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This paper presents my current thinking on the problems that
students face in transition from school mathematics to
university mathematics. At school the accent is on
computations and manipulation of symbols to “get an answer”,
using graphs to provide imagery to suggest properties. At
university there is a bifurcation between technical mathematics
that follows this style (with increasingly sophisticated tech-
niques) and formal mathematics, which seeks to place the
theory on a systematic, axiomatic basis. There is a broad
spectrum of student thinking styles, partly genetic, partly
influenced by social experience and teaching, which pre-
dispose students to different kinds of learning techniques.
Using theory developed by Duffin & Simpson (1993), and
Pinto (1997), it may be hypothesised that “natural” learners
build from their experience and try to make sense of the
mathematics through their current knowledge, “formal”
learners are willing to take the mathematics and its rules as a
game to be played, to make sense of it within itself. Both
natural and formal learners face cognitive difficulties. When
natural learners meets new ideas which do not fit their current
ideas (and therefore seem “alien”), some cannot proceed
because they lack any conceptual structure to build on, others
can only proceed by reorganising their own knowledge into a
form that allows them to build the new. Meanwhile, the formal
learner is more able to take the new ideas in their own
restricted context and attempt to make sense of them in a
separate new compartment. The formal learners may later
encounter problems when attempting to relate the new
constructions to old knowledge. Students are rarely at one
extreme or the other, often being a combination of the two;
some are fortunate enough to be “flexible” learners who can
utilise each to best advantage. In this paper we consider how
different styles of learner have different cognitive problems in
making the transition from elementary to advanced
mathematical thinking.
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Introduction : Thinking about Symbolism

This paper was prepared for an audience of school mathematics teachers
and university mathematicians. It might therefore be appropriate to talk
about some topic in mathematics, but instead I wish to turn our attention
from the mathematics alone to the way in which we think about
mathematics. We all have the experience of thinking in our own personal
way and may have sensed that others do not always think in exactly the
same manner. In particular, we do not always think mathematically about
mathematics. Let me explain what I mean by this.

Just before I started writing this article on my computer, I decided to
tidy up some of the files on my computer desk-top, throwing some into the
waste-basket and moving others to a choice of two different folders. At
each stage I had to decide which of the folders or the waste-basket the file
should go to and move it. After doing several of these I moved the icon for
the waste-basket from down in the left-hand corner up to the right in a
more convenient place. As I took each decision, it was not long before I
became immersed in the process and found myself moving unwanted files
not to icon for the waste-basket, but down to the bottom left corner where
it was previously found. So, I had failed to make the actions more efficient
because deeply ingrained in my subconscious was the physical action where
to put unwanted files. Although I consciously chose to do the action
efficiently, unconsciously there were deeply ingrained habits of old that
took command of my thoughts and actions.

It is this kind of idea that I am trying to focus on at the moment. When
we operate on mathematical symbols we may learn to operate with rules
formulated in a mathematical sense, but in the longer run we use all kinds
of deeply ingrained mental and physical processes to carry out a given
mathematical operation, and these ingrained processes are not the same as
natural laws of mathematics. For instance, though we might learn to solve
the equation

x

a
= b

c

by “multiplying both sides by a”, we may later “see” the a move across
from the left-hand denominator to the right-hand numerator.

It proves efficient to utilise our human actions of “moving” symbols
around, yet there is also a need to be able to reflect on the action to relate it
to mathematical decision-making processes. The problem is that these often
get translated into unconscious acts that may be associated with rules of
thumb such as “change sides, change signs”, “cross-multiply”, “two minuses
make a plus” etc.
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The tensions that arise in such mental activities are complex and can
manifest themselves in a variety of ways. Not only may old rules remain
unchanged and be used inappropriately, new rules may supplant old rules
and be used incorrectly when earlier work is recalled. For instance, rules
of thumb in arithmetic can be mistranslated in algebra, and those in algebra
can be mistranslated in arithmetic. An example of the former is when a
fraction is seen to involve “dividing the top number by the bottom number”

so that 12
6

 is correctly computed by dividing 12 by 2. Yet in the algebraic

expression a
12

a6   “dividing the top number by the bottom number” may be

incorrectly given as a2. In algebra the rule to compute 3a2 × 4a3  to give
12a5 by “multiplying coefficients and adding powers” may be mis-applied
back in arithmetic to compute 32 × 43  as 125 . Both of these errors (and a
variety of others) prove to be made by a significant proportion of students.

