Making, Having and Compressing Formal Mathematical Concepts
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This paper studies the mathematical concept development of novice university
students introduced to formal definitions and formal proof, with empirical data
collected orfequivalencerelation” and“partition”. Before meeting the formal
definitions of these concepts, the student will already have informal knowledge
that allows some intuition as to their meaning. Our focus is on how the
concepts are given a formal basis to become part of a formal theory. At first
the definitions themselves will be used to establish that certain concepts satisfy
the definitions and that other properties can be deduced from them. Later the
statements of the theorems may be used to relate concepts without necessarily
unpacking them. In this paper we consider responses to a questionnaire and
categorise them as various kinds of informal and formal argument.

The introduction of formal proof in mathematics involves a significant shift from the
computation and symbol manipulation of elementary arithmetic and algebra to the use o
formal definitions and deduction. This shift alters the way in which language is used
from an everyday informal register to a formal mathematical register (in the sense of
Halliday, 1975), recently described by Alcock and Simpson (1999) as the “rigour
prefix”. This changes register from informal “loosely” speaking to formal “strictly
speaking” in mathematics. The shift from informal to formal thinking is by no means
easy. Intuitive deduction occurs using “embodied arguments” that build on bodily
sensations, such as “inside inside” is “inside” (Lakoff & Johnson, 1999, p.32). Thus a
formal statement such a®\[1B, BOC implies AOC” is simply “obvious”. Everyday
arguments often proceed by using prototypical examples referring to categories that hav
fuzzy boundaries (eg “short people”) in the sense of Rosch (1973) and Lakoff (1987).
Lakoff and Johnson argue that all thought, including formal deduction, is based on
embodied conceptions, so that formal thought also includes informal elements.

The shift from informal to formal thought in mathematics does not occur in a single
step. At first the mathematics is “definition-based” where proofs relate back to the
fundamental definitions. It then becomes increasingly “theorem-based” as new proofs
are based on previously established theorems that are no longer unpacked to the origin
definitions. Although the mathematician may see this as a simple programme of building
up a formal theory, the student is faced with considerable cognitive reconstruction. Firs;
there is the shift from informal concepts—that already “exist” in the mind of the student
and may be described verbally—to formal concepts in which the definition is given and
the concepts must be constructed by deduction. Cognitively the concepts need to grow |
interiority (Skemp, 1979), and become compressed (Thurston, 1990) so that they may b
used imaginatively and efficiently. Even at this level, informal mental images of
concepts such as “partition” may be used side-by-side with formal concepts.



In this paper we consider the cognitive growth of “equivalence relation” and
“partition” at a time when students have been given the definitions and have beer
expected to operate in an increasingly “theorem-based” manner. We analyse whethe
they still operate informally, whether they are using definitions and theorems formally,
or whether they have compressed the ideas of equivalence relation and partition as
single flexible cognitive unit (in the sense of Barnard & Tall, 1997).

Making and Having (Informal or Formal) Concepts

The shift to the formal mathematical register is a continual development in which the
status of concepts becomes increasingly rich and formal. A formal course presents
seqguence of theorems:

Theorem 1, Theorem 2, ..., Theor&n...,

interspersed with new definitions introduced as the theory becomes more extended. Th
purpose of Theorem is to deduce the properties to be proved in its statement using the
axioms, definitions and previous theorems 1, 2,N=1. For the learner, a concept that
needs to be proved one day becomes a concept that can be used without proof the ne
Pirie and Kieren (1994) formulated the distinction betwemkingimages andhaving
images. The formal course essentially expects the studentsrtakieg conceptsluring

the proof activity, and thehavingthese concepts for future development. In practice,
students rarely “have” the concepts of definitions or axioms in a form that can be utilised
formally as they prepare to “make” the next idea formal. Bills & Tall (1998) found that
in developing the notion of “least upper bound” most of the students interviewed did not
have an operable grasp of the formal definition during the ensuing parts of the courst
that implicitly required it. There were, however, instances of a student able to make us
of an informal understanding as part of what appeared to be a formal proof.

