THE FUNCTION MACHINE AS A COGNITIVE ROOT FOR THE FUNCTION CONCEPT
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The concept of function isonsidered as foundational in rainatics. Yet it
proves to be elusivand subtle for sidents. In thispaper we sggest that a
generic image that can act as a cognitive root for the conceptfisnitieon box

We see this not as a simple pattern-spotting device, but as a concept that
embodies the salient features of theai of finction, including process (input-
output) and object, with the various representatioeensas methods of
controlling input-output.

The notion of“function” has often beenused as arorganizing principle in the teaching of
mathematics (Yerushalmy a@thwarz,1993). However,the subtlety of the function concepith
its various representations and process-object duality proves to beduogipiex, leadingiot only
to a conceptwith wide ranging powers, but alsowith widespread misunderstandings (see for
example,Dubinsky andHarel, 1992; Sfard, 1992Cuoco,1994; Thompson1994). We consider
how the function concept may be introduced in a maniéchwis potentially more meaningful
across a wle spectrum of studentwith differing abilities andneeds. In doingo, we develop
general principles thatlate toother theories ofognitive development in mathematics education.
This will therefore have wider implications at a theoretieatl, particularly at this point itime as
technology affords us entirely new ways of interacting with and constructing conceptual ideas.
The APOS theory of Dubinsky and hislleaguesfor example seescognitive development in
the light of Piaget’s theory atflective abstractionAPOS theory suggestghat the individual first
performsactions(on already existent objectf)at are then interiorized infarocesseslater to be
encapsulated intobjectsto be built into a wider cognitivechema The embodied theory of Lakoff
and Johnson, (1999) on the other hand suggeslittiadught is built upon embodied perceptions
and actions. A vast proportion of the brain is dedicatedston, for the perception andnalysis of
objects. It is therefore naturébr the brain to constructognitive concepts not only through

encapsulation of processes, but also by focusing on objectshaindproperties. We contend



further that even the encapsulation of a processrierdal objectioes notoccuronly by a shift in
which a processbecomesconceived as an object. Wsuggestthat other embodied ental
connections ar@volved. For instance, aymbolmay act as a pivot betwe@mocess andoncept
(Gray andTall, 1994). Moregenerally, encapsulationill involve a much widerrange of rental
structure, includingisual images, properties, relationships, perceptions, actions, emainehso
on, which arealready present ithe mind. Thesevill be modified and integrated as part of a
conceptual object-schema that links and retains both process-driven and object-focused aspects.
Thompson (1994) suggestsat an appropriatenitial focus builds not fromthe various

representations, but from a meaningful context that embodies the function concept:

| agreewith Kaputthat it may be wrongheaded flacus ongraphs, expressions, or tables as
representations of function. We should instéazlis onthem asrepresentations afomething
that, from the students’ perspective, is representable, such as aspects of a specific situation.

(Thompson, (1994), p.39, (our italics))

We suggest that the “something”, rathiean being avariety of different contexts from wbh the
student is expected to abstract the function aspect, could usefully be a generic emizggictiat
exhibits as many of the important aspectshef function concept gsossible. We alsotend that
such an initial image should be appropriate for a wide spectrum of students.

Tall (1992, p.497) defined@ognitive rootto be “an anchoring concephigh the learnefinds
easy to comprehend, yet forms a basis on which a theory niayilb& An example of a cognitive
root, is the notion of “local straightness” in calculus.

To help us formulate@ur theory, anotherelevantconstruct is the notion ofognitive unit
—"a piece of cognitive structure that can be held in the focwadterition all abnetime” together
with its immediately available cognitive connections (Barnard and Tall, 1997, pts4ddwer“lies
in it being a viole which isboth smaller and greater thdre sum of its parts —smaller in the
sense obeing able to fit into thehorttermfocus ofattention,and greater in theense ohaving
holistic characteristics which are able to guide its manipulation.” (Barnard, 1999, p. 4).

This allows us to propose a refined definition of the notion of cognitive root:



Definition: A cognitive rootis a concept that:

() is a meaningful cognitive unit of core knowledige the student athe beginning of
the learning sequence,
(i) allows initial developmenthrough a strategy ofognitive expansion rathethan
significant cognitive reconstruction,
(i) contains the possibility of long-term meaning in later developments,

(iv) is robust enough to remain useful as more sophisticated understanding develops.

A cognitive root certainly does notguarantee thagvery studentwill progress tdater theoretical
developments, but it has the advantagerabodying ideas kch are potentially meaningful at the
time (in thesense ofAusubel, Novakand Hanesiarl968) anday groundwork for possibléater
theories. As the theorgevelops, the cognitiveoot will become more sophisticatedth a richer
interior structure and more appropriate links to ottedstedconcepts. Some reconstructiail
undoubtedly be necessary as old ideas are seen in a new light. At sudhéseeshangesay be
threatening to some learners.h¥{ is important is that the curriculundesigner isaware of
reconstructions and their related difficulties and takes account of them in the learning sequence. It is
hoped that a firmly based cognitive root waillow the earning sequence to build from meaningful
foundationsthat may be enrichednd adjusted whilst maintaining therength ofthe entire
structure.