Such errors have led to a theory of “buggy arithmetic” where children’s
mistakes are seen to be a result of “mal-rules” rather than arbitrary slips.
But such a theory is already missing the boat. To attempt to teach someone
how to get correct answers only by correcting their errors may simply
replacing one rote-learnt routine by another. Such a limited strategy is
likely to fail to help the individual build up a coherent overarching sense of
mathematical conceptualisation.

Instead we must look more closely at the subtle relationship between the
mathematics and the manner in which it is conceived by the individual. It is
my observation that the routines that we learn in mathematics serve in two
very distinct capacities. For most they enable individuals to carry out a
specific computation, but then there is a “parting of the ways”, first
described eloquently to me by Eddie Gray (eg. Gray, 1991, 1993). Some
remain fixed in the mechanics of the routine — able to perform it, able to
build up a collection of routines to operate in different circumstances.
Others develop a more flexible way of using symbols — seeing them both
as processes to be computed and also as mental concepts to be manipulated.
For such fortunate individuals arithmetic takes on a more generative form,
where known facts, such as 4+4 makes 8 are used to generate derived facts,
such as 14+4 makes 18 or 4+3 makes 7.

A consideration of the possible
formal links required (as illustrated)
suggest that these are more complex
than counting on (4), 5, 6, 7. The only
way that the cognitive links can give an
advantage is that they must be tighter
and therefore different from the formal
deductions.

       

4+3

4+3 is one less than 4+4 so 4+3 is 7

4+4 is 8
7 is one less than 8

7is
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Symbols as process and concept

Inspired by a succession of thinkers on cognitive development—including
Dubinsky (1991) and Sfard (1991)—Eddie Gray and I noted, as had others
before us, that symbols in arithmetic, algebra, calculus, and a wide range of
other mathematical contexts had a certain characteristic. The following
symbols illustrate this:

5+4,  3x4,  3a+2b,

lim
x→a

x3 − a3

x − a
, 

d

dx

sin x + cos x

x2 + 3x +1




 , e2x cos x dx

0

2π
∫ , 

1

n2n=1

∞∑ ,

These all play a dual role representing both a mathematical process to be
carried out and the result of that process. For instance 5+4 evokes the
process of addition to produce the concept of sum 5+4, which is 9, 3a+2b is
a both process of evaluation and a concept of algebraic expression, and

1

n2n=1

∞∑  is the process of evaluating an infinite sum to find the limit value

(which happens to be π2/6).
The name procept was introduced for the combination of symbol,

process and concept which occurs when a symbol evokes a process to give
the resulting concept (Gray & Tall, 1994). We were interested in the way
in which individuals interpret symbols in arithmetic, algebra and calculus,
causing some students to find mathematics essentially easy yet others
finding it increasingly difficult.

We emphasise that the cognitive notion of procept carries with it no
implication as to how that cognitive structure is built. Indeed one of our
purposes was to investigate the concept-building of such symbols. However,
in many practical contexts, we often found that the meaning of symbols
developed through a sequence of activities:

(a) procedure, where a finite succession of decisions and actions
is built up into a coherent sequence,

(b) process, where increasingly efficient ways become available
to achieve the same result, now seen as a whole,

(c) procept, where the symbols are conceived flexibly as
processes to do and concepts to think about.

Initially the individual builds an “action schema” (in the sense of Piaget) as
a coordinated sequence of actions. At the procedural level, the focus of
attention concentrates on how to do each step and how this leads to the next.
Following Davis (1984), we use the term “procedure” for a specific finite
sequence of decisions and actions. In contrast the term “process” is used in
a more general sense, such as “the process of addition” or the “process of
solving a linear equation”. A process may have several different procedures
which give the same result. For instance, the symbols 2(x+3) and 2x+6
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involve two different sequences of computation, but represent what we
consider to be the same process. In this way the function f(x)=2(x+3) is the
same function as g(x)=2x+6 because they have identical input and output.

The addition 2+7 might be performed in a variety of ways, say by
counting two sets, then both together, or starting at 2 and counting on 7, or
counting on 2 starting at 7, or simply  knowing that 2+7 makes 9. Now the
symbol 2+7 may be seen not only as a process (of addition), but also as a
concept (of sum), so that 2+7 not only makes 9, but 2+7 is 9. This can lead
to a rich web of relationships, so that, if “2+something” is 9, then the
“something” is 7, and on to other facts involving place value, such as
32+7=39 or 70+20 =90.

The child who sees addition only as a “counting-on” procedure is likely
to see subtraction as a “counting-back” procedure, counting back 9–2 in
two steps as “8, 7”, or 9–7 as count-back seven steps “8, 7, 6, 5, 4, 3, 2”
incorporating lengthy counting procedures that  prove to be increasingly
more difficult to carry out correctly.