Definition-based Formal Mathematics

Initially formal mathematical concepts are given in terms of definitions. For example, an
equivalence relation may be defined as follows:
An equivalence relatiomn asetSis abinary relationonSthat is
reflexive a~afor allal/S
symmetricif a~bthenb~afor alla, b [JS
and transitive: if a~bandb~cthena~cfor all a, b, c[JS. (Stewart & Tall, 1977)
This illustrates several difficulties faced by students being presented with formal
definitions. To understand it, the student must already “have” the notion ofS‘'aat! of
“binary relation” onS. However, the first of these is not (and cannot be) given a formal
definition at this stage. The second can be given informally using the informal notion of
relation between two things which either holds or does not. It can also be introduced as
function fromSxS to S, which now requires the notions cdirtesian producsxS and
function each of which (especially the latter) has subtle cognitive difficulties
(Sierpinska, 1992). The steady accumulation of concepts based on both informal an
formal ideas can lead to a feeling of uneasiness in attempting to deal with them.



Theorem-based Formal Mathematics

Under this heading we consider those deductions that usesthiesof theorems without
necessarily going right back to the definitions themselves. This occurs increasingly a:
more and more formal concepts are introduced. For example, a bijection is defined a
follows:

A function f: A- B s abijection(or is aone-to-one correspondendéit is both an injection

and a surjection (to B). (Stewart & Tall, 1977)
Notice again that this definition requires the student to “have” the concept of injection
and surjection, which in turn depend on the concept of function. However, soon after the
definition is made, the following theorem is proved:

Theidentitymap is a bijection.

The compositionof bjections is a bijection.
Theinverseof a bijection is a bijection.

This theorem may be used in solving the following:

A relation on a set of sets is obtained by saying that A setelated to a séf if there is a

bijectionf: X-Y. Is this relation an equivalence relation?
A definition-based deduction uses the original definitions of concepts. A theorem basec
deduction refers to theorems (in this case usually the three separate components, ea
matching one of the three parts of the definition of equivalence relation).

Compressed Concept-based Mathematics

Some students use their knowledge of concepts in a much more flexible and imaginativ
way, for instance by identifying the notion of equivalence class directly its
corresponding partition within a single cognitive unit, enabling a given problem to be
approached by linking directly to whichever properties are required at a given time.

Empirical Study

Thirty six students taking mathematics at one of the top five universities in the UK
responded to questionnaires, 18 from a course for mathematics majors and 18 othe
taking mathematics in a course such as statistics or economics. Both courses covered t
same material over a ten-week term with three lectures per week. The questionnaire we
given out six weeks after the definitions of equivalence relation and partition had beer
formulated, with the subsequent time used to develop the formal theory. Two question:
invited the students to say what they understood by given concepts, two more
investigated the use of a definition, one in an informal context, the other in a formal
context that could also involve definitions, theorems, or an alternative insightful view:

1. Say what “equivalence relation’ means to you.

2. Say what “partition” means to you.

3. If M is the set of all mathematics students at Warwick, is the relation “has the same
surname as” an equivalence relation?

4. Arelation on a set of sets is obtained by saying thatXaisetlated to a sétif there is a
bijectionf: X Y. Is this relation an equivalence relation?



Student Responses

The student responses to the first two questions were analysed to see if the students ge
some kind of operable definition or not. Definitions were classified as:

Formal/detailed giving an “essentially correct” formal definition in full detail,
Informal/outline either an informal verbal description, or “reflexive, symmetric, transitive”,
Example giving a single specific or general example,
Picture using visual imagery in a drawing.
For instance, the following student gave an outline response to 1 and an example for 2:

Say what “equivalence relation™ means to you:

A b ik o m,-rdﬁndw;..

