
– 1 –

  Information Technology and Mathematics Education:
Enthusiasms, Possibilities and Realities

David Tall

Mathematics Education Research Centre
University of Warwick

Coventry, CV4 7AL, UK

This presentation addresses critical issues in the use of information
technology in Mathematics Education. By reflecting on human
thinking processes, it will consider developments of enthusiastic
researchers using technology to teach mathematics as new facilities
develop, the possible gains shown by this research and the realities
that may be achieved in the classroom.

1. A time of great change

We live in changing times. Noble species which have been on the earth for
millions of years such as the whale and the elephant are threatened with
possible extinction by mankind and now a human sub-species, the
mathematician, may be under threat from the competition of information
technology.

Will Homo Mathematicus become extinct?

As the President of the Royal Society, Sir Michael Atiyah, has said:
Whereas the eighteenth and nineteenth centuries witnessed the gradual
replacement of manual labour by machines, the late twentieth-century is
seeing the mechanisation of intellectual activities. It is the brain rather than the
hand that is being made redundant. (Atiyah, 1986, p. 43.)

The performance of routine tasks traditionally taught in mathematics education
has been taken over by technology in a spectacular way. The supermarket
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checkout assistant no longer adds up the cost of the items and calculates the
change. Software using a machine bar-code reader not only does the arithmetic,
it also prints out an itemised bill for the customer and automates stock-control
for the trader. Does this mean that traditional mathematical skills are becoming
less important?

Information technology highlights the
difference between being able to perform
standard skills and being able to “think
mathematically”. Current technology is no
match for a creative mathematical mind. As
Edward de Bono observed on a recent BBC TV
“Brains Trust”, the “poor engineering” of the
human brain gives it the ability to make
associative links and leaps of insight. Because
of its logical and orderly design, today’s
technology is incapable of musing, as Einstein
could imagine, “what would happen if I were
sitting on a train travelling at nearly the speed
of light?”

This imaginative strength is the product of
the complex way in which the brain works, and
in turn is linked to the way in which human
learning occurs. Whereas the computer can be reprogrammed by replacing its
software, erasing all previous data from the memory, the human mind is built up
through a life-time of experience and evolves by building the new upon the old,
subtly retaining elements of the old alongside the new. The corporate beliefs of
the mathematical community therefore serve as a stabilising factor, preserving
the familiar and taking time to adjust to new possibilities.

Meanwhile, technology changes at an extremely fast pace that predicting the
next stage is a hazardous business:

If you take the way the Internet is changing month by month – if somebody
can predict what’s going to happen three months from now, nine months from
now, even today, my hat’s off to them. I think we’ve got a phenomenon here
that is moving so rapidly that nobody knows exactly where it will go.

(Bill Gates, 1996).

The result is that enthusiasts are forever chasing the cutting edge of technology,
often moving on to the next innovation before the wider community has
absorbed the last one, and operating at a speed which means that the long-term
effects are often not known until long after the changes have already been made.

So how can we attempt to make sense of the impact of information
technology? My own chosen route is to be aware of technological changes and
possibilities, but to see how they interact with the nature of human learning. As
mathematics educators we need to know the realities as well as the possibilities
for human learning in an age of information technology.

But can a computer think?
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2 Different forms of mathematical knowledge

The first step is to consider the nature of mathematical knowledge, to see how
different parts of this knowledge structure are effected by technology.

Human evolution passed through several million years before the
development of speech. The first form of mathematics was therefore enactive,
involving physical manipulation of objects. This remains the first form to be
encountered by the developing child and forms the initial stages of mathematics
education. Pictorial representations in the form of cave paintings are 30,000 or
40,000 years old and written language developed in Phoenicia some 5,300 years
ago, by which time arithmetic notation was already being used in trade and
exchange. Arithmetic symbolism of various forms, for counting and measuring,
developed in ancient civilisations such as those of Mesopotamia and Egypt, then
two and a half thousand years ago the Greeks developed the abstract theory of
geometry expressed verbally through Euclidean proof.

