows three
different moulds for making jellies. Beside it is the blancmange function,
showing the family resemblance. We should warn you however, that while
blancmange puddings seem moderately smooth (and sticky) to the touch, the
blancmange function is extremely wrinkled in a very subtle way.

y = bl(x) 

1 2

1 2

Jelly moulds for making blancmanges The blancmange function

Figure 3: The origin of the name of the "blancmange"
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The joke here is that the English word “blancmange” is made up of two French
words “blanc” (white) and “mange” (eat). When the blancmange function was
first introduced to French academics and teachers in a Seminar in Paris, the
audience were very puzzled. “What is this ‘white-eat’?” they said. The origin of
the name was explained and the French were satisfied. It is what the French call
a “pudding”. As always the French and the English have some difficulty
understanding each other, in this case because the English use a French term
“blanc-mange” and the French use an English term “pudding”.

So what is this fabled “blancmange” function? It is a function whose
construction was specified by the Japanese mathematician Takagi in 1904.
Perhaps we should call it the “Takagi” function after him. Perhaps … But the
English-French word “Blancmange” which causes confusion in both countries
is so much more fun! To continue with the pudding metaphor, we should think
of the ingredients that make it up.

The recipe for making a blancmange

The blancmange function is built up in stages. The first stage is a saw-tooth,
which rises linearly to 12 and falls to 0 in every unit interval (figure 3). This
function could be called “the distance to the nearest integer”. It may also be
calculated for any x as follows:

• calculate the integer part of x, which is the largest integer n such that n≤x,

• calculate the decimal part d = x–n,

• if d ≤ 1
2  then s(x) = d, otherwise (if d > 1

2 ) then s(x) = 1–d.

For instance, if x=3.23, then n=3 and d=0.23 and, since d ≤ 1
2 , this gives

s(x)=0.23. On the other hand, if x=2.75, then n=2 and d=0.75 and now d > 1
2 , so

s(x)=1–d = 0.25.

This procedural definition may look strange to those only used to having
functions given by formulae involving polynomials, trigonometric functions,
and such like, but it is much easier than any of these to define in a computer
program. In this sense, in these days of computers, this “saw-tooth” is a very
natural function  (Figure 4.)
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y = b1(x) = s(x)

1 2

1

Figure 4: The saw-tooth, y=s(x)

This is the first approximation to the blancmange function.
b1(x) = s(x).

Next we take a half-size saw-tooth s2(x), which rises to 1/4 and falls to 0
twice in each unit interval (figure 5). This can be calculated by the formula:

s2 (x) = 1
2 s(2x).

y = s2(x) = 

1 2

1

1 2 s(2x)

Figure 5: a half-size saw-tooth

Adding them together gives the second approximation b2(x) where

b2 (x) = s(x) + s1 (x)

= s(x) + 1
2 s(2x).

(figure 6).

y = b2(x) = s(x)+s2(x) 

1 2

1

Figure 6: the sum of a sawtooth and a half-size sawtooth
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We next take a quarter-size sawtooth (figure 7) and add it to b2(x) to get the
third approximation (figure 8).

y = s3(x) = 

1 2

1

1 4 s(4x)

figure 7: a quarter-size sawtooth

y = b3(x) = s(x)+s2(x)+s3(x) 

1 2

1

figure 8: adding a quarter-size sawtooth to b2(x) to give b3(x)

We proceed in this manner, each time taking a sawtooth half the previous size
and adding it to the approximation to get a better approximation to the
blancmange. We may imagine this going on for ever, but in a practical
situation, such as a drawing on a TV monitor, the added saw-teeth soon get so
small that the picture stabilizes (after eight or so stages on most modern VDUs).
(Figure 9.)

y = bl(x) 

1 2

1

Figure 9: the blancmange function
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The blancmange function is continuous but nowhere differentiable

It is easy to show that the blancmange function is continuous. Since bl(x) is the
sum of saw-teeth

bl(x) = s(x) + s2 (x)+...+sn (x)+...

where

0 ≤ s(x) ≤ 1
2  and, more generally, 0 1

2 1≤ ≤ +s xn n( ) ,

we see that the approximations

bn (x) = s(x) + s2 (x)+...+sn (x)

satisfy

0 11
2

1
4

1
2 1≤ ≤ + + + ≤−b xn n( ) ...

so that the sequence b1(x), b2(x), ... is an increasing sequence bounded above by
1 and therefore tends to a limit less than one.