0F .l
iﬁﬂ6=ﬁ},_,., AR G o rm'h'ﬁrr-ﬂ{“

Say what “partition™ means to yvou:
AVB=C

In question 1 the majority of students were able to give definitions, although many were
informal, or simply specified “reflexive, symmetric, transitive”, (table 1).

Mathematics Majors (N=18) Others (N=18) Total (N=36)
Formal/detailed 5 6 11
Informal/outline 8 11 19
Total definitions 13 17 30
Example 1 0 1
Picture 0 0 0
Others 4 1 5
No response 0 0 0

Fewer students offered a definition of a partition, with less than half in the non-

Table 1: Responses to “equivalence relation”

mathematics majors, (table 2).

Mathematics Majors (N=18) Others (N=18)| Total (N=36)

Formal/detailed 6 5 11
Informal/outline 8 2 10
Total definitions 14 7 21
Example 1 1 2
Picture 0 2 2
Others 2 6 8

No response 1 2 3

Table 2: Responses to “partition”




Question 3 was formulated in an informal context to see how the students would respon
using the formal notion of “equivalence class”, (table 3).

Mathematics Majors Others Total
(N=18) (N=18) (N=36)

Informal Informal Definition 5 11 16
Other 1 1 2

No response 0 1 1

Formal Definition 9 4 13
perhaps with someﬁ Theorem 0 0 0
informal Ianguage" Bartition 3 1 2

Table 3: Responses to the informal “surnames” question

Sixteen out of thirty six were classified as operating informally; they either reproduced
the definition with no reference to the problem ée@; a~bll b~a; a~b, b~c [J a~c) or
they responded in an informal prototypical manner:

- b S /
bt ?h-.l'«{ﬁa‘]' ‘LH (E'J]'j‘an‘ (I',k) /
D'Ih-'\?—lﬂ (ﬂ'ﬁ):i.,&(ﬁ‘;) = R,J’E (E'*).- YoM (J'- 's)v

Thirteen responded in a more formal manner, using set theoretic formalism, eg:

/@ vaM '[m,.m\}ﬁ” E'—"_Jljm[",n..un- ﬁlamamhjm.h]'mﬁ
/@ H: f!"ﬁ,n\llf-"""“ Haan masd .M house the sama sumama
1F{n,p-jE.“~' 1 “““AP s Sarfma  UTaivo
7 3o o p et hase Da sama sumama = (m,p) & W
@ i (m,n) e~ ban mhathe . ann e nhe ba.. s m = {ﬂmﬂoeﬁg
No responses used theorems (because the problem focused on the use of the definitio
however, four responded in terms of partitions:
MH@_,M 2 G ﬁa&ﬂ*{;ﬂ.fﬂ a lrlaatmlmm Puﬁﬁﬂﬂ
and, “ﬂwﬂ-’—i daltnio, s tim 2 an %m
Question 4 revealed a wider spectrum of responses, (table 4).

Twenty one gave some kind of informal response, including those who simply wrote
down an outline definition:

H‘ﬂ J"?.'h-h



Mathematics Majors Others Total
(N=18) (N=18) (N=36)

Informal Informal Definition 7 8 15
Other 2 3 5

No response 0 1 1
Formal Definition 2 0 2

perhaps with someﬁ Theorem 5 6 11
informal Ianguage" Partition > 0 >

Table 4: Responses to the formal “bijection” question

Others were unable to make sense of the question, eg:

Only fifteen gave a formal response (often using at least some informal language). O
these, eleven wetbeorem-basedising the parts of the theorem concerning bijections:
ol bypdon XX g0 XX
(X2, W27 bgadion 2 3 bupdinh K22 ke 96
Sn Yo, Yl @ WD

W A F xY bppdius So &“‘1'-1"!. w aban 1\5@!’?
Lo A~Y =YX,

Of these eleven, only three explicitly mentioned the identity to establish the “reflexive”
property, the others only asserting, at most, that ther bijection. This is a most
interesting phenomenon worthy of further study. The students seem to be more
comfortable giving @eneralargument than using a specific case.