Manipulable algebraic symbols were introduced comparatively recently in
the sixteenth century and the flowering of calculus occurred in the seventeenth.
It is the ability to calculate with symbols that has contributed to the vast
acceleration of human achievement in the last three hundred years and it is this
which has become the focus of mathematics education in schools.

It is only in the last century that the attempt has been made to reorganise the
whole of mathematical knowledge into a formal theory, founded on verbal
definitions and logical deductions.

Before the development of the computer, we therefore had various forms of
mathematics, including:

(1) Enactive mathematics, with
physical actions on actual objects,

(2) Visual mathematics described
verbally, with physical properties
of objects verbalised and built
into a systematic deductive
theory as in Euclidean geometry,

(3) Symbolic mathematics, (arith-
metic, algebra, calculus etc.),
arising from actions on real-
world objects (such as counting)
and developing through computation and symbol manipulation,

(4) A combination of (2) and (3) linking symbolism and graphical
representation,

(5) Formal mathematics, with concepts defined by verbal-symbolic axioms
and further properties deduced by formal proof.

These different forms of mathematics interrelate in a complex way, but they do
have different characteristics which can give insight into the learning process.

    

Visual Symbolic

Enactive

Formal
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3 New computer facilities

Computer technology developed in a sequence which contributed to different
parts of this knowledge structure, setting successive agendas for mathematics
education. The arrival of the computer first focused on the elementary
symbolism of numeric computation, then had a graphical display added,
followed quickly by an enactive interface allowing selection and manipulation
of objects drawn onscreen. Software to enable symbolic manipulation required
more sophisticated programming and has gone through several reincarnations to
produce a more human user interface.

So far we have used the computer less in handling formal proof in
mathematics education (with the honourable exception of the use of a language
such as ISETL with the formal structure of set theory complete with quantifiers
and logical implication.) “Theorem proving” and “theorem checking” software
exist in certain contexts, and computers have been used to carry out lengthy
checking procedures beyond the capacity of the individual, such as in the
celebrated computer proof of the Four Colour Theorem (Appel & Haken, 1976).
But standard computer technology still has the Achilles heel noted of the
pioneering design of Charles Babbage in the nineteenth century:

The Analytical Engine has no pretensions whatever to originate anything. It
can do whatever we know how to order it to perform. It can follow analysis;
but it has no power of anticipating any analytical relations or truths. Its
province is to assist us in making available what we are already acquainted
with. (Ada Lovelace, Observations on Mr Babbage’s Analytical Engine,

quoted in Evans, C, 1983, p. 31.)

Although modern computers provide an enactive human interface with
manipulable visual display and symbolic facilities, it still needs the mind of a
mathematician to perform thought experiments to decide what is important and
what needs to be proved.

Creative human thought and algorithmic computer processing
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4 Computers in mathematics education

Before computers became widely available, there was scepticism about their
value in education:

It is unlikely that the majority of pupils in this age range will find [a computer]
so efficient, useful and convenient a calculating aid as a slide rule or book of
tables. (Mathematical Association, Mathematics 11 to 16, 1974.)

Such illusions were soon shattered and slide rules and books of tables lingered
for only a short time before they became obsolete.

4.1 Numerical algorithms
The first microcomputers (for instance, the Apple, in 1976) were sold with

the BASIC language available for programming. So the first enthusiasms were
for mathematicians and their students to program their own numerical methods.
The enthusiasts believed that by programming the students could learn to
understand the processes of mathematics. In reality there were too few
computers for wide-spread student programming at the time and so the practice
did not spread far. Research was produced to show that children programming
in BASIC had a better insight into the use of letters as variables in algebra (e.g.
Tall & Thomas, 1991). But BASIC had a bad press as a poorly structured
language and by the time more computers became available the agenda changed
and programming in BASIC was widely regarded as ancient history.

4.2 Graphic visualisations
In the early eighties high resolution graphics brought the next stage,

including such things as graph plotters to represent functions and programming
in Logo for children of all ages.

