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The concept of function is considered as foundational in mathematics. Yet it
proves to be elusive and subtle for students. In this paper we suggest that a
generic image that can act as a cognitive root for the concept is the function box.
We see this not as a simple pattern-spotting device, but as a concept that
embodies the salient features of the idea of function, including process (input-
output) and object, with the various representations seen as methods of
controlling input-output.

The notion of “function” has often been used as an organizing principle in the teaching of

mathematics (Yerushalmy and Schwarz, 1993). However, the subtlety of the function concept with

its various representations and process-object duality proves to be highly complex, leading not only

to a concept with wide ranging powers, but also with widespread misunderstandings (see for

example, Dubinsky and Harel, 1992; Sfard, 1992; Cuoco, 1994; Thompson, 1994). We consider

how the function concept may be introduced in a manner which is potentially more meaningful

across a wide spectrum of students with differing abilities and needs. In doing so, we develop

general principles that relate to other theories of cognitive development in mathematics education.

This will therefore have wider implications at a theoretical level, particularly at this point in time as

technology affords us entirely new ways of interacting with and constructing conceptual ideas.

The APOS theory of Dubinsky and his colleagues, for example, sees cognitive development in

the light of Piaget’s theory of reflective abstraction. APOS theory suggests that the individual first

performs actions (on already existent objects) that are then interiorized into processes, later to be

encapsulated into objects to be built into a wider cognitive schema. The embodied theory of Lakoff

and Johnson, (1999) on the other hand suggests that all thought is built upon embodied perceptions

and actions. A vast proportion of the brain is dedicated to vision, for the perception and analysis of

objects. It is therefore natural for the brain to construct cognitive concepts not only through

encapsulation of processes, but also by focusing on objects and their properties. We contend



further that even the encapsulation of a process to a mental object does not occur only by a shift in

which a process becomes conceived as an object. We suggest that other embodied mental

connections are involved. For instance, a symbol may act as a pivot between process and concept

(Gray and Tall, 1994). More generally, encapsulation will involve a much wider range of mental

structure, including visual images, properties, relationships, perceptions, actions, emotions, and so

on, which are already present in the mind. These will be modified and integrated as part of a

conceptual object-schema that links and retains both process-driven and object-focused aspects.

Thompson (1994) suggests that an appropriate initial focus builds not from the various

representations, but from a meaningful context that embodies the function concept:

I agree with Kaput that it may be wrongheaded to focus on graphs, expressions, or tables as

representations of function. We should instead focus on them as representations of something

that, from the students’ perspective, is representable, such as aspects of a specific situation. 

(Thompson, (1994), p.39, (our italics))

We suggest that the “something”, rather than being a variety of different contexts from which the

student is expected to abstract the function aspect, could usefully be a generic embodied image that

exhibits as many of the important aspects of the function concept as possible. We also intend that

such an initial image should be appropriate for a wide spectrum of students.

Tall (1992, p.497) defined a cognitive root to be “an anchoring concept which the learner finds

easy to comprehend, yet forms a basis on which a theory may be built.” An example of a cognitive

root, is the notion of “local straightness” in calculus.

To help us formulate our theory, another relevant construct is the notion of cognitive unit

—“a piece of cognitive structure that can be held in the focus of attention all at one time” together

with its immediately available cognitive connections (Barnard and Tall, 1997, p. 41). Its power “lies

in it being a whole which is both smaller and greater than the sum of its parts — smaller in the

sense of being able to fit into the short term focus of attention, and greater in the sense of having

holistic characteristics which are able to guide its manipulation.” (Barnard, 1999, p. 4).  

This allows us to propose a refined definition of the notion of cognitive root:
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Definition: A cognitive root is a concept that:

(i) is a meaningful cognitive unit of core knowledge for the student at the beginning of

the learning sequence,

(ii) allows initial development through a strategy of cognitive expansion rather than

significant cognitive reconstruction,

(iii) contains the possibility of long-term meaning in later developments,

(iv) is robust enough to remain useful as more sophisticated understanding develops.

A cognitive root certainly does not guarantee that every student will progress to later theoretical

developments, but it has the advantage of embodying ideas which are potentially meaningful at the

time (in the sense of Ausubel, Novak and Hanesian, 1968) and lay groundwork for possible later

theories. As the theory develops, the cognitive root will become more sophisticated with a richer

interior structure and more appropriate links to other related concepts. Some reconstruction will

undoubtedly be necessary as old ideas are seen in a new light. At such times these changes may be

threatening to some learners. What is important is that the curriculum designer is aware of

reconstructions and their related difficulties and takes account of them in the learning sequence. It is

hoped that a firmly based cognitive root will allow the learning sequence to build from meaningful

foundations that may be enriched and adjusted whilst maintaining the strength of the entire

structure.

