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The purpose of this paper is to develop a means to illustrate and analyse the
cognitive paths taken by students in solving problems. The approach is built
upon the notion of cognitive unit (small enough to be consciously
manipulated). Our interest is in the nature of the student’s cognitive units and
the connections between them. We find that a student may have an overall
strategy and even formulate goals to achieve all or part of a solution.
However, if conceptual structures are too diffuse, the student may concentrate
on procedures that occupy most of the focus of attention. This may cause them
to lose touch with the ultimate goal and be faced with sequences of activity
that are longer, more detailed, and more likely to break down.

Introduction

Why is it that some students find algebra so essentially simple, yet others struggle so
badly that they fail in school and need to take remedial algebra courses in college? The
literature abounds in distinctions between the conceptual thinking of some students and
the procedural thinking of others (e.g. Hiebert & Lefevre, 1986). But why does this
occur? What is the nature of procedural thinking that makes it the default position for so
many? Hiebert and Carpenter (1992) suggest two metaphors for cognitive structures, as
vertical hierarchies or as webs:

We believe it is useful to think about the networks in terms of two metaphors … structured
like vertical hierarchies or … like webs. When networks are structured like hierarchies,
some representations subsume other representations, representations fit as details
underneath or within more general representations. Generalisations are examples of
overarching or umbrella representations, whereas special cases are examples of details. In
the second metaphor a network may be structured like a spider’s web. The junctures, or
nodes, can be thought of as the pieces or represented information, and the threads between
them as the connections or relationships. Hiebert & Carpenter (1992, p. 67)

Such ideas have long been part of mathematics education. However, they are often used
as general philosophical structures rather than explicit techniques to analyse empirical
evidence. Our plan here is to extend these ideas and use the extended theory to analyse
the specific solution processes for specific individuals in specific contexts. Here we
focus on the activities of students working in college algebra.

Varifocal webs and cognitive units

Skemp (1979) proposed a “varifocal learning theory” in which the nodes of webs are
themselves subtly connected schemas when viewed in detail. With this in mind, webs
and hierarchies may occur within the same model. As an example, consider the equation
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“y=mx+b”. As a concept it can be viewed in more detail with a network of internal ideas:
that m is the slope, b the intercept; that any linear equation can be represented by
substituting numbers for the parameters m and b; that the graph can be drawn if one
knows two points on it, or one point and the slope, etc. Some students therefore may see
“y=mx+b” as a single structure with rich connections easily brought to the focus of
attention.

Barnard & Tall (1997) introduced the notion of “cognitive unit” as “a piece of
cognitive structure that can be held in the focus of attention all at one time”. We see
cognitive units as forming the nodes of a cognitive structure linked to other units using
the web metaphor of Hiebert and Carpenter, incorporating the varifocal element of
Skemp. There is a great deal of flexibility as to how the units and their connections may
be laid out in a diagram. The notion of whether a link is “internal” within a unit, or
“external” between units is largely a matter of personal choice. The actual connections
within the brain are not topologically divided into an inside and an outside.

However, there are situations in which the idea of “inside” and “outside” can be
helpful as a metaphor to represent the different strengths of connections, as we now
consider. For instance, any of the following:

• the equation y = 3x+5,

• the equation 3x–y = –5,

• the equation y–8 = 3(x–1),

• the graph of y = 3x+5 as a line,

• the line through (0,5) with slope 3,

• the line through the points (1,8), (0,5),

may be considered as cognitive units which can be linked together as representing the
same underlying concept—the single straight line or equivalent linear relation between x
and y. This may be represented diagrammatically as six separate nodes with appropriate
connections between each. In this sense the connections are external to the six cognitive
units. However, an alternative, more powerful, view is to consider all six ideas to be
various aspects of the same phenomenon, the linear relation/equation or straight line
which all of them represent. This allows the separate ideas to be seen as different aspects
of a single entity that is itself a single node in a larger network.