Procedures allow individuals to do mathematics, but learning lots of
separate procedures and selecting the appropriate one for a given purpose
becomes increasingly burdensome. Procepts allow the individual not only
to carry out procedures, but to regard symbols as mental objects, so they
can not only do mathematics, they can also think about the concepts. For
such a student with powerful mental connections, greater abstraction gives
greater simplicity, whilst the less successful student is left with ever
increasing complexity and the greater likelihood of failure.

Procedure

Procept
Process(es)

Procedure(s)

Process
Procedure(s)

Progress

Sophistication
of development

To DO
routine 

mathematics 
accurately

To perform 
mathematics 
flexibily & 
efficiently

To THINK
about 

mathematics 
symbolically

Spectrum of Outcomes
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A consequence of this is that those students who do not make enough
appropriate mental connections may be able to do the current problems but
have a far greater mental burden and fall back on the need to routinise
mathematics to be able to “do” the procedure to get an answer. They can
therefore “do” a problem in a limited context and see this as “success” but
are not developing the long-term connections to be able to think about
more sophisticated ideas.

I conjecture that this is a major reason why many students are
“damaged” by their experiences in school, apparently learning how to “do”
mathematics but unable to link together ideas which are, for them, either
meaningless or too complex. The common fall-back position is to routinise
specific procedures to be able to do routine examples, but without the
flexibility to cope when the problem is dressed up in a different manner or
in a new context. I regret that this is also a common fall-back position for
many school teachers, especially in the later stages of secondary education
where the going is getting rougher for students meeting symbols that they
need to manipulate but do not fully understand.

This problem is far more prevalent than one might wish to
acknowledge, for instance, MacGregor and Stacey (1993) asked the
following question of 255 mixed ability year 9 students (aged 13 to 14):

z is equal to the sum of 3 and y. Write this information in mathematical symbols.

Of the total questioned, 43% gave either an incorrect response (often z=3y
or y=3z), or made no attempt.

Students very often learn to do what pleases the teacher, and is it no
wonder, when what they are asked to do often has no real meaning for
them. A classical case is the definition of a negative or fractional power.
For a student who knows that a product of three fives, (5×5×5) can be
written as 53, and a product of four threes (3×3×3×3) can be written as 34,
the rhythm of the notation soon becomes part of their inner harmony “da
times da” is da raised to the power two, “da times da times da” is da raised
to the power three, and so on. After experience of meaning such as this,
what can a1/2 mean? Can it mean “half an a multiplied together”? Or can
a−2  be “minus two as multiplied together”?

For many students, the idea that am  means “m  lots of a multiplied
together” has, as a consequence, the property that a2 × a3  is a5 and, more
generally that aman is am+n. But this explains a natural property of whole
number powers, which disintegrates when the powers are taken to be
rational or negative numbers. The concept has no meaning, at least it has no
meaning in the conventional sense. Hence the fact that the value of a1/2  can
be deduced from

a1/2 × a1/2 = a1/2+1/2 = a1 = a
also seems somewhat peculiar.
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Some students who focus on the essentials of the notation are happy to
accept this argument. Such students have the potential to become
mathematicians. But those who see it as a piece of conjuring, aimed to give
a meaning to the unmeaningful, to use rules without reason, are only
naturally likely to see mathematics at this stage as rules that are to be
learned without having to have a reason.

Natural and Formal Learners

When faced with new mathematical ideas, individuals behave in different
ways. In arithmetic the more successful students already have flexible
interlinked structures which support the use of symbolism both as process
to get results and concept to think about. The less successful focus more on
the security of performing the algorithms and have limited success with
routine problems. As their development continues through mathematics, the
differences begin to diverge even more. In facing new ideas, some have
little cognitive structure to build on and are likely to fall back even further
on rote learning. But even those with a growing richness of cognitive
structure develop different personal approaches.

One method of categorising different approaches is to say “does the
learner build on current structures to make sense of the new mathematics,
or does the learner try to make sense of the mathematics as a task in itself?”
In other words. does the student synthesise from their experience to build
the new mathematical ideas or analyse the new mathematical ideas to build
a system in itself which may perhaps later be integrated with old
knowledge. Duffin & Simpson (1993) call the former “natural” learners
and the latter “alien”. As I struggle with these ideas myself, I prefer the
names “natural” and “formal”. A natural learner tries to make sense of new
ideas using current knowledge, a formal learner gives the new knowledge a
chance to develop its own meaning by playing with it without initially
feeling the need to link it to other knowledge.