Given the complexity of the function concept, we seek a cognitive root that embodies both its

process-object duality and also its multiple representations. A highly

likely candidate is the function machine as an input-output box. This

already has iconic, visual aspects, embodying both an object-like

status and also the process aspect from input to output. The usual

representations of function (table, graph, formula, procedure, verbal

formulation, etc) may also be seen as ways of representing or

calculating the inner input-output relationship:
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INPUT
(name)

OUTPUT
(age)

John
Mary
Hugh
Alice
June
Lillie

18
20
18
19
19
18
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For INPUT n 
 OUTPUT m is

m=2n+3
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OUTPUT

INPUT x

OUTPUT y

The function box as a table, a formula and a graph

We note that the function box is often used in the early stages of the curriculum. However, this is

usually as a “guess my rule” problem, to guess the internal

formula expressing the rule. This activity gives rise to the

epistemological obstacle that all functions are given by a

formula. The function box may be used in a different way to

retain greater generality through everyday examples with

functions given by a procedure rather than a simple formula,

for instance, the cost of delivering a letter of given weight.

We hypothesise that the function box in this wider context is an embodied version of the more

general function concept. It can be imagined and represented in various ways that link directly to

human perception and sensation. It allows simple interpretations of profound ideas, for instance that

two function boxes are “the same” if they have the same output for each input in the domain,

regardless of the particular inner workings of the box. We interpret this perception of two function

boxes being the same as occurring at the process level in the sense of Dubinsky.

Empirical data to test the use of the function box is given in detail in a parallel presentation in these

proceedings (McGowen, DeMarois and Tall, 2000). The data arose, not from a curriculum with a

specific focus on the function box as a cognitive root, but from the performance of students on a

college course based on various representations of linear relations using function boxes, linear

equations, graphs and tables. This showed that 49% of the students began the course operating at a

process level for the function box, on a par with their use of a numerical table, but considerably
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For INPUT w 
 OUTPUT p is

the price p for delivering
a letter of weight w



higher than their process use of algebra (20%) or of a graph (1%). (DeMarois, 1998, p. 147). An

in-depth study of several individuals revealed successful students expanding their concept maps of

function building on the function-box, whilst less successful individuals worked superficially on the

current topic of study, making few long-term links (McGowen, 1998, p. 174–179).  A parallel study

of the growing sophistication of the meaning of a function box revealed a similar spectrum of

student performance. A successful student operated at an object-level, a mid-range student acted at a

process level, and an unsuccessful student was only able to use the function box in a step-by-step

manner, without attending to the possibility of different procedures giving the same input-output

process (DeMarois, 1998, p. 173–5).

Cognitive obstacles with the function box

The function box, as with any other initial starting point, gives rise to a range of cognitive obstacles

requiring cognitive reconstruction in later developments. A major weakness is that it does not have

an explicit range or domain. The domain can be introduced in a “natural” way as “the set of

possible inputs”, and in contexts such as real functions, there is a “natural” range, namely the real

numbers. This may later embody a belief that a function will always have a “natural” domain and

range, rather than the domain and range being specifiable in the definition.  It would therefore be an

advantage at an early stage to embody the function box as an input-output arrow taking the elements

from a specific domain A into a range B to attempt to move closer to the formal definition.

In developing our theory, we note that the function concept itself is rarely a concept of study.

Instead, the term “function” usually applies to a special kind of function—linear, quadratic,

trigonometric, given by a formula, differentiable etc. We refer to such concepts as “function plus”,

where the “plus” refers to the relevant additional properties which significantly change the nature

of a function. (For instance, a linear function only requires two pairs of input-output values to

determine it uniquely). Sometimes the “plus” is extremely subtle; the graph of a real function

incorporates the order of the real numbers on the two axes. Attempting to represent it only as sets

without order would be foolish indeed!  For such reasons, we see an important role for the function

box as a cognitive root before considering specific types of function. In this new age of technology,



we also consider the importance of the study of a wider range of functions that is now available in

spreadsheets, symbolic manipulators and graphic calculators.

Comparison with other theories

The approach advocated has much in common with other theories, however, it reveals a significant

underlying difference: the cognitive foundation of mathematical concepts is here based on

meaningful scaffolding involving thought experiments with generic objects—in this case a

“function box”. The difference with the theories of Thompson and Kaput is a matter of emphasis.

Our starting point builds out from the function-box metaphor, while their viewpoints focus either on

a specific problem or on the links between several related representations.

We take a different position from the development sequence suggested by an (over-simplistic)

interpretation of APOS theory. The first (Action) stage, is described as “… a reaction to stimuli

which the subject perceives as external,” (Czarnocha, Dubinsky, Prabhu, and Vidakovic 1999). The

theory seems to intimate an initial stage in which the student does not, and cannot, have a view of the

broad future development of the theory. The full schematic (S) part of the theory is, essentially,

impossible to envisage until the student has reached the later stage (O) of encapsulation of objects.

More recent interpretations of APOS (e.g. Czarnocha et al., 1999) suggest a broader dialectic in

which “the development of each level influences both developments at higher and lower levels,” but

even this manifestly ignores the richer embodied activity of the brain (Lakoff & Johnson, 1999).

Gray, Pitta, Pinto and Tall, (1999) show that a focus on objects in arithmetic leads to the less

successful remaining with images and procedures, whilst the more successful develop a reflective

hierarchy from primitive imagery to the powerful use of more refined mathematical ideas. At a later

stage successful individuals often focus far more on the powerful higher levels with little emphasis

on more primitive detail, however, this does not mean that such a level does not require a more

primitive scaffolding at an early stage. It is our belief that the use of an embodied image can provide

a foundation for the widest range of students, giving a good insight for some and laying a firm

foundation for more subtle, highly compressed modes of thought that form the basis for more

sophisticated mathematical thinking.
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