The visual possibilities also brought the experimental study of chaos and
fractals by mathematicians and introduced new graphical approaches to the
teaching of such things as geometry, statistics, calculus and differential
equations. The student could now be helped by visualising mathematical ideas.
This was a time of great creativity with mathematics educators writing little
pieces of software to visualise mathematical concepts.

 There was soon considerable evidence that a visual approach to graphs
helped students to gain a wider conceptual understanding without necessarily
affecting their ability to cope with the corresponding symbolisation.(e.g. Heid
1988, Palmiter 1991). But on the debit side there was also evidence that
students who lacked the sophistication to interpret the meanings of the graphs
could develop serious misconceptions.
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A classic instance was the case of
young children watching the cooling
curve of a liquid on a display with
fairly large pixels, seeing the move
from one pixel to another as a sudden
drop in temperature (Linn &
Nachmias, 1987).

In the same way, when drawing
graphs of functions, the choice of
range to give a suitable picture
becomes crucial and it is possible to
misinterpret the meaning of the graph on the screen. (Goldenberg, 1988).

4.3 Enactive control
In 1984 the “mouse” was introduced to give the computer an enactive

interface. Instead of having to type in a line of symbols, the user could now
select, and control the display by intuitive hand-movements. This allowed a
completely different approach to learning which encouraged active exploration
rather than first learning to do procedural computations.

For instance, statistics is often
taught by procedural “cook-book”
methods because few teachers, let
alone students, have the experience to
understand the underlying formalities.
Yet software allowing an enactive
exploratory environment can be used
to give a “sense” of the nature of
statistical data and to see how robust
interpretations are when they are
subject to variation. For example, in
giving a line of “best fit” to data, and
computing various rules such as “least
squares fit” it is possible to use computer software to enactively move the line
of fit until it looks good by eye, or to move data points around and to see how
this causes variations in the various fitness measures.

In this way sophisticated mathematical concepts can be given an intuitive
visuospatial meaning without (or before) the need to study the procedures that
the computer was using for internal computation.

Apparent sudden drops in temperature

Visual statistics under enactive control
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Interactive programs in geometry
offer enactive exploratory environments
giving new dynamic conceptualisations
of geometric figures. For instance, a
triangle ABC with the midpoints M, N
of A B, A C joined could be pulled
around by holding on, say, to the vertex
A to see that the length of MN is always
half that of BC. The figure takes on a
new meaning which holds whatever
position the triangle is moved to,
subject to the given construction and provides a rich environment for
exploration and hypothesising. However, note that the available actions involve
selecting a point and pulling it round. There is no move that lifts up one triangle
and, retaining its size and shape, allows it to be moved onto another (congruent)
triangle. The environment does not contain the seeds of Euclidean
transformations and leads to a different kind of mathematical knowledge from
that required in the systematic building of theorems and Euclidean proofs.

4.4 Computer algebra systems
Computer algebra systems had been around in various guises before the

American Mathematical Monthly carried a full page advertisement for the
computer algebra system MACSYMA, in the fateful year 1984. It asserted that
the software

… can simplify, factor or expand expressions, solve equations analytically or
numerically, differentiate, compute definite and indefinite integrals, expand
functions in Taylor or Laurent series.

In less than a decade, computers had successively developed numerical,
graphical and symbolic facilities each offering new methods of conceptualising
mathematical ideas and these came to be conceived as the three major
representations in college calculus:

One of the guiding principles is the ‘Rule of Three,’ which says that wherever
possible topics should be taught graphically and numerically, as well as
analytically. The aim is to produce a course where the three points of view are
balanced, and where students see each major idea from several angles.(Hughes
Hallett 1991, p. 121)

The American calculus reform is based on a wide range of software that uses
various representations. There is evidence that students learn to use the
computer algebra systems to “think with”, by formulating the solution of
problems in a way that can be carried out by computer algorithms. (Davis et al,
1992). However, there is also evidence that many students using computer
algebra systems do not understand what is going on internally and do not link
the mathematical ideas in the same way as those with a more traditional
experience. For instance, students may use graph-plotters to “see” solutions of
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equations, but not necessarily relate them to the symbolic meaning of the
problem. Caldwell (1995) expected students to find the roots and asymptotes of
the rational function

f (x) = x(x − 4)
(x + 2)(x − 2)

by algebraic means, only to be given a substantial number of approximate
solutions such as 0.01 and 3.98 read from the graph. Hunter et al. (1993) found
that a third of the students using a computer algebra system could answer the
following question before the course, but not after:

‘What can you say about u if u=v+3, and v=1?’