Just two students wedkefinition-basedreferring back to the definition of bijection:

mdﬁ#ﬁhﬁwmmﬁrﬁﬁﬁ Mt@i‘ﬁh—:.q-
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IF awry sionert o K pagps 6 @ wnipne Clom®f of Vol 08 oforeorf or s
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Elomod o 2, Kopive fromratiir. e

Neither of these referred explicitly to the identity function to establish reflexivity.



Two students were classified as compressed concept-based, using the notion
partition as being equivalent to the notion of equivalence relation. One explicitly referred
to the theory of cardinal numbers, although his response was not fully formal:

Thia Ful“'b.tcﬂf,aj ﬂ"t'-d‘.#l'_il'ta.ﬂtl _,#.t_r‘.r'ﬁ—'l.‘.fzjl..-mu.&u ﬂlzimrtﬂ’l
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This particular student shows great flexibility in response, treating the concepts of
equivalence relation and partition as a single cognitive entity, using whichever properties
were appropriate at the time (eg in another question, not given here, he responded |
terms of properties of equivalence relations). His definitions of equivalence class anc
partition were a model of structured precision. He defined equivalence class first at ar
outline level, then gave the full detail; he described a partition first in a precise verbal
way and then repeated it in strict symbolism. He seemed able to operate at a level of h
choice, preferring to work at a high conceptual level with the detail implicitly subsumed
in his arguments. This is an example of someone working with the concepts concerne
compressed as a single highly-connected cognitive unit.

Summary

The responses to the questionnaire reveal that after the students have been worki
formally with the notions of equivalence relation and partition for six weeks, more than
half of them offered onlynformal responses. Less than half gdoemal responses in
terms ofdefinitionsor theorems Four others gave broader conceptual responses to
guestion 3, falling to 2 students in question 4 (the other two giving formal theorem
responses). This confirms a picture in which the majority of students following a formal
course at a highly rated university responded at an informal level after several weeks
experience of formalism. At the same time, two able students worked in a different way
using thecompressed concefitat encompassed both equivalence relation and partition.

These findings relate closely to other theories. The definition/theorem approaches us
analyticpowers tadeduceproperties, the formal global category usgstheticoowers to
relate ideas togetheiThis is consonant with the theory eftracting meaningfrom the
definitions) andgiving meaningto the concepts) as formulated by Pinto & Tall (1999).

It also relates to the process/object phenomena identified by Dubinsky and his colleague
in his APOS theory approach (eg. Asiala, Dubinsksl, 1997).

The research of Moore (1994) formulates a framework based on “definition - image -
usage” and gives many fascinating insights into the usage of images and definitions il
formal mathematics. In a sense his distinction between the use of images and the use
definitions has similarities with our focus on informal and formal thinking. However, his
paper uses an interpretation of “concept image” which contrasts definition and image a:
distinct entities. For us the concept imagaudesthe definition and its resulting related
imagery. This allows us to formulate an ongoing change of the total concept image tha
steadily builds up the formal register.



Our research instrument—a single questionnaire applied at one point in a developmer
—is too restricted a tool to give answers to other questions, in particular, whether there i
a hierarchy running through the given categories. The evidence of Pinto & Tall
(1999)—taken from an analysis course studied in the same institution—suggests tha
there is a spectrum of approaches. Some students do not go beyond the informal stac
some go through the stages in the given sequence as a hierarektydayingmeaning
from the definition. Others perform thought experiments from the very beginning,
building up their theoretical perspective by modifying their imagesgandg meaning
to the definition and its subsequent deductions.

This research, together with other sources mentioned in this paper, shows the
difficulty of building the formal register in a first university course in mathematics.
Perhaps matters could be improved by explicitly encouraging students to gain an overal
view of the strategies involved in the transition to the formal register. However, using the
memorable phrase of Sfard, (1991) this may involve a “vicious circle” where the strategy
to understand formal proof is difficult to comprehend until the student has experiencec
formal proof itself. This learning strategy remains an investigation for another time.
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