More than that, the difference between the approximations, bm (x) − bn (x)
where m>n, satisfies

b x b xm n n m

n m n

n

( ) ( ) ...

...

− ≤ + +

= + +( )
≤

−

− −

+

1
2

1
2

1
2

1
2

1
2

1

1

1

1

so the convergence is uniform, and the limit bl(x) — being the uniform limit of
continuous functions — is continuous.

However, it is a very wrinkled kind of continuous function that doesn’t look
smooth anywhere. When the blancmange function is magnified, a strange thing
happens: tiny blancmanges can be seen all over the place!

To understand why this happens, consider what would occur if we left out
the first sawtooth and added up the rest. We would start at a half-size sawtooth
and successively add sawteeth each half the previous size. The result would be
the same shape as before, but would be only half the size. It would give a half-
size blancmange (figure 10). (The formula for the half-size blancmange is
simply 1

2 2bl x( ).)
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1 2

1

y = s2(x)+s3(x)+… 

Figure 10: a half-size blancmange

Adding the first saw-tooth to this sum, reveals the full blancmange as the sum
of the first sawtooth and a half-size blancmange.

y = bl(x) 

1 2

1

b1(x)

Figure 11: The blancmange function as the first approximation b1(x) plus a half-sawtooth

In this case the half-size blancmanges are set on each side of a saw-tooth,
sheared upwards. It is as if each half-size blancmange is on a flat plate turned
through an angle of 45°. Instead of sliding off the plate like blancmanges made
out of jelly, it is sheared only in the vertical direction by an amount increasing
from zero at the lowest part of the tooth to 1

2 at the highest part (figure 12).

y = bl(x) 

1 2
1 2

half-size
blancmange

shear
upwards

Figure 12: shearing a half-size blancmange

The idea may become clearer when we move to the next tooth. Leaving out the
sum of the first two teeth b x s x s x2 2( ) ( ) ( )= +  shown in figure 6, we start to add
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up the rest of the teeth starting at the third (quarter-size) sawtooth and adding
all the succeeding saw-teeth. This gives a quarter-size blancmange. The full
blancmange is then revealed as the sum of the first two teeth b x2 ( ) plus a
quarter-size blancmange (figure 13).

y = bl(x) 

1 2

1

b2(x)

— -size blancmanges1
4

Figure 13: The blancmange showing quarter-size blancmanges

In general

 bl x b xn
n( ) ( ) /= +1 2 -size blancmange.

Each approximation bn(x) is made up of straight-line segments over each x-
interval of length 1 2/ n. Over each interval the 1 2/ n-size blancmange is added
to give the full blancmange function. Figure 14 shows b4(x) superimposed on
the blancmange function. There are tiny blancmanges clearly visible on each
horizontal portion of b4(x) and on the other portions the blancmange is sheared
to sit on the line-segment.

y = bl(x) 

1 2

1

— -size blancmanges1
16

b4(x)

Figure 14: blancmanges growing everywhere!

Thus over any segment of length 1/2n there is a tiny 1/2n-size blancmange
function. It is the supreme non-example. It is a function that never looks smooth
anywhere. In technical terms, it is a continuous function that is nowhere
differentiable.
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The best time to introduce such a function to students is a matter of personal
taste for the teacher. Many may consider it too difficult for weaker pupils at an
early stage but my inclination would be to approach it experimentally fairly
early on using a prepared piece of software which enables the user to magnify
any part of the graph. Though the technicalities are difficult, the idea of a
wrinkled graph is not. It helps students realize the special nature of those
smoother graphs that look straight when small portions are highly magnified.
This highly specialized property is the foundation of the differential calculus.
(Tall, 1982, 1985.)

Some surprising ideas

The blancmange function has surprising properties. Being nowhere
differentiable is strange for a start. But, by the very way it is defined, it is
clearly symmetric in each unit interval on either side of the vertical line through
the middle of the interval. Since it visibly has a maximum value, it has (at least)
two, symmetrically placed on either side of its centre. It is actually more
interesting still. Looking back at figure 14 you can see a number of little
blancmanges at the top of the graph and each of these has at least two maxima.
Zooming in and looking a little closer you will see many, many maxima. In fact
the blancmange function has an infinite number of maxima in each unit interval.
Because it is not differentiable, it is not possible to find these maxima by
differentiating and finding where the derivative is zero. Perhaps you might like
to think where these maxima are and how high the blancmange function is at
these points.