As they had no practice in substituting values into expressions during the
course, the skill seems to have atrophied.

The reality of the classroom can prove to be different from the possibilities
envisioned by enthusiasts.

4.5 Personal portable tools
The technology migrated

from desk-top machines to
portable calculators and
computers for personal use.
Four function calculators
progressed to include scien-
tific functions, then program-
ming facilities, then graph-
ical representations.

In 1996 we now have
hand-held computers which
will do all the numeric and
symbolic algorithms which were the staple diet of mathematics exams and
includes an implementation of Cabri Géometre to explore geometric ideas. This
offers most of the facilities discussed so far, with the added advantage that it
can be used at will by the student at any time in any place, though it retains an
input-line of commands and lacks the freedom of fully enactive computer
environment.

4.6 Multi-media
The last two or three years have seen the development of multi-media

interactive software to use for individual study. This, as yet only partially
realised, facility promises to allow the learner to have a variety of materials
giving explanations in text, words, video, within a software environment that
offers interactive facilities to explore mathematical processes and concepts. It
allows the possibilities of the return of smaller interactive units from the
eighties to be embedded in a more coherent overall environment.
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4.7 The World Wide Web
More recently the world-wide web has become a reality, allowing

information and software to be passed from one individual to another around the
globe. World-wide mathematical courses for multi-media interaction are
becoming available. Students increasingly have freedom to access software at
any time to suit their own timetable, offering yet new promises for the future.
Currently the promise is often different from what happens in reality, as the
internet gets clogged up with huge numbers of users and the bandwidth
available is often too narrow to transfer large amounts of data for sound and
pictures in real-time.

People say the Internet is carrying multimedia today, but then dogs can walk
on their hind legs. (Robert X. Cringely, Accidental Empires, 1996, p. 344.)

Yet change comes quickly and greater carrying capacity is around the corner so
that the world-wide information superhighway seems to be inevitable.

5 Developing a theory to consider the evidence

So how do we make sense of this change? It is evident that information
technology is here to stay and we as mathematics educators need to come to
terms with its use. Many teachers at this moment are suspicious about
technology which carries out processes that they have devoted a life-time to
teach to their pupils. It is easy enough to express Luddite opinions and to fear
the practicalities that will change our livelihood. At the same time we should
attempt to develop some kind of understanding of the processes involved that
enables us to make coherent judgements as to the best use of the new facilities.

In my own work I took a route dictated by the sequence of technological
development. I had done some empirical work into students’ understanding of
limits and happened to enter the computer world as graphics arrived, and
developed a graphical approach to the calculus. At the same time I was working
on a Mathematical Association Committee with many colleagues who were
devoted to programming numerical algorithms, and as time passed, we
attempted to take in the new ideas of symbol manipulation. To put together the
diverse threads of visualisation and symbolisation, I thought about how the
human being operates, perceiving the real world, acting upon it for survival and
reflecting on personal thoughts to maximise their effectiveness.

This combination of perception, action and reflection fitted together to help
me formulate my own views on cognitive development. I saw the contrast
between what I term “object-based mathematics” typified by geometry and
“action-based mathematics” typified by the actions of counting and measuring
in arithmetic. I also saw that reflecting on these experiences allow mature
experts to develop a “property-based mathematics” with axioms and formal
deductions. In the 1960s the “new math” tried to develop a “property-based”
set-theoretic approach to the curriculum. It did not work. For learning at earlier
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stages a combination of enactive, visual and symbolic may offer a more
practical solution. It happens that these may be well-served by a computer.

