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We describe students’ developing understandinguattion as an input/output process and as an object by
tracing the internalization of the function machine concept as it relates to representations of functions We
examine whetheruhction machines serve as a cognitive root for the function concepinélargraduates
enrolled in a developmental algelmaurse, in particular by providing a rich, foundational understanding of
function.

Introduction

Students’ use of expressionsples,and graphs in understanding functions bagn studied
extensively over the past sevetigicades. Mch ofthe literature orstudents’concepts of function
examines \watthey do not understand atiieir misconceptions, offering explanations as to why
this might be so (Goldenber§988; Janvier,1987; Kaput, 1989; Tall & Bakar,1992; Thompson,
1994). Acognitive root(Tall, McGowen, and DeMaraois, in press) is a concept met at the beginning
of a curriculum sequence that:

() is a meaningful cognitive unit of core knowledge for the student at the beginning of the
learning sequence,

(i) allows initial development through a strategy of cognitive expansion rather than significant
cognitive reconstruction,

(iii) contains the possibility of long-term meaning in later theoretical development of the
mathematical concept,

(iv) is robust enough to remain useful as more significant understanding develops.

The functionbox can operate as a cognitiveot because it is a concepiat is meaningful to a
significant number of students, including the majority tbbse who experience difficulty in
mathematicsnd enrolifor remedial college mathematiecoursesThe function machindox was
introduced as a visual representation for the concept of function seen as an inpyifoagsit in
which, when a specific element is input, there is a single output for that input.

The introduction of the function machine as an input/outputenables students tmave a
mental image of dox that can baised todescribe and name variopsocessesften without the

necessity ofhaving an explicitprocessdefined. Otheiforms of representation may bseen as



mechanisms hich allow anassignment to be ade (by atable, byreading a graph, bysing a
formula, or bysome other assignment procedure). By trativgg internalization of the function
machine concept waddresghe question of wetheruse ofthe function machine representation
leads to a rich, foundational understanding of function.

Modes of Inquiry and Data Sources

Data from two previous studies dime use offunction machines (DeMarois, 1998 cGo-
wen, 1998) are examined for evidence of the function boxcagrativeroot. The subjects of these
studieswereundergraduate studergarolled in developmentaloursesthat donot carry general
education mathematics credit: either an Introductory or Intermediate Algebra coarsestddents
had encountered the content before, so these studies used a restructured curriculum centered on the
concept of functiorusing function machines. Thevo studiesinclude: (a)quantitativemethods of
data collectionused to mdicate globalpatterns generalizablacross populations tolocument
changes instudents’ understanding@and to measure improvements in therathematical
competencies; and (b) qualitative methods that add depth and detaifteattigativestudies which
allowed theresearchers to focus ondividual students wthin the broad-basedcontext of the
guantitative studies.

All studentswere givenpre- and post-course surveys to establisiatthey knew about
functions initially and after sixteen weel&everalstudents froneachcourseparticipated in inter-
views subsequent to the course. At 5 week intervals in the Intermediate Algebra study, data routinely
collected includedstudent werk, mid-term student nterviews, and conceptmaps. Growth in
students’ understandingnd mproved flexibility of thoughtwas documented in descriptions/
explanations of their workhroughoutthe semester in terms of an input/outpubcess andheir
improved ability to(i) interpret anduse ambiguougunction notation, (ii) translate between and
among various function representations, and \igjv a function as an object in its own right.
Various types of triangulatiomere usedincluding data triangulation, method triangulation and
theoretical triangulation (Bannister et al., 1996).

Examination of Data

A question asked on the pre- and post-course Introductory Algebra survey was:



Consider the diagram:
a. What are the output(s) if the input is 7?

X
' |
Add 1 to the input
Multiply the sum by 3
1§ T
y

b. What are the input(s) if the output is 18?

Table 1 indicates that two-thirds of Introductorigébrastudentswere able tonterpret a function

machine diagram flexibly at tHeeginning of thecourse. This suggestisat thefunction machine

representation is an accessible starting point for many students.

Table 1: Function machine input and output

Pre-course
number correct

Post-course
number correct

Question (% correct) (% correct)
n = 92 n = 92
a) Function machine: input given 62 (67%) 79 (86%)
b) Function machine: output given 44 (48%) 64 (70%)
Function machine: both parts correct 43 (47%) 61 (66%)

Students in both studies were asked on pre- and post-course surveys to findjieempat
graph and input. They were also asked to find input given a graph and outpgtieBtiens on the
two surveys differ in some respecihe Introductory Agebraquestion displays a imdow indi-
cating scale and the graph of a parabola. A coresgonsencludes recognitiohat there are two
answers to part (b).i@n theform of the questionstudentsare not required to interpret function
notation in order tcsolve theproblem. However,studentswere required to switch their train of
thought to answer pafb). Their responses to both partgere considered a measure tfeir
improved ability to think flexibly.

Consider the viewing window and graph copied from a TI-82 graphics calculator.

a. What are the output(s) if the input is 3?
Answer:

b. What are the input(s) if the output is 0?
Answer:



The Intermediate Algebra survey questasked students tdetermine outpugiven thegraph of a

piece-wise function and an input and to determine input, given an output, using the same graph.