The move from conceiving of separate ideas to a single idea with different aspects is
called “conceptual compression” (Thurston, 1990, Gray & Tall, 1994). For conceptual
compression to occur, the individual’s cognitive structure must have matured in such a
way that the separate elements have an intimate connection enabling the individual to
move flexibly from one to another. It is not just that there is a cognitive link between,
say, the line through (0,5) with slope 3 and the line with equation y = 3x+5, but that both
describe exactly the same thing—they are different aspects of the same entity.
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In terms of Skemp’s varifocal theory, this entity is itself a concept which has internal
links as a schema in its own right. What is important to be able to compress a collection
of related ideas into a cognitive unit is that the whole entity can be conceived as a unit
that is “small enough” to be considered consciously, all at one time. The way that the
human mind usually copes with this is to give it a name or symbol. The name or symbol
(assuming it is “small enough”) can be held in the focus of attention and manipulated.
Such a concept has rich interiority through carrying “within” it many powerful links that
enable it to be manipulated and invoked to solve problems.

If the diverse elements are not connected sufficiently fluently, then it may be
impossible for the individual to regard the totality as a cognitive unit. It follows that it
may be impossible for the individual to make links to it, simply because there is no “it”.
Any links that are made by such an individual are not made to a flexible conceptual
entity but to one element in a loosely connected structure. We conjecture that it is this
situation that underlies the often-heard cries of the remedial student saying “don’t
explain it to me, just tell me how to do it.” An explanation—which may be perfectly
clear to the teacher with a rich personal cognitive structure—is not perceived as an
“explanation” to the student hearing words which do not link to adequate cognitive units
in the student’s mind.

Focus of attention and working memory

The way in which the human brain works enables certain ways of thinking and
constrains others. Crick (1994) views the brain as a complex, multi-processing system
which can be used coherently only if much of its activity is suppressed at any given time
to focus consciously on a small number of important ideas (cognitive units). These in
turn are linked to others that can be brought into focus as appropriate. This idea was
expressed succinctly over a century ago:

There seems to be a presence-chamber in my mind where full consciousness holds court,
and where two or three ideas are at the same time in audience, and an ante-chamber full of
more or less allied ideas, which is situated just beyond the full ken of consciousness. Out of
this ante-chamber the ideas most nearly allied to those in the presence chamber appear to
be summoned in a mechanically logical way, and to have their turn of audience. 

(Galton, Inquiries into human faculty and its development, 1883)

The “presence-chamber” of Galton is the current focus of attention and its “ante-
chamber” extends it to the working memory consisting of closely linked cognitive units
that can be evoked for problem-solving. However, it is important not to allow the
physical metaphor of a “chamber” to suggest a single fixed area of activity in the brain.
The “focus of attention” may be spread over many disparate areas currently resonating
together in conscious thought. It therefore remains susceptible to other activities that can
interrupt and override the current thought process. Such interruptions may result from
unrelated external sensations, such as hearing a school bell ring to end the mathematics
class, or more intimately linked strategic activities, such as a mental process monitoring
whether a longer-term goal is being achieved.
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Skemp (1979) theorizes that a specific problem-solving context provides a goal to be
achieved, in which sub-goals may be formulated to achieve parts of the solution process.
He hypothesizes that a comparator activity occurs at various times which considers
whether the solution process is getting suitably close to the goal or to one of the
intervening sub-goals. When following a routine sequence of actions we conjecture that
the focus on successive remembered steps may be so great as to temporarily fill the
focus of attention and suspend the activity of any comparator. This would suggest that
the inflexibility of procedural thinking can become so dominant as to cause the
individual to lose sight of the goal and so fail to solve the problem. Skemp also suggests
the dual idea of an “anti-goal”, something to be avoided—such as the anti-goal of
avoiding failure—bringing with it a sense of anxiety that may negatively affect creative
activity.

We therefore hypothesise that the difficulties encountered by remedial students relate
to the nature of their ideas: that powerful concepts—which others can compress into
manipulable cognitive units—remain, for them, as more cumbersome structures too
diffuse to employ in a novel context. Our empirical evidence reveals that remedial
students may have goals to achieve, indeed may articulate sub-goals, but the dominant
procedures they use to attempt to achieve these goals seem to take up so much conscious
thought as to prevent them from making necessary cognitive links to complete the
exercise. While the successful mathematical thinker may have flexible cognitive units
with powerful internal relationships which allow them to be used in diverse productive
ways, the less successful may therefore be faced with longer procedural routes which
actually make the mathematics harder. In other words, the weaker students are following
longer more detailed cognitive paths that cause greater cognitive stress and further
increase the chance of failure.