5.1 Enactive and visual mathematics

The computer can provide an enactive way to manipulate visual mathematical
objects. This allows powerful “sense making” of subtle concepts at a primitive
enactive level. It can provide what I have termed a “cognitive root” from which
a progressively sophisticated theory can grow (Tall, 1989). This can happen not
only in geometry, but in other areas of mathematics. For instance it can be
illustrated by the notion of a solution of a first order differential equation,
embedded in wider experiences of visualising and manipulating graphs.

At the root of this idea I see the formal notion of derivative in a primitive visual
way as the gradient of the graph. I do not talk about tangents, or locally linear
approximations, or any formal notions in the initial stages. Simply by
magnifying graphs on the computer screen, many can be seen to be “locally
straight”, that is, under high magnification, they are perceived as being straight.
This can then be linked to numeric and symbolic approaches to give the notion
of derivative a computable meaning. However, the root idea of local
straightness can be used to visualise the solution of the reverse problem—to
construct a graph given its gradient.

In this context, computer
software can use the knowledge of
the gradient to draw a small line
segment of that gradient. If this is
under the control of the user, say by
moving around with the mouse or
with the cursor keys, it becomes
possible to stick together short lines
end to end to build up a solution of
the equation. The solution is
“locally straight”, in fact the picture
is built up with approximate
straight line segments, with its
gradient given by the differential
equation.

In this way the computer can provide an environment in which the learner
can physically experience the ideas of the mathematics at a fundamental human
level. This involves vision and bodily movement without the need at the time to
concentrate on the symbolism and the computations required to produce a
solution.

Having obtained such human insights, it is still necessary to be able to
construct a solution in a more accurate quantitative manner. The symbolic
solution of such a problem involves quite different mental activities.

Enactively building a solution
 of a differential equation
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5.2 Symbolic mathematics

Inspired by a succession of thinkers in the cognitive development of
mathematical processes and concepts, including Dubinsky (1991) and Sfard
(1991), I  was fortunate to collaborate with Eddie Gray to develop a viewpoint
that proved useful for analysing not only how individuals use symbolism, but
also how we interact with the symbolism manipulated by a computer.

We noted, as had others before us, that symbols in arithmetic, algebra,
calculus, and a wide range of other mathematical contexts had a certain
characteristic. The following symbols illustrate this:

5+4,  3x4,  3a+2b,

lim
x→a

x3 − a3

x − a
, 

d

dx

sin x + cos x

x2 + 3x +1




 , e2x cos x dx

0

2π
∫ , 

1

n2n=1

∞∑ ,

These all play a dual role representing both a mathematical process to be carried
out and the result of that process. For instance 5+4 evokes the process of
addition to produce the concept of sum 5+4, which is 9, 3a+2b is a both process

of evaluation and a concept of algebraic expression, and 
1

n2n=1

∞∑  is the process

of evaluating an infinite sum to find the limit value (which happens to be π2/6).
The name procept was introduced for the combination of symbol, process

and concept which occurs when a symbol evokes a process to give the resulting
concept (Gray & Tall, 1994). We were interested in the way in which
individuals interpret symbols in arithmetic, algebra and calculus, causing some
students to find mathematics essentially easy yet others finding it increasingly
difficult.

We emphasise that the cognitive notion of procept carries with it no
implication as to how that cognitive structure is built. Indeed one of our
purposes was to investigate the concept-building of such symbols. However, in
pre-computer contexts, we often found that the meaning of symbols developed
through a sequence of activities:

(a) procedure, where a finite succession of decisions and actions is
built up into a coherent sequence,

(b) process, where increasingly efficient ways become available to
achieve the same result, now seen as a whole,

(c) procept, where the symbols are conceived flexibly as processes to
do and concepts to think about.