Another trick is to consider a small-scale blancmange that is one thousandth the
size. It can be given by the formula:

r(x) = bl(1000x)
1000 .

Its height lies between 0 and 1
1000 . If you draw this function to a normal scale

on a piece of paper, it is too small to distinguish from the x-axis since it is less
than 11000  of a unit high. (Figure 15).
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y = r(x) 

1 2

1

Figure 15: The graph of the tiny “rough” function, r(x)

But if you zoom in by a factor of 1000 or so, you will see the tiny blancmanges
appear (figure 16).

0.001

y = r(x)

0.001

0.002

Figure 16: The graph of the “rough” function, r(x), highly magnified

Now let us take any function f(x) which has a derivative, such as f x x( ) = 2 or
f x x( ) sin= , then the graph of g x f x r x( ) ( ) ( )= +  cannot have a derivative

anywhere. (Because, if it did, then r x g x f x( ) ( ) ( )= −  would have derivative
′ − ′g x f x( ) ( ), and we already know that r(x) is so wrinkled that it is nowhere

differentiable.) The two graphs of f(x) and f(x)+r(x), however, look the same to
a normal scale (figure 17, 18).

y = f(x)

1

1

y = f(x)+r(x)

1

1
Fig. 17: An everywhere differentiable function Fig. 18: A nowhere differentiable function

This is an amazing insight. Two graphs f(x) and g(x) differ by less than a 1
1000

of a unit so that they cannot be distinguished in a picture drawn to a normal
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scale. Yet one is differentiable everywhere and one is differentiable nowhere!
This means that by looking at a single picture alone, without having any other
information, you cannot see whether the graph represented is differentiable or
not! Of course, if you have the facility to zoom in on a computer drawn graph,
the difference may appear at some higher magnification, but you can never be
sure. What happens if a much tinier rough graph were added, say the graph of
10 1010 100100− bl x( )? How can you ever be sure that at some unfathomably small
size a tiny wrinkle may not be added to the curve? The only way to be sure is to
know precisely what the function is. A single picture is not enough.

Looking at the Original pictures

Now it is time to look at the pictures at the beginning of the article. The first
may look like sinx, but what we did not tell you is that its formula is sinx + r(x).
So when it is magnified a thousand times or so, it reveals the rough contours of
the tiny blancmanges growing everywhere. So, contrary to expectations, graph
(a) is not smooth at all, it is not smooth anywhere.

Figure 19: Graph (a), y=sin(x)+r(x) Figure 20: zooming in on graph (a)

Now you may be getting suspicious about graph (b). You are right to do so. We
cheated you again. This is not the graph of the absolute value of sinx, which
may be written as

y x

x

=

=

sin( )

sin ( ).2

If you were to zoom in on that graph, then it would have a corner at the origin
(figure 21).
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Figure 21: Zooming in on the graph of y=|sinx| at the origin

But we did not draw this graph. What we actually drew is nearly the same, but
not quite. Our graph (b) has the formula

y x= + ⋅sin ( ) .2 0 000001

Zooming in on y x= + ⋅sin ( )2 0 000001 where x=0 gives

y = ⋅ = ⋅0 000001 0 001

and the magnified graph is given in figure 23.

Fig. 22: Graph (b) y x= + ⋅sin ( )2 0 000001 Fig. 23: Zooming in on graph (b) at the origin

So graph (b) has no corner at all. It is quite smooth. In fact, it is a formula
made up of standard functions and can be differentiated in the normal way.

This discussion has shown that we cannot expect to interpret a graph from a
single picture alone unless we are sure of precisely what it represents. Our
intuition may tell us that the original graph (a) looked as if it had corners and
graph (b) looked smooth, but now we know precisely what the pictures
represent, we see that it is almost the reverse. Graph (a) is indeed smooth
everywhere, and graph (b) is so rough that it is not smooth anywhere. Don't be
fooled in future. If you are told to look at a picture and not told clearly what it
represents then your intuition may mislead you. Experience is a great trainer,
but in mathematics you need the kind of experience which clearly tells you the
full meaning of the situation.
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