An example

As an example consider the following problem from a college algebra course:
Find the x-intercept and y-intercept of the graph with equation 3x+4y=12.

For students with a sense of the symmetry between
the occurrences of x and y in this equation, it may
be possible to “see” the answers in the equation
itself. For instance, to obtain the y-intercept,
imagine the “3x” part to be zero and focus on
4y=12 to see the solution 12/4=3 (Figure 1). A
similar route for the other intercept gives a
compressed solution of the problem as two
immediate links without any need to write down
intermediate steps. However, students who do not
see this instant solution may resort to formulating
sub-goals using lengthier procedures.

Find y
intercept of
3x+4y=12

0+4y=12

y intercept
is 3

Focus on
12 over 4

Figure 1: compressed solution
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Kristi

Kristi is a community college student taking a remedial Intermediate Algebra course
using a graphing calculator to produce tables and graphs. She needs to pass it before she
can attempt the college mathematics courses required for her degree in psychology. She
had met the concept of a straight-line equation in its various forms before the course and
when interviewed afterwards she was able to discuss problems dealing with lines, their
equations, slopes, graphs, etc. However, she had a strong focus on the equation in the
form “y=mx+b”, not least because she had been taught to use it to type into her graphing
calculator to draw a graph. She could also read off the slope as the number before the x,
and the y-intercept as the number at the end. So when asked for the slope of y = 3x+5 she
could see this as 3, and the y-intercept as 5. For her, this standard form was the starting
point for many solutions to problems, and she was frequently successful using it. She
therefore began to use the sub-goal of “putting the equation into the form y=mx+b”
before attempting the question under consideration, whether or not this was appropriate.

Her second major strategy stemmed from the first. If the standard form is known, it
can be typed and the graph drawn on a graphing calculator. Kristi frequently used a
graph–either a mental one, a graph on a piece of paper, or one on a calculator screen.

If I were to just look at it, to visualize it in my mind—it’s a line …

The interviewer said, “what’s the y-intercept on the graph?”  Kristi responded
that’s where the . . . it intercepts the y- … I know it’s just a line, so I know it’s going to
have to cross up here somewhere.

She had a piece of paper with axes drawn on it and pointed to a spot on the y-axis of the
grid on the paper, above the origin. Kristi tried to visualize it—she had a mental
graph—but seemed unable to use it to solve the problem at this point.  The interviewer
said “Can you graph it?” and she replied:

Yes, if I have my graphing calculator …

She has had success graphing with her graphing calculator, and was comfortable with it.
Without it, however, she could still have some success . . .

it’s like . . . I need a point. … zero? [she seems to seek support, but then proceeds on her
own] . . .  if x is zero, then . . . okay, x is zero.  Zero, five.  Okay.

She plotted the point (0,5). Implicitly she had found the y-intercept she was seeking, but
she failed to recognise it. Either her comparator is failing to operate or she does not (at
this moment) link the point she has found to her ultimate goal, the y-intercept. She
continued in her strategy to produce a line by evaluating a second point. She let x be 1,
and wrote the point (1, 4). She plotted the points, drew the line through them, and
decided that the y-intercept was 5.

The interviewer then asked her to find the y-intercept for 2y + x = –6.  Using her
“general strategy”, Kristi began to put it into slope-intercept form, “move the x over”,
“divide by 2”. When asked to do it without putting it into slope-intercept form, she said
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I don’t know what to do . . . I can’t visualize it in my mind . . . like, if I get back the value,
I don’t know what to do unless I divide everything by 2. So far, that’s what I know to do . .
. put it into slope intercept.

Asking her to do the problem without putting it into slope-intercept form severed her
links with her coping strategies. She attempted once more to graph the equation by
plotting points.

Later in the session the researcher asked her to find both the x- and y-intercepts of
3y+ x – 12 = 0.  When asked, “What would you do here?” she replied:

Divide everything by 3. In my mind I’m visually moving everything, and dividing x by 3,
its … one third x plus … , so the y-intercept is 4.