Initially the individual builds an “action schema” (in the sense of Piaget) as a
coordinated sequence of actions. At the procedural level, the focus of attention
concentrates on how to do each step and how this leads to the next. We use the
term “procedure” for a specific finite sequence of decisions and actions. In
contrast the term “process” is used in a more general sense, such as “the process
of addition” or the “process of solving a linear equation”. A process may have
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several different procedures which give the same result. For instance, the
symbols 2(x+3) and 2x+6 involve two different sequences of computation, but
represent what we consider to be the same process. In this way the function
f(x)=2(x+3) is the same function as g(x)=2x+6 because they have identical input
and output.

In the case of an addition such as 2+7, it might be performed in a variety of
ways, say by counting two sets, then both together, or starting at 2 and counting
on 7, or counting on 2 starting at 7, or simply  knowing that 2+7 makes 9. Now
the symbol 2+7 may be seen not only as a process (of addition), but also as a
concept (of sum), so that 2+7 not only makes 9, but 2+7 is 9. This can lead to a
rich web of relationships, so that, if “2+something” is 9, then the “something” is
7, and on to other facts involving place value, such as 32+7=39 or 70+20 =90.
Meanwhile the child who sees addition only as a “counting-on” procedure is
likely to see subtraction as a “counting-back” procedure, counting back 9–2 in
two steps as “8, 7”, or 9–7 as count-back seven steps “8, 7, 6, 5, 4, 3, 2”
incorporating lengthy counting procedures that  prove to be increasingly more
difficult to carry out correctly.

Procedures allow individuals to do mathematics, but learning lots of
separate procedures and selecting the appropriate one for a given purpose
becomes increasingly burdensome. Procepts allow the individual not only to
carry out procedures, but to regard symbols as mental objects, so they can not
only do mathematics, they can also think
about the concepts. For such a student with
powerful mental connections, greater
abstraction gives greater simplicity, whilst
the less successful student is left with ever
increasing complexity and the greater
likelihood of failure.

A consequence of this is that those
students who do n o t make enough
appropriate mental connections have a far
greater mental burden and fall back on the
need to routinise mathematics to be able to
“do” the procedure to get an answer. They
can therefore “do” a problem in a limited
context and see this as “success” but are
not developing the long-term connections to be able to think about more
sophisticated ideas.

I conjecture that this is a major reason that many students are “damaged” by
their experiences in school, apparently learning how to “do” mathematics but
unable to link together ideas which are, for them, either meaningless or too
complex. Such students who require remedial help at college may benefit from
a visual/graphical approach, which can increase their confidence as they are, at

Procedure

Process

Procept

Procedural
- to DO maths

Flexible/proceptual
- to DO and

THINK ABOUT maths

spectrum of outcomes
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last, able to make sense of something. Yet such students may find it
continuingly difficult to make sense of the symbolism and link it to the visual
ideas. Meanwhile, more successful students who have some conceptions of the
mathematical connections may benefit enormously by extending their powers,
using computer software as a tool to think with.

Essentially I conjecture that our role as mathematics educators is not just to
teach procedures (to “do” mathematics) but also flexible relationships between
various ways of considering process and concept (to “think mathematically”).

5.3 Long-term difficulties with symbols

As the mathematical curriculum develops through arithmetic, algebra and
calculus, the symbols operate in subtly different ways:

(i) arithmetic procepts, such as 5+4, 3x4, 1
2 + 2

3, or 1·54÷2·3, have
explicit algorithms to obtain an answer, but become increasingly
difficult for the procedural learner,

(ii) algebraic procepts, such as 2a+3b, do not have an “answer”
(except by numerical substitution), but they can be manipulated
using more general strategies, which again coerces the procedural
learner into rote-learning of isolated techniques,

(iii) limit procepts, such as

lim
x→a

x3 − a3

x − a
, 

d

dx

sin x + cos x

x2 + 3x +1




 , e2x cos x dx

0

2π
∫ , 

1

n2n=1

∞∑
involve a potentially infinite process of “getting close” to a limit
value, which may be computed by a numerical approximation and
sometimes by a symbolic algorithm.