Given the complexity of th&nction concept, weseek acognitiveroot thatembodies both its
process-object duality and also its multiple representations. A highly

INPUT
likely candidate is th&unction machinas aninput-outputbox. This ‘ ¢ ‘

alreadyhas iconic, visual aspects, embodyingoth anobjectlike
status and alsthe processaspect from input to outputhe usual

representation®f function (table, graph, formulggrocedureyerbal

formulation, etc) mayalso be seen as ways of representing or

calculating the inner input-output relationship: *
OUTPUT
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The function box as a table, a formula and a graph

We note that the function box agten used inthe earlystages othe curriculumHowever,this is

usually as dguess my rule’problem, toguessthe internal

For INPUT w
OUTPUT p is
the price p for delivering
a letter of weight w

formula expressinghe rule. This activity givesrise to the ..,
epistemological obstacle thatl functions are given by a
formula The functionbox may beused in aifferentway to
retain greater generalitghrough everyday exampleswith

functionsgiven by aprocedure rather than a simgamula,

OUTPUT

for instance, the cost of delivering a letter of given weight.

We hypothesis¢hat thefunction box in thiswider context is arembodiedversion of the more
general function concept. It can be imagined and represented in variouthatalysk directly to
human perception and sensation. It allows simple interpretations of profound ideas, for instance that
two function boxesare “the same” ifthey havethe same outpuor each input in the&lomain,
regardless of the particular inner workings of the box. We interpret this perceptwa fohction
boxes being the same as occurring aptieeesdevel in the sense of Dubinsky.

Empirical data to test the use of the function box is givetetail in a parallepresentation in these
proceedings (McGowen, Dedvois andTall, 2000). The data aroseiot from a curriculunwith a
specificfocus onthe functionbox as acognitive root,but fromthe performance aftudents on a
college course based owarious representations of linear relatiamsing function boxeslinear
equations, graphs and tables. This showed that 49% of the studentshesganse operating at a

procesdevel for the functionbox, on aparwith their use of anumericaltable, but considerably



higher than their process useabfebra(20%) or of a graph (1%). (DeMaroit998, p.147). An

in-depth study of several individualsvealedsuccessful students expandithgir concept maps of

function building on the function-box, whilst less successful individuals worked superficially on the
current topic of study, making few long-term links (McGowen, 1998, p. 174-179). A patatlg|

of the growing sophistication of the meaning of a functiax revealed asimilar spectrum of

student performance. A successful student operated at an object-level, a mid-range student acted at a
process level, and amsuccessful studemtasonly able tousethe functionbox in a step-by-step

manner, without attending to tip@ssibility of different procedureswing the samenput-output

process (DeMarois, 1998, p. 173-5).

Coqgnitive obstacles with the function box

The function box, as with any other initial starting point, gives rise to a rangmgoitive obstacles
requiring cognitive reconstruction in later developments. A major weakn#sa isdoes notave
an explicit range or domain. The domain can be introduced“imatral” way as“the set of
possible inputs”, and in contexts such as real functions, thersmatw@al” range, namely the real
numbers. This may later embody a beliedt afunction will alwayshave a‘natural” domain and
range, rather than the domain and range tspiegifiablein the definition. It would therefore be an
advantage at an early stage to embody the function box as an input-output arrow taking the elements
from a specific domaiA into a rangd to attempt to move closer to the formal definition.

In developingour theory, we note that theinction concept itself is rarely a conceptstéidy.
Instead, the ternifunction” usually applies to a special kind dfinction—linear, quadratic,
trigonometric, given by a formula, differentiable etc. We refeyuchconcepts asfunction plus”,
where the “plus’refers tothe relevantdditional properties kch significantly change the nature
of a function.(For instance, a lineafunction only requireswo pairs of input-outpuwvalues to
determine it uniquely). Sometimdise “plus” is extremely subtle; thgraph of areal function
incorporates therder of the real numbers athe twoaxes. Atempting torepresent it only as sets
without order would be foolish indeed! For such reasons, we see an important the fiorction

box as a cognitive rodteforeconsidering specific types of function. In this new agéeolinology,



we also consider the importance of #tedy of awider range of functionshat is nowavailable in
spreadsheets, symbolic manipulators and graphic calculators.

Comparison with other theories

The approach advocatéésmuch in commorwith other theorieshowever, itreveals a significant
underlying difference:the cognitive foundation of mathematicalconcepts is here based on
meaningful scaffoldinginvolving thought experimentswith gereric objects—in this case a
“function box”. The difference with the theories of Thompson and Kapumateer ofemphasis.

Our starting point builds out from the function-box metaphor, while their viewpoints focus either on
a specific problem or on the links between several related representations.

We take a different position frothe developmergequence suggested by (@amer-simplistic)
interpretation ofAPOS theory.The first (Action) stage, iglescribed as “... a reaction to stimuli
which the subject perceives as external,” (Czarnocha, Dubinsky, Prabhuidakdv¢ 1999). The
theory seems to intimate an initial stage in which the student does not, and cannot, have a view of the
broad futuredevelopment of théheory. The full schematiqS) part of the theorys, essentially,
impossible to envisage until the student has reachelatthestage(O) of encapsulation of objects.
More recent interpretations &POS (e.g. @arnochaet al, 1999) suggest a broaddialectic in
which “the development of each level influences both developments at higher and lower levels,” but
eventhis manifestly ignorethe richer embodied aaty of the brain (Lakoff & Johnson, 1999).
Gray, Pitta, Pnhto and Tall (1999) showthat afocus onobjects inarithmeticleads to theless
successfutemainingwith images and procedures, whilst the morecsgsfuldevelop a reflective
hierarchy from primitive imagery to the powerful use of more refimaethematical idas. At dater
stage successful individuals often focus far more on the powerful higleés eth little emphasis
on more prnitive detail, howeverthis does not ean thatsuch a ével does notrequire a more
primitive scaffolding at an early stage. It is our belief that the use of an embodied imagevide
a foundation fothe widest range of studentiying a good insight for some anldying a firm
foundation for rore subtlehighly compressed modes of thoughat form the basis formore

sophisticated mathematical thinking.
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