COMPUTERS AND THE LINK BETWEEN
INTUITION AND FORMALISM

Adrian Simpson, David Tall

Mathematics Education Research Centre
University of Warwick
COVENTRY CV4 7AL
UK
e-mail: a.p.simpson@warwick.ac.uk, david.tall@warwick.ac.uk

We consider the wide spectrum of meanings which individuals can
give to a figure. It may be conceived as bepagsive, merely
being associatedwith a given concept ororganisational,
allowing the individual to represent several pieces of relevant
information compactly in a single diagramlternatively, it may

be generative, in the sense that dearner uses it toguide their
thinking Such generative imagery may bsonceptually
generative suggesting intuitive insights intomathematical
relationships. It mayalso beformally generative, linking to

the formal arguments required to develop a coherinmnal
theory. In thispaper we consider how visual computer software
may be used in generative ways, with particular reference to how
different kinds ofvisual magnificationcan be used to offer
generative ideas about continuity and differentiability.

Introduction

Visualisations may be used in mathematics ibr@ad spectrum of ways. In
particular, we may contrast the use students malkbkeaf visual imagery into
generative and nongenerative — whether or not they are guided to
mathematical ideas by their images.

For instance, the forces in a mechanical problem might be represented in a
drawing and, by resolving and taking moments appropriatdyations may
be derived which can then be manipulated symbolically to leablie the
problem. In this organisational use, a picture represents sufficient
information to be able to solve the problem. It may also represamteptual
links with verbal, symbolic and numerical data. But manystudents it may
not figure again in the solution process. In thense, the use of @cture is
nongenerative. SimilarlyStubbs (1996) highlights instances of students
drawing pictures when they begin to solve a problem, but whichnaver
referred to, either in writing or verbally, during the solution and, some
cases, bear no obvious resemblance to the form of the mathematics used in the
solution. We might call these picturpassive- they are clearlyassociated in
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the minds of the students, but play no part in their attempts syamdolic
solution to the problem.

In contrast to this, a picture may also be used to give some kindual
insights into a mathematical situation, emphasising various visual, dynamic and
spatial facets without necessarily linking directly to the solution pfablem
or the proof of a theorem. For instance, in gaining insight into the wedae
theorem, it may be helpful to draw pictures which begin to buikkrese of
what conditions are necessary and how they effect the result ohebeem,
without necessarily giving any insight into an appropriate deductive proof of
the theorem. Figure | (taken from Kowalczyk & Hausknecht, 1994) shows how
the theorem would fail if the function were not differentiable at every point in
the interval concerned.

We say that such picture isconceptually generativdt can succeed in its
particular purpose and other pictures may be drawrshimwv what might
happen if the function were differentiable in the open interval but not
continuous at one or other endpoint.
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Figure 1: lllustrating an example which fails (adapted from Kowalczyk & Hausknecht, 1994)

It may even be possible to engineer the dynamic visualisation of a line moving
parallel to the chord fromd to B in figure 2. As the line is moveturther
away from the chord, “at the very last moment”, as it is tangential touhe
at a point c, then the tangent @thas the samgradient as the choré&B,
giving the result of the mean-value theorem. This gives a gestalt underpinning
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Figure 2: “Continuously” moving the chord into tangential position
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to “see” that the theorem is “true”. But for most students this has no generative
power to suggest aformal logical proof. Indeed, for manysuch a
demonstration renders a formal proof unnecessbegause iseems to convey

the truth of thestatementwith absolutecertainty. It also appeals not to the
definition of continuity, but to an enactive physical movement, and the idea of
a tangent “just touching” the curve with its implicit conflicts in mearfiram

the formal definition (Vinner, 1983).

Natural and Formal Students Use of Visualisation

Amongst ourstudents at university there is a wide spectrumdidferent
approaches to pictures. Pinto (1996) reports how different indivicaalsbe
“successful” in mathematical analysis either with or without using pictures in a
generative waySome (whom sheterms natural learners, after Duffin &
Simpson(1993)) cart'see” apicture in a formally generative way, using the
picture to build up formal definitions and to construct formal proofs as
intimated here:

“I don’t memorise [the definition of limit]. | think of this [picture] evetiyne |

work it out, and thenyou justget used to it. Ican nearly write that straight
down.”

“I think of it graphically... you got a graplthere and the functiotinere, and |

think that it's got the limit there. and then e onclike that, and yowandraw

along and then all the ... points after N are inside of those bounds,....”
Others (termedormal learners) internalise the definitions by repetition and
use.:

“Just memorisingit, well it's mostly that we have written @iown quite a few

times in lectures and then whenever | do a question | try to doiten the

definition and just by writing ilown overand over again igjet imprinted and
then | remember it.”

In this particular case the student found great difficulty in using pictures to
suggest how toprove things. He obtained meanifgom going through
symbolic proofs and reflecting on how they were built up logically.

It should be noted, however, that the drawings produced byhdheral
learners building on their generative visualisation may have many similarities
to those drawn) by the formal learndrem the passive visualisation (used
either to organise the symbols or meraBsociated with thimit concept). It
may also happen that specific elements in a picture (suclseguancerawn
as monotonically decreasing) may interfere with the general focmadepts
(such as the notion of arbitrary convergentsequence satisfying tHermal
definition) so that some formal learners distrust visual imagery and are not
helped by pictures at all.



How can we, as teachers, hope to cope with such a wide range of
perceptions and uses of visualisation? The simple answer is that we cannot. But
by speaking from our own viewpoint we will only carry with us thet&lents
who think in a similar way and may fail others, who are not necessesdy
talented, but because they think differently.