Each of these requires new ways of thinking about the symbolism, a change of
conceptualisation that proves difficult for many. A child who thinks of a sum
4+3=7 as a counting procedure in which “4 plus 3 makes 7” may find it difficult
to cope with a symbol such as 4+3x which does not “make” anything, except
perhaps to “do the bit 4+3 that makes sense” and get 7x. This leads to great
confusions for many students starting algebra.

Likewise, a student who is used to “doing” mathematics in a finite number
of steps may find it difficult to cope with the potential infinity of the limit
process and seek the security of the symbolic algorithms in calculus which at
least operationally give an “answer”.

Instead of being a comfortable sequence of successive logical steps, the
mathematics curriculum is actually littered with subtle hurdles that are not
always apparent to the expert.

Therefore there continues to be a role for the mathematics educator, to not
only “teach” mathematics, but to be aware of the ways in which children learn
mathematics and the pitfalls of the routine teaching of how to do procedures
without also considering how to organise and think about the resultant concepts.
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The Mutual Roles of the Visual and the Symbolic

The individual makes sense of the environment by perception to receive
information, reflection to think about it, and action to manipulate it. When
acting on objects, it is possible to focus either on the objects themselves and the
results of the action, or on the actions. For instance, one way to share three
pizzas between four people is to cut two in half, give one half to each, then cut
the remaining pizza into four, and give a quarter to each. Visually one can see
each person having three quarters of a pizza. Alternatively, the action of
dividing three by four can be expressed symbolically as a fraction.

The visual conception
gives a real-world, practical
view of the task, the
symbolic conception only
begins to make sense after a
long sequence of mental
compression through count-
ing numbers, sharing and
equivalent fractions. The
former is more generally
available to children, perhaps
even an end in itself for real-
world mathematics, yet the
latter is a basis for long-term
mathematical growth.

These two aspects of the
same idea typify how the visual can provide a global, holistic idea in
mathematics whilst the symbolic produces a sequential, operational method
capable of great computational power. However, the two do not always fit
together easily (think, for instance, of visual models appropriate for the sum or
product of two fractions, or the extension of these ideas to negative rationals). A
concentration mainly on symbols may lead to a rote procedural approach which
grows in complexity as the number of unconnected rules increases. A
concentration only on the visual may give an insight into what is going on in a
restricted context perhaps with limited power to generalise.

It is here that the computer can be of vital assistance, suitably supported by
guidance from the teacher as mentor. Because the computer is able to carry out
the algorithms to enable visual manipulation and symbolic manipulation, it is
possible to allow the learner to focus on specific aspects of importance whilst
the computer carries out the algorithms implicitly. This provides what I have
termed, somewhat grandiosely, as the principle of selective construction (Tall,
1993). It allows the learner to obtain an overall holistic grasp of ideas either
before, or at the same time as studying the related symbolic procedures that
were traditionally the first things to be studied and practised by the learner,
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enabling the growing individual to gain a new equilibrium with mathematical
ideas in a new technological age. It is not a universal panacea, for different
individuals have different ways of coping with the mathematical world, but it
offers differing kinds of experiences which can be supportive to a wide
spectrum of approaches.

6. The continued need for mathematics educators

The volatile nature of the development of information technology continues to
defy prediction, both in general, and in mathematics:

Anyone who presumes to describe the roles of technology in mathematics
education faces challenges akin to describing a newly active volcano – the
mathematical mountain is changing before our eyes… (Kaput, 1992, p. 515.)

We may no longer need to prepare children to use regular mathematical routines
as a central feature of their future employment, but they will need to grow in a
way that enables them to survive in a new technological world. The evidence
we have suggests that it is insufficient just to give individuals tools to carry out
procedures if they are not properly integrated into a cognitive structure that can
make sense of the relationship between the various processes, concepts and
representations.

In this new world, the creative mathematician still has a full role to play with
the cutting edge enthusiast pressing on with innovative possibilities. The reality
of the learning process continues to require the reflective guidance of the good
teacher.

The reflective guidance of a mathematics teacher
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