In faced with the introduction of fractional and negative powers, natural
learners are likely to meet a conflict. Their experience of am is of “m lots
of a multiplied together” is fine for a2, a3, ..., a27, … . But the concept of
a1/2  does not fit this meaning. This can have a variety of effects for the
natural learner, it may mean that the learner cannot give any meaning
whatsoever to the notation and can only cling to anything that is given or
said in class to help the student cope. This is the road to meaningless
manipulation, learning rules to give the answer required by the teacher.

An alternative is to concede that a1/2  means something, and to concede
that the rule for powers could conceivably also apply to fractional powers
and then to see, for consistency, that a1/2  can be taken to be √a. A “formal”
learner may say “OK, I don’t know what a1/2  means, but for a time, let me
play the game presented to me and see what happens.” This allows the
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individual to suspend belief for a time and to manipulate the symbols to
gain a sense of what might happen, leading to the possibility, indeed,
coherent likelihood that a1/2  can be taken to be √a. The formal learner,
with no immediate qualms about manipulating things that don’t seem to
have meaning, can eventually develop meaning from the activities that are
carried out. Perhaps later they can also look back with hindsight and see
that the extended definition of am  to include rational (and negative) values
of a, indeed, when the graph of 2 x or ex  is drawn (perhaps by a
computer), the “filled-in” values of x to include fractional and negative
values begin to give a global alternative meaning of its own. Thus both a
natural learner, willing to restructure knowledge, and a formal learner,
willing to take new ideas at their face value and give meaning through
playing with them, have long-term possibilities of success. But the natural
learner who is confused by the new meanings or the attempted formal
learner who is unable to get the new ideas to fit together in a coherent way
will face more serious long-term difficulties.

Long-term difficulties with symbols in elementary mathematics

As the mathematical curriculum develops through arithmetic, algebra and
calculus, the symbols operate in subtly different ways, of which the
following are examples:

(i) arithmetic procepts, such as 5+4, 3x4, 1
2 + 2

3, or 1·54÷2·3,
have explicit algorithms to obtain an answer, but become
increasingly difficult for the procedural learner.

(ii) algebraic procepts, such as 2a+3b, do not have an “answer”
(except by numerical substitution), but they can be
manipulated using more general strategies, which again
coerces the procedural learner into rote-learning of isolated
techniques,

(iii) implied procepts, such as a1/2 or a–2, which are the results of
operations which initially have no meaning but can be
deduced from assumed properties of the symbolism,

(iv) potentially infinite procepts, such as

lim
x→a

x3 − a3

x − a
, 

1

n2n=1

∞∑
involve a potentially infinite process of “getting close” to a
limit value, which may be computed by a numerical
approximation and sometimes by a symbolic algorithm.

(v) calculus procepts, such as
d

dx

sin x + cos x

x2 + 3x +1




 , x cos x dx∫
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which are potentially infinite as limit concepts, but can
(sometimes) be computed by using the standard rules of
differentiation and integration.

At this moment in time I do not claim that these are the only different types
of procept, but they illustrate my point that the use of symbolism for
computation and manipulation involve different problems in different
contexts. Each of the above requires new ways of thinking about the
symbolism, a change of conceptualisation that proves difficult for many,
particularly for “natural learners” who are unable to cope with changes in
meaning. A child who thinks of a sum 4+3=7 as a counting procedure in
which “4 plus 3 makes 7” may find it difficult to cope with a symbol such
as 4+3x which does not “make” anything, except perhaps to “do the bit 4+3
that makes sense” and get 7x, which does not make sense. This leads to
great confusions for many students starting algebra.

Likewise, a student who is used to “doing” mathematics in a finite
number of steps may find it difficult to cope with the potential infinity of
the limit process. In practice, therefore, even if students are given
“explanations” of the potentially infinite limit process of calculating the
derivative at a point, they are very likely to be far happier with the security
of the calculus computation because it is reminiscent of the operational
procepts of arithmetic. The rules for differentiation may not give a
numerical answer, but they provide an algorithm that produces an answer
in a finite number of steps.

The variety and differences between the performance of these different
types of procept demonstrate the subtle difficulties underlying the
mathematical curriculum. Instead of being a comfortable sequence of
successive pieces of knowledge building coherently on what went before,
the mathematics curriculum is actually littered with subtle hurdles that trip
up the learner, but are not always apparent to the expert. At each of these
points of difficulty some students succeed, but an increasing number fail.
The “failure” can be disguised by learning how to do procedures and this
becomes increasingly so as students get older, including many who return
to teach in school, believing that repetition and rules of thumb are the
(only) way for all to learn mathematics.