A common pedagogicarror is totake the mathematics in a mathematical
form and simply present it inway which growsfrom the formal idea. For
instance, the formal definition of continuity is often translated infocture
with a rectangular box that trains the student to take any vertical infeoval
f(x0)#0d to f(Xp)+d and to seek &orizontal interval fromxo— to xg—€ so that

the graph of over the interval is contained within the rectangular Goyure
3).
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Figure 3: “mathematical’ picture of continuity

Others haveseen that thigpproach does not attempt to build on stedent’s
currentknowledge structure and have taken a radically different approach -
taking the student’s notion of a “continuous curve”, drawn “without taking the
pencil off the paper” and showing how horizontal stretching of suchrae

on a computer screen eventually pulls the curve flat (Tall, 18&0yski,
1997). This approach is visually attractive and economical. ondojoks at a
graph and imagines it being dynamically pulled out flaséehow the idea
works (even with a function that is nowhere differentiable, in daise the
blancmangdunction (Tall, 1982) which has left andght gradients e and

+oo at the point concerned!
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Figure 4: Successively stretching a continuous function flat



Continuity and Differentiability

The concept imagery which students imagine to relate to the notions of
continuity and differentiability are often ill-formed, in the&ensethat a
“continuous function” carries with iideas of being given by “a single
formula” or having a “smoothly turning tangent” (Tall & Vinner 1981). By
seeing a “continuous function” as one that can be ‘pulled flat’, and a
differentiable function as one that “magnifies to look locally straight” é@asy

to gain a visual insight into a continuous function that may be very wrinkled as
nowhere differentiable. Theseleas can easily be studied usinggeaphic
calculator with different zoom ratios on the horizontal and vertical axis. By
setting the horizontal stretch to kéwherek might be 2 or 4 or 10, say) and
the vertical stretch to bk, then a “horizontal stretch” occurs whar0, an
equal magnification occurs wher1l and, more generally, a stretch of nth
order occurs for othevalues ofn (which may be any real number). This
useful notion igdiscussed irgreater detail in Tall (1981) and Kawski, (1997)
(where theformer defines the notion of an astigmatic lens withl, and the
latter deals with magnifications of thath order in highedimensionalector
calculus).

Here we consider thease ofcontinuity in one dimension, which allows a
formally generative image valuabfer proving theorems in reahnalysis.
Note first, that the notion of “locally flat” means

Given pixels of height then there is & suchthat in awindow width x,£d the

graph is contained within the pixels at the height represeitigg
That is, zooming in on the poinb oy with the astigmatic lens adrder 0, the
function is represented by a horizontal line of pixels (figure 5). Notice, in
particular, that this gives the definitiah pointwisecontinuity.

This carries with it the property thatfifxp)>0, then the function is positive
in an intervalxotd. To “see”this, choose acale withe sufficiently small that

the pixels at the height representifo) lie visibly above the x-axigfor
instance, take e¥,f(xp), this amounts to zooming in with a lensafler 1),
then select a width d to stretch the graph horizontally so that the graphd
xo 1S all represented by the horizontal line of heifflkg)+€. Thusf(x)>0 in the

interval in the picture.
Summary

By using suitable visual interpretations of mathematics it mapdssible to
draw one or more pictures which in total are formally generative, isehse
that they may be interpreted appropriately by sostedents to lead to
corresponding formal arguments. F@ome students (successfuatural

learners), the pictures may allow them to construct a personal mdanitige

definitions which allows them to build a rich conceptsalicture to support
the formal mathematics. For othgmiccessfuformal learners), working by



interiorising the definitions and reflecting on the formal proofs may laksd
to successful understanding of theorems and proofs, altifoutier cognitive
reconstruction is likely to be needed if the studershes tointegrate these
new formal ideas with older intuitions.
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Figure 5: Zooming in with an astigmatic lens of order O arognd
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Failure to comprehend the definitions may occur for various reasonsal
learners who fail will have an inadequédemal cognitive structure available.

on the other hand, natural learners wise visualisations may fail in the
formal senseand yet still have global intuitions which give a conceptual
structure richer in intuitiveonnections but failing witiormal deductions. It

is the role of the good teacher to attempt to Istjglents makasense of the
mathematics shared by the mathematics community. It may be thaeshe
way in which this can be done is through providing images which students may
adopt as both formally and conceptually generative.

References

Duffin, J. & Simpson, A. (1993), Natural, Conflicting and Alidournal of Mathematical
Behavior,12(4), 313-328.

Kawski, M. (1997), How CAS and visualization lead to a complete rethinking of an
introduction to vector calculughird International Convergence on Technology in
Mathematics Teaching, Koblenz, Germany, October 18%ppear.

Kowalczyk, R.E. & Hausknecht, A. O. (1994) Using TeMaths visualization tools in
mathematicsProceedings of the Fifth International Conference on Technology in Collegiate
MathematicsAddison-Wesley, 320-331.

Pinto, M.M.F (1996), Students’ use of quantifiers, Paper presentedAdvheced
Mathematical Thinking Grougt theTwentieth Conference of the International Group for the
Psychology of Mathematics Educatidfalencia, Spain.

Stubbs, N. (1996 omparing Undergraduates’ use of logic in discussion and examinations
Unpublished MSc Dissertation, University of Warwick.

Tall, D. O (1980). Looking at graphs through infinitesimal microscopes, windows and
telescopedviathematical Gazette, 622-49.

Tall, D. O. & Vinner, S. (1981), Concept image and concept definition in mathematics with
particular reference to limits and continuiBducational Studies in Mathematid,

151-169.

Tall, D. O. (1982), The blancmange function, continuous everywhere but differentiable
nowhereMathematical Gazette, 661-22

Vinner, S. (1983), Concept definition, concept image and the notion of function,

International Journal of Mathematics Education in Science and Technology, 14(3), 293-305.