Given the graph BN
6 /
(8) Indicate whay(8) = 5 A /
. . A Z
What first comes to mind? )
9) If y(x)= 2, what isx? 2
(9) If y() =
What first comes to mind? 0 | ! >
1 2 3 4 5 6 7 8 91
Table 2 displays the results of student responses to the survey questions:
Table 2: Graph: input and output
Beginning Beginning Intermediate Intermediate
Survey Pre-course Post-course Pre-course Post-course
Question (% correct) (% correct) (% correct) (% correct)
n = 92 n = 92 n = 52 n = 52
Graph: input given 1% (1/92) 41% (38/92) 38% (20/52) 71% (37/52)
Graph: output given 0% (0/92) 22% (20/92) 17% (9/52) 46% (24/53)
Graph: pair correct 0% (0/92) 21% (19/92) 6% (3/52) 40% (21/52)

The resultsindicate thatintroductory Agebra students demonstrateldtle connection
between function machines and graphs, even wheerstanding of functions based on a function
machine representation was demonstrated. Only 41% studergsable tdind outputgiven input
and only 22% were able to reverse the process at the end of the semester [DeMarois,1998]. Slightly
more than 70% of Intermediate Algebra students were able to find gitpatinput and46% able
to reverse the process by the end of the semé&xtdy.21% of Introductory Bgebrastudents and
less than half the Intermediate Algebra students (40%) were able to do both processes by the end of
the semester. Yet, when ooensiders studentshitial responses anttheir growthover thesixteen
weeks, theesultsare encouraging. Theveragechange in correctesponses fothe Intermediate
Algebra students was statistically significant (two-tailed paired t-test, p < 0.001).

Concept maps done throughaiie semester document how the function mackdea
impacted studentgleveloping concept image @inction-as-process. Figure 1 illustratesv one

student’s concept image of function developed from the function machine as a cognitive root.



FIGURE 1: Concept Maps (Week 4 and Week 9): Cognitive Expansion
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A closer examination of theseaps illustrategshe development of theotion of representations
through cognitive expansidhat hasoccurredover time. By Week 15the studentinternalized the
function-as-process concept. Evidence of the input/output cognitive root was still present in his final

map, which was color-coded to indicate concepts connected with input or output.

FIGURE 2: Week 4, Week 9, & Week 15 Concept Map Close-ups: Representations

Week 4 Week 9

In an interview at mid-term, the student describes his growing ability to sealse of anthterpret
functional notation in terms of input and output:

I’'m learning how these algebraic models are set up drad tve variables that they
contain represent. I'm no longer just blindly solviiog x, but rather understanding
wherex (input) came from and how it wésund fromthe data givenThrough this
kind of learning | have developed an understanétimnghe use offunction notation
[f(X) = output] and how it replaces the dependent varigble,



On a journal (Week 9) he writes:

| feel that Ihavereally madesense ofnput and output hien dealingwith function

notation. Problems such as #3 on the Unit Il individual test used to look so unfamil-

iar to me, but now make perfectly good sense.
By the end of the semester, the student was able to translate flexibly and consistently among various
representational form@ables, graphs, traditional/mbolicforms andfunctionalforms) aswell as
expressconfidence in thecorrectness of his answers. In fiigal interview of the semester, the
student spoke of his understanding of function notation:

| think the most memorable information from this class would be the use and under-
standing of function notation. A lot of emphasis was put on input and output which
really helped me comprehend some algebraic processes such as soking for

Conclusion

The evidence presentsdggestghat thefunction machine is aognitiveroot for the func-
tion concept for the subject population and that function machines provide a foundatibiclormow
further develop the function concepunction machinesnpactedstudents’thinking and learning
as evidenced in thework and by thevocabulary theyused. They were able to imrpret the
instructions in a function athine diagram flexibly at thieeginning of thecourses. Thisuggests
that thefunction machine representation is an accessible startingfpoimtany students—a cog-
nitive root at the beginning of a learning sequence that semEe asepresentative of the function
input/output process.

For the successful students and for many of the somewhat successful students, references to
input and output occur in their work amtterviewsthroughoutthe semester—an indication that
they use the function machine notion to organize their thinking as they work problerinsegpret
notation. Axes orgraphswere labeled interms of input and output asere questions using
symbolic notation. The function machine provided students with access to the function concept and
became a meaningful unit of core knowledg®n which to buildsubsequent understandiagout
functions. The concept maps document the cognitive expansion that oanrerdine and provide
evidence that th@&unction machine asognitive root is robust enough temainuseful asmore
significant understanding develops.

Further analysis othe datadocuments thgrofound divergence thabccurredover time

between the most successful and lsastessful students. Eirigly, the leassuccessful students



generally did not make use of the function machine notion except in limited instances. In contrast to
the moresuccessful student)e leastsuccessful studentsane very few refrences to function
machines in their work or the vocabulary thesed.The leastsuccessful students demonstrated
little or no improvement iheir ability to thinking flexibly.Suchrigidity of thought extended to
arithmetic computationgbrocessesTheir ability to reverse a train dhought appearedrozen,
regardless of hich representation wassed. Onthe otherhand, themost successful students
demonstrated flexibility of thinking in their ability to use various representations. Wéreyable to
translate among representations, intelligently choosing among alternative procedures.

We continue to examine thesefulness ofunction machine as eognitiveroot as students
attempt to deal with thiunction conceptWork is on-goingwith students athe College Algebra
level to determine how their development of tluaction concept comparesith that of develop-
mental algebrastudents, as is the searfidr possible cognitive roots for other mathematical

concepts.
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