The Transition to Advanced Mathematical Thinking

There are various possible points in the mathematics curriculum which may
qualify as signalling a change to “more advanced forms of mathematical
thinking”, including those in the previous section coping with symbols
defined by their properties, such as a1/2 , or those involving potentially
infinite processes, such as the notion of limit in the calculus, or those which
have not been discussed here involving proof in geometry. However, the
significant change which has been widely considered as a major change in
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thinking processes is that in which definitions are given as axioms to build
up systematic mathematical theories (see, for instance, Tall, 1991). This
change often coincides with a mathematics students move from school to
university.

Definitions as criteria for building concepts formally

In thinking about a mathematical concept, such as limit , group, vector
space, continuous function, and so on, there is a great deal more cognitive
structure involved than the formal definitions and formal deductions made
from those definitions. The student must have previous experience which
develops intuitions that suggest what will make a good definition, and what
theorems are likely to be proved. Tall & Vinner (1981) defined the
concept image to consist of “the total cognitive structure that is associated
with a concept, which includes all the mental pictures and associated
properties and processes”. It is the concept image which provides the
underlying structure for thinking about the concept, both consciously and
subconsciously.

In elementary mathematics we build up concepts from our experiences
in which the experience often comes first and the words are used to
describe it. It can also happen that words are used initially to describe a
concept, but then that concept is something which the individual is about to
encounter and gain experience of through interacting with it.

In advanced mathematics something new happens. When we say “a
group consists of a set and a binary operation on that set satisfying the
following properties …” we are doing more than stating some of the
properties which hold for a concept about to be encountered. We are also
stating precisely what is necessary for something encountered to be called
“a group” . In other words, the definition we give state a number of criteria
which must be satisfied in order for us to know we are indeed dealing with
(an example of) the given concept.

A concept definition is a statement in words and symbols which
identifies a particular concept. In advanced mathematics a concept
definition specifies precisely what is required for a given notion to be
considered an instance of that concept. It may (and usually does) have more
attributes, but it can never have less. We use the attributes specified in the
definition to deduce other properties, so that we then know that any system
which satisfies the criteria specified in the definition has all the properties
deduced from the definition. This gives a huge power of generality. Once
the properties required are deduced from a definition, any system also
satisfying the definition also has those properties.

However, this can also create a huge potential conflict for the student. A
formal concept image must be constructed consisting only of those
properties which can be formally deduced from the definition. Yet, in
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building such properties, the concept image is used to suggest possible
theorems and proofs. The individual must make an almost schizophrenic
separation between the intuitive appeal to the concept image that senses
mathematical truth and the formal deduction processes that establishes it. In
practice, this separation is rarely, if ever, accomplished. For instance, if
one studies the Peano Postulates, how does one “know” that 2+2=4 or
999+2=1001? Is it through deductions from the postulates, or an elemental
knowledge built up since childhood? In practice it is of course a mixture of
the two, with a belief that those things that have not been formally deduced
could be proved if this were ever desired. Experts become accustomed to
this convention, but novices may be profoundly disturbed in not knowing
what it is they are “allowed to know” from their experiential knowledge as
opposed to “knowing” from deductive proof.

The incorporation of experiential knowledge into formal knowledge
presents a subtle and deeply rooted conundrum from which even the
greatest mathematician cannot escape. It causes great difficulty to students
whose life experiences make them familiar and comfortable with a vast
range of computations to do mathematics, yet wary of handling what may
be (to them) needless and complicated proof.

For instance, I sat in a colleague’s analysis class not long ago as he
attempted to avoid too deep a discussion of the axioms for the real numbers
by suggesting that they could assume any properties of the arithmetic of
numbers, but needed to prove things about their order. One of the
problems was to use the rules that any non-zero number a was either
positive, or –a was positive (but not both), and that the sum and product of
positive numbers was again positive. To prove that 1 is positive, they were
asked to note that either 1 or –1 is positive, and if –1 were positive, so is
the product (–1)(–1), which is 1. Since only one of 1, –1 can be positive,
the only possibility is that 1 is positive and not –1. Hence they could
conclude that 1 is positive.

