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We consider the wide spectrum of meanings which individuals can
give to a figure. It may be conceived as being passive, merely
being associated with a given concept or organisational,
allowing the individual to represent several pieces of relevant
information compactly in a single diagram. Alternatively, it may
be generative, in the sense that a learner uses it to guide their
thinking Such generative imagery may be conceptually
generative suggesting intuitive insights into mathematical
relationships. It may also be formally generative, linking to
the formal arguments required to develop a coherent formal
theory. In this paper we consider how visual computer software
may be used in generative ways, with particular reference to how
different kinds of visual magnification can be used to offer
generative ideas about continuity and differentiability.

Introduction

Visualisations may be used in mathematics in a broad spectrum of ways. In
particular, we may contrast the use students make of their visual imagery into
generative and nongenerative – whether or not they are guided to
mathematical ideas by their images.

For instance, the forces in a mechanical problem might be represented in a
drawing and, by resolving and taking moments appropriately, equations may
be derived which can then be manipulated symbolically to lead to solve the
problem. In this organisational use, a picture represents sufficient
information to be able to solve the problem. It may also represent conceptual
links with verbal, symbolic and numerical data. But for many students it may
not figure again in the solution process. In this sense, the use of a picture is
nongenerative. Similarly Stubbs (1996) highlights instances of students
drawing pictures when they begin to solve a problem, but which are never
referred to, either in writing or verbally, during the solution and, in some
cases, bear no obvious resemblance to the form of the mathematics used in the
solution. We might call these pictures passive – they are clearly associated in
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the minds of the students, but play no part in their attempts at a symbolic
solution to the problem.

In contrast to this, a picture may also be used to give some kind of visual
insights into a mathematical situation, emphasising various visual, dynamic and
spatial facets without necessarily linking directly to the solution of a problem
or the proof of a theorem. For instance, in gaining insight into the mean value
theorem, it may be helpful to draw pictures which begin to build a sense of
what conditions are necessary and how they effect the result of the theorem,
without necessarily giving any insight into an appropriate deductive proof of
the theorem. Figure l (taken from Kowalczyk & Hausknecht, 1994) shows how
the theorem would fail if the function were not differentiable at every point in
the interval concerned.

We say that such a picture is conceptually generative. It can succeed in its
particular purpose and other pictures may be drawn to show what might
happen if the function were differentiable in the open interval but not
continuous at one or other endpoint.

Figure 1: Illustrating an example which fails (adapted from Kowalczyk & Hausknecht, 1994)

It may even be possible to engineer the dynamic visualisation of a line moving
parallel to the chord from A to B in figure 2. As the line is moved further
away from the chord, “at the very last moment”, as it is tangential to the curve
at a point c, then the tangent at C has the same gradient as the chord AB,
giving the result of the mean-value theorem. This gives a gestalt underpinning
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Figure 2: “Continuously” moving the chord into tangential position
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to “see” that the theorem is “true”. But for most students this has no generative
power to suggest a formal logical proof. Indeed, for many, such a
demonstration renders a formal proof unnecessary, because it seems to convey
the truth of the statement with absolute certainty. It also appeals not to the
definition of continuity, but to an enactive physical movement, and the idea of
a tangent “just touching” the curve with its implicit conflicts in meaning from
the formal definition (Vinner, 1983).

Natural and Formal Students Use of Visualisation

Amongst our students at university there is a wide spectrum of different
approaches to pictures. Pinto (1996) reports how different individuals can be
“successful” in mathematical analysis either with or without using pictures in a
generative way. Some (whom she terms natural learners, after Duffin &
Simpson (1993)) can “see” a picture in a formally generative way, using the
picture to build up formal definitions and to construct formal proofs as
intimated here:

“I don’t memorise [the definition of limit]. I think of this [picture] every time I
work it out, and then you just get used to it. I can nearly write that straight
down.”

“I think of it graphically ... you got a graph there and the function there, and I
think that it’s got the limit there ... and then e once like that, and you can draw
along and then all the ... points after N are inside of those bounds,....”

Others (termed formal learners) internalise the definitions by repetition and
use:

“Just memorising it, well it’s mostly that we have written it down quite a few
times in lectures and then whenever I do a question I try to write down the
definition and just by writing it down over and over again it get imprinted and
then I remember it.”

In this particular case the student found great difficulty in using pictures to
suggest how to prove things. He obtained meaning from going through
symbolic proofs and reflecting on how they were built up logically.