Once again she put the equation into slope-intercept form to find the y-intercept.  Had
she had the conceptual link to do so, it would have been much simpler to set x to zero to
find the y-intercept. She was then asked, “What are you trying to do? What do you
graph?” and she immediately plotted the point (0,4). When she was then asked how to
find the x-intercept, she replied:

on the calculator screen, where x is . . . if y is what, then hit intersect and try to find where
the x is.

Her general strategy of attack is represented diagrammatically in figure 2.                             

thinks…

manipulate symbols

immediate link

use calculator

find x- y- intercepts

3y+x-12 = 0

y = mx+b

y = – –x+41
3

y- intercept is 4

to get x-intercept
put y=0 & solve…

???

draw graph on
graphic calculator

use INTERSECT

x- intercept is 12

Figure 2: Kristi’s strategies for finding x- and y- intercepts of 3y+x–12=0.
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This interview shows the complications that can appear when the student uses perfectly
legitimate procedures to solve a problem. In this case, a compressed solution to find the
x and y intercepts need involve only two very short computations in a symmetrical
manner. However, the student’s experience of the graph as a function provides an
asymmetric relationship in which the roles of x and y (as input and output) are radically
different and in which the methods of finding the corresponding intercepts are radically
different. Kristi thinks about the sub-goal of putting the equation into her favored slope-
intercept form, itself a procedure requiring effort. From this the y-intercept is easily read
off but the x-intercept requires a second lengthy procedure. The structures of the
compressed solution and the more lengthy procedure are represented in figure 3.

Set each variable
 to zero

Find x- and y-
intercepts of
3x+4y=12

x=0 y=0

y-intercept x-intercept

put into y=mx+b
form

Find x- and y-
intercepts of
3x+4y=12

y = –   x + 3
4
3

y-intercept x-intercept

read “b”

put y=0 and
solve for x

manipulate
symbols

direct compressed solution

procedural solution with sub-goal

goal sub-goal

immediate link

step-by-step procedure

goal or
sub-goal

sub-goal

Figure 3 : compressed and procedural solutions for finding intercepts for a specific equation

This use of familiar uncompressed processes with sub-goals occurred repeatedly in
Kristi’s work. For example, she was asked to write the equation of the line through (1,4)
and (4,–2), which she did successfully. She was then asked whether the three points
(1,4), (4,–2), and (5,2) were on the same line.  Rather than check (as the interviewer
expected) whether the third point satisfied the equation of the line she had just found, she
calculated the line through (1,4) and (5,2) and compared it with the one she had, saying:

The way I know how to do it is to take the slope that I got, and get the line through these
two points, and see if they are the same.  That’s the only way I know how to do it.

She used the idea of a line through two points again, repeating a familiar activity that
had just been successful. However, she did not exhibit the flexibility that she needed to
cope with different problems in new contexts.
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The inflexible use of procedures occurred in many other students. Sometimes they were
even more diffuse and error-prone than those attempted by Kristi. Kim, for instance,
solved the equation 3y+ x – 12 = 0 to obtain:

y x= − +1
3

12
3 .

For this student the equation was doubly difficult; it involved not only fractions, but also
negative numbers. We can hypothesise that the notions of fractions and negatives have
not become cognitive units that can be used fluently. Kim therefore compounds (at least)
two levels of difficulty. First there are the uncompressed, inflexible procedures that are
onerous to handle. Within these are uncompressed conceptual structures for negatives
and fractions that render the difficulties even more burdensome.

Summary and reflections

In this paper we have highlighted the difference between the use of flexible cognitive
units on the one hand and more diffuse uncompressed structures on the other. We give
evidence that a student who has yet to compress external relationships between concepts
into tight cognitive units with strong internal links will find it more difficult to cope with
problems requiring their use. The case studied here showed that a simple problem of
finding intercepts of a linear equation contains subtleties easily handled by a student
with a compressed cognitive unit encompassing the properties of algebra and the graph
of a linear equation. The student with a more diffuse cognitive structure is at a serious
disadvantage; this places a strain on the focus of attention at this stage and may prevent
powerful theory building for the future. In this way there develops a spectrum of
performance in which those who are struggling use even more complicated solution
processes that place them in greater danger of failure.
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