What a foolish exercise for students to be asked to perform at this
developmental stage! Their experience in number as young children starts
with the ordered sequence, 1, 2, 3, … The number 2 comes “after” 1, and 3
“after” 2; 2 is “bigger” than 1 and 3 is “bigger” than 2, and  1 is certainly
“bigger” than nothing! So “1 is positive” is part of their essential belief
structure going back to their earliest memories. How foolish to ask them to
prove something they know so intimately, using later developments in
which they are far less secure!

The effects of different cognitive styles in advanced
mathematical thinking: the case of the limit concept

What happens to natural and formal learners when they encounter the
definitions and deductions of advanced mathematics? The natural learner
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must take his or her current knowledge and attempt to fit the definition into
place. This usually requires a considerable amount of reflection and
reorganisation of knowledge which defeats many. Indeed, those “natural
learners” who have yet to understand the role of definition as formalising
an entirely new concept and deducing its properties, already “know” many
of the properties and are confused by the whole issue. Others, however, can
be successful and are characterised by giving meaning to the definition
from their richness of experience.

Formal learners, on the other hand, are those who attempt to take the
verbal definition at its face value and use it to extract meaning by playing
with it. Once again, some are successful and some fail, as we shall see by
considering specific individual experiences in confronting the definition of
limit of a sequence.

(i) Students building of operable definitions

Both formal and natural learners are capable of building a coherent
definition of limit. A formal learner may concentrate on the definition as
given and try to make sense of it. Ross, for example, a “formal sense-
deducer” first routinised the definition by repeating it over and over again.
He also reflected on the definition and began to be able to use it in a
meaningful way. He wrote down the definition as follows (Pinto, 1996):

(Ross, first interview)

He went on to explain that he coped by:
“Just memorising it, well it’s mostly that we have written it down quite a
few times in lectures and then whenever I do a question I try to write down
the definition and just by writing it down over and over again it get
imprinted and then I remember it.” (Ross, first interview)

He did have some visual ideas as to what was going on, and drew the
following picture:

(Ross, first interview)
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However, he explained:
“Well, before, I mean before I saw anyone draw that, it was just umm . . .
thinking basically as n gets larger than N, an is going to get closer to L, so
that the difference between them is going to come very small and basically,
whatever value you try to make it smaller than, if you go far enough out
then the gap between them is going to be smaller. That’s what I thought
before seeing the diagrams … something like that.” (Ross, first interview)

Three weeks later, when asked to write down what was meant to state that a
sequence was not convergent to a limit L, he first wrote down:

(Ross, second interview)

then negated it by using the formal negation of quantifiers (passing a “not”
over a universal or existential quantifier changes one to the other), to give:

(Ross, second interview)

Note how he introduces ∀ L in the second statement, corresponding to the
implicit unwritten ∃ L in the first statement. But despite this subtle
understanding of the original definition and its formal negation, there is an
error in the negation. By writing “∀  ε>0, ∃  N(ε)” in the original definition
to indicate that N depends on ε, he then erroneously wrote the negation as
“ ∃  ε>0, ∀  N(ε)” but now N does not depend on ε. Had he simply written
“ ∀  ε>0, ∃  N”, then the portion of the negation “∃  ε>0, ∀  N” would have
been satisfactory, by default. In other words, by giving additional meaning
to the definition, he exposed an error in the routine negation that would not
have been visible had he written out the definition in its basic form. Such a
problem proved easy to remedy by asking him to think it through, which
led to him being able to self-correct his error.

In essence, Ross’s initial method of working is to begin by familiarising
himself with the definition, routinising it by practising saying it, then, when
he has the grasp to write it down he plays around with it to extract sense
from it (Pinto, 1997).

Another student, Chris, approached the task as a “natural learner”, but
one who had great experience of reflecting deeply on what he was doing
and reorganising his thinking to take account of new meanings. He worked
from his current knowledge structure by drawing a picture and using it to
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build a meaning for the verbal definition. When asked to write down the
definition, he wrote:

(Chris, first interview)

He explained:
“I don’t memorise that [the definition of limit]. I think of this [picture] every
time I work it out, and then you just get used to it. I can nearly write that
straight down.”
”I think of it graphically ... you got a graph there and the function there, and
I think that it’s got the limit there ... and then ε once like that, and you can
draw along and then all the ... points after N are inside of those bounds. . . .
When I first thought of this, it was hard to understand, so I thought of it like
that’s the n going across there and that’s an. ... Err this shouldn’t really be a
graph, it should be points.” (Chris, first interview)

His description is suffused in physical movement, pointing at the graph,
fixing the limit value, gesturing above and below to show the range from ε
below to ε above, moving along to the left to show increasing n, then
pointing to the number N, and gesturing once more to the region to the
right where the values of the sequence lie within ε of the limit.