It should be noted, however, that the drawings produced by the natural
learners building on their generative visualisation may have many similarities
to those drawn) by the formal learners from the passive visualisation (used
either to organise the symbols or merely associated with the limit concept). It
may also happen that specific elements in a picture (such as a sequence drawn
as monotonically decreasing) may interfere with the general formal concepts
(such as the notion of an arbitrary convergent sequence satisfying the formal
definition) so that some formal learners distrust visual imagery and are not
helped by pictures at all.
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How can we, as teachers, hope to cope with such a wide range of
perceptions and uses of visualisation? The simple answer is that we cannot. But
by speaking from our own viewpoint we will only carry with us those students
who think in a similar way and may fail others, who are not necessarily less
talented, but because they think differently.

A common pedagogical error is to take the mathematics in a mathematical
form and simply present it in a way which grows from the formal idea. For
instance, the formal definition of continuity is often translated into a picture
with a rectangular box that trains the student to take any vertical interval from
f(x0)≠δ to f(x0)+δ and to seek a horizontal interval from x0–ε to x0–ε so that

the graph of f over the interval is contained within the rectangular box (figure
3).

Given this value of εf(x0)
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Figure 3: “mathematical” picture of continuity

Others have seen that this approach does not attempt to build on the student’s
current knowledge structure and have taken a radically different approach -
taking the student’s notion of a “continuous curve”, drawn “without taking the
pencil off the paper” and showing how horizontal stretching of such a curve
on a computer screen eventually pulls the curve flat (Tall, 1980, Kawski,
1997). This approach is visually attractive and economical. one just looks at a
graph and imagines it being dynamically pulled out flat to see how the idea
works (even with a function that is nowhere differentiable, in this case the
blancmange function (Tall, 1982) which has left and right gradients –∞ and
+∞ at the point concerned!

Figure 4: Successively stretching a continuous function flat
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Continuity and Differentiability

The concept imagery which students imagine to relate to the notions of
continuity and differentiability are often ill-formed, in the sense that a
“continuous function” carries with it ideas of being given by “a single
formula” or having a “smoothly turning tangent” (Tall & Vinner 1981). By
seeing a “continuous function” as one that can be ‘pulled flat”, and a
differentiable function as one that “magnifies to look locally straight” it is easy
to gain a visual insight into a continuous function that may be very wrinkled as
nowhere differentiable. These ideas can easily be studied using a graphic
calculator with different zoom ratios on the horizontal and vertical axis. By
setting the horizontal stretch to be k (where k might be 2 or 4 or 10, say) and
the vertical stretch to be kn, then a “horizontal stretch” occurs when n=0, an
equal magnification occurs when n=1 and, more generally, a stretch of nth
order occurs for other values of n (which may be any real number). This
useful notion is discussed in greater detail in Tall (1981) and Kawski, (1997)
(where the former defines the notion of an astigmatic lens with n=1, and the
latter deals with magnifications of the nth order in higher dimensional vector
calculus).

Here we consider the case of continuity in one dimension, which allows a
formally generative image valuable for proving theorems in real analysis.
Note first, that the notion of “locally flat” means

Given pixels of height ε then there is a δ such that in a window width x0±δ the
graph is contained within the pixels at the height representing f(x0).

That is, zooming in on the point (XO ,f(xO)) with the astigmatic lens of order 0, the
function is represented by a horizontal line of pixels (figure 5). Notice, in
particular, that this gives the definition of pointwise continuity.

This carries with it the property that if f(x0)>0, then the function is positive
in an interval x0±δ. To “see” this, choose a scale with ε sufficiently small that
the pixels at the height representing f(x0) lie visibly above the x-axis (for
instance, take e= 1/2 f(x0), this amounts to zooming in with a lens of order 1),
then select a width d to stretch the graph horizontally so that the graph around
XO is all represented by the horizontal line of height f(x0)+ε. Thus f(x)>0 in the

interval in the picture.

Summary

By using suitable visual interpretations of mathematics it may be possible to
draw one or more pictures which in total are formally generative, in the sense
that they may be interpreted appropriately by some students to lead to
corresponding formal arguments. For some students (successful natural
learners), the pictures may allow them to construct a personal meaning for the
definitions which allows them to build a rich conceptual structure to support
the formal mathematics. For others (successful formal learners), working by
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interiorising the definitions and reflecting on the formal proofs may also lead
to successful understanding of theorems and proofs, although further cognitive
reconstruction is likely to be needed if the student wishes to integrate these
new formal ideas with older intuitions.

Figure 5: Zooming in with an astigmatic lens of order 0 around x0=1

Failure to comprehend the definitions may occur for various reasons. Formal
learners who fail will have an inadequate formal cognitive structure available.
on the other hand, natural learners who use visualisations may fail in the
formal sense and yet still have global intuitions which give a conceptual
structure richer in intuitive connections but failing with formal deductions. It
is the role of the good teacher to attempt to help students make sense of the
mathematics shared by the mathematics community. It may be that the best
way in which this can be done is through providing images which students may
adopt as both formally and conceptually generative.
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