Notice that Chris also made an error (drawing a curve instead of points
for the values of the sequence), but again, he was able to self-correct using
his wider cognitive connections.

When it came to negating the definition, he first clarified the issue by
asking “did you mean does not tend to a limit L  or does not tend to any
limit” and then thought through the whole thing meaningfully, writing:

“A sequence (an)  does not tend to a limit if for any L, there exists ε>0 such
that |an–L| ≥ ε  for some n≥N for all N ∈ ΝΝΝΝ.” (Chris, second interview)

This is an exceptional feat of thinking not found in many students. It is
more demanding than the formal method of negating quantifiers used by
Ross. Of 250 students majoring in mathematics asked to describe how they
remembered the definition of limit later in the course, only five mentioned
the use of a picture. Even if pictures are used in the first place (which may
very well have happened with far more than the five who later recalled it),
it seems that the visual approach is largely supplanted by the symbolic
definition when the latter becomes operable.

These two students exhibit two quite distinct approaches to success with
the limit concept. One, the formal sense-deducer, focuses on the verbal
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definition, remembering it and reflecting upon it to extract its meaning. He
works from the mathematics to extract meaning that is implicit in the
definition. The other, the natural sense-constructor, works from his own
experience, using pictures and physical actions to give a sense to the
concept from which he can build the written definition (Pinto 1997) The
formal thinker focuses on the given formalities of the mathematics and
deduces properties of the concepts by using the formal rules given, the
natural thinker builds from personal ideas to construct meaning for the
definitions and their properties and then uses his naturally developed
intuitions to suggest theorems and to use definitions to prove them.

(iii) Less successful students

A large number of students cannot cope with the definition of limit and
remember it inaccurately (Pinto, 1996).

 (Robin, first interview)

 (Colin, first interview)

Colin used a picture at this stage to support his thinking:

.

Unlike the visualisation used in the previous section by Chris, this picture
involves a restricted concept image of a decreasing function or sequence.
His imagery therefore is not being distilled to give the essential meaning of
the limit  Instead he is using a limited image to draw out limited meaning.
Although Colin denoted the limit by l, he considered it as a lower bound (a
common concept image, see for example, Cornu, 1981, 1991). He also
wrote ε instead of l+ε possibly relating the definition to the introductory
work in the course which began by studying sequences with limit zero. He
explained:
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“.. umm, I sort of imagine the curve just coming down like this and dipping
below a point which is ε ... and this would be N. So as soon as they dip
below this point then ... the terms bigger than this [pointing from N to the
right] tend to a certain limit, if you make this small enough [pointing to the
value of ε].”

Again he uses physical gestures to demonstrate the ideas, but his written
definition is flawed, with an existential quantifier for ε and the intimation
that N is just “a large positive integer” without linking it explicitly to ε.

Unsuccessful Negation

Neither of these students could cope with the formal idea of a non-
convergent sequence. For instance, Robin wrote:

“A sequence an does not tend to the limit L if for any ε > 0, there exists a
positive integer N s.t. |an–L| > ε, whenever n ≥ N.”

(Robin, second interview)

The original quantifiers for the definition of limit here remain unchanged,
and all that is changed is the inner inequality |an–L| < ε incorrectly negated
to give |an–L| > ε. He is unable to treat the whole definition as a meaningful
cognitive unit, and simply focuses on the inner statement as something
which he can attempt to handle.

The other student, Colin, said:
“Umm ... I would just say there doesn’t exist a positive integer because we
can’t work it out ... no ... you cannot find an integer  N ...”.

and wrote
There exists a term where |an–L| ≥ ε where n ≥ N, where N is a positive
integer. (Colin, second interview)

(ii) Further along the spectrum

Other students’ remembrances of the definition of limit of a sequence (two
weeks after encountering it) reveal a collage of isolated ideas (Tall, 1994).

(a)

(b)

(c)
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(d)

In these cases the students remember isolated facets from the definition and
from their concept image. The first remembers something about the limit l,
then changes the symbol to a δ, relating to the definition of limit of a real
function rather than limit of a sequence. The second remembers xn getting
within ε of the limit, |l–xn|<ε, but fails to remember the role of N. The
third evokes the term “series” (which was more recent in their experience
than sequence), remembers the range of values “something ± something”
but gets it as ε±λ rather than l±ε. The fourth remembers dynamic imagery,
including a warning that the sequence can reach the limit, yet has an image
of an increasing sequence not exceeding the limit, and adds a further fact
that sn+1–sn tends to zero, which is true but not part of the definition.

Bewilderment shines throughout these responses. In the exam the
students pick up marks by using procedural methods for proving
convergence of series involving computations which make them feel
comfortable, but few have any conception of the role of definition. Some
find the world of formal analysis at variance with their real-world
experiences. Some training to be teachers daily teach young children by
example and see no relevance for esoteric proof in their future profession.
In interviews remarks such as the following arise:

I can do examples with numbers and things like that but I can’t do things
with definitions. I just don’t know what they are about.
I mean it’s not as if these things are real. You need to swot them up to pass
exams but you are never going to use them again.
When I try to prove things in my teaching, I show examples and do it in
particular cases. In school I’ll never have to teach stuff like this.
I work at the example sheets but after a while I get so mad, all I want to do
is throw the papers all over the kitchen.

None of these even attempts to be a formal learner. Their natural focus is
on their experience, rooted in the real-world, where a definition involves
saying enough about a particular concept to enable someone else to be able
to identify it. Instead of “distilling the essence” of the definition in a
minimal, essential manner, they build a growing knowledge base, which is
neither well-focused nor well-connected by adding information that might
perhaps be of some use to pass the examinations.

The two ends of the spectrum are illustrated by the reactions of two
students on first being given the thirteen axioms for the real numbers.
When asked why they thought the lecturer had introduced the axioms,
Caroline, a mathematician in the making said:
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 Well, when you prove things properly you need to say exactly where to
start, what it is you are assuming, and that is what the axioms are for.

She already had a grasp of the formal approach and also brought with her a
rich personal knowledge base.

But Martin, who later gained a good degree in economics was bemused:
I dunno really. I’ve seen most of it before. I knew most of this stuff when I
was about five.

He lives in the real world where his pragmatic grasp of economics will
probably earn him a higher salary than a research mathematician and he
has no conception of the world of formal definitions distinct from his
powerful concept imagery.

Summary

In this presentation we have seen how the long-term development of
mathematical thinking in individuals leads to a bifurcation of thinking
styles. In arithmetic, for example, the more successful build a flexible
knowledge structure with symbols both representing processes to get
answers and concepts to think about problems. The less successful
concentrate more on the procedures themselves, seeking the security of
being able to “do” mathematics in a routine sense but with less long-term
prospect of building flexible mathematical thinking structures.

As the curriculum content develops, new ideas require not only
expansion of knowledge, but reconsideration and reconstruction of old
knowledge. Natural learners, building from what they know to make sense
of the new, can only succeed in these contexts by a process of mental
reconstruction — involving cognitive conflict and confusions that need
powerful fortitude to succeed. A few are successful, but many fail,
stretching the spectrum of success yet again.

Those who develop techniques to work with new knowledge as a formal
game to first be experienced and then understood, can also gain success, but
for them the greatest success occurs when later reflection allows them to
see their new knowledge fitting coherently within a wider context, again
almost certainly requiring cognitive reconstruction.

In the transition to advanced mathematical thinking, the focus of
attention changes to considering new theoretical worlds built upon clearly
stated axioms. Here the natural learner may attempt to give meaning to the
definitions from personal experience, giving meaning to the theory, whilst
the formal learner attempts to gain meaning from the definition, extracting
meaning from the theory. Each of these approaches (and combinations of
the two) have the potential for success and failure. Natural learners, with
powerful and well-connected knowledge structures, who are also willing to
reflect on their ideas and struggle to reorganise it, have the potential to
build a new logical structure built from both intuition and the axiomatic
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foundations. But many natural learners (often including, I regret to say,
many intending primary mathematics teachers) find the interplay of
intuition for concepts they “know” and formalisms they must “prove” to be
a bridge too far. Meanwhile, formal learners have the potential to play with
the new ideas and make sense of the new theory as a separate conceptual
structure. However, this too may fail, as the definitions may appear too
complex to be handled in their entirety.

What does this tell us as we plan for the mathematics curriculum of the
future? It shows that, even given apparently the same learning contexts,
some will succeed and some will fail. Those who succeed at the highest
level inevitably have a more flexible mental structure whilst the learning of
routine procedures can give limited success to do mathematics without
necessarily helping to think about it. Different learning styles exist, for
example, those described here as natural and formal, and each can lead to
success or failure, depending on the individual’s ability to cope with the
essence of ideas within an apparent profusion of detail. Our problem in the
future is to use these insights to maximise the success of as many different
individuals as possible. The evidence here shows that a single method will
not work with all students. There is still a role for the sensitive teacher,
aware of the needs of the student.
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