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This paper presents my current thinking on the problémas
students face in transitionfrom school mathematics to
university mathematics. At school thaccent is on
computations and manipulation of symbols‘det an answer”,
using graphs toprovide imagery tosuggest properties. At
university there is a bifurcation between technical mathematics
that follows this style (with increasinglgophisticated tech-
niques) and formal mathematics, which seeks piace the
theory on a systematic, axiomati@asis. There is abroad
spectrum of student thinking styles, partly genetic, partly
influenced by social experienceand teaching,which pre-
dispose students tdlifferent kinds oflearning techniques.
Using theory developed bipuffin & Simpson (1993), and
Pinto (1997), it may be hypothesis#dtht “natural” learners
build from their experienceand try to makesense of the
mathematics through their current knowledgé&ormal’
learners arewilling to take the mathemati@nd its rules as a
game to be played, to malsense of itwithin itself. Both
natural andformal learners face cognitive difficultiedVhen
natural learners meets new ideas which do not fit their current
ideas (and therefore seem“alien”), some cannot proceed
becausdhey lack anyconceptualstructure to build on, others
canonly proceed by reorganising their own knowledge into a
form that allows them to build the new. Meanwhile, firenal
learner is moreable to take the newideas in their own
restricted contextand attempt to makesense ofthem in a
separatenew compartment. The formaearners may later
encounter problems when attempting to relate the new
constructions to old knowledge. Studeatg rarely at one
extreme or the other, often being a combination of the two;
some are fortunate enough to Hkexible” learners who can
utilise each tobest advantage. In this paper we consider how
different styles of learner have different cognitive problems in
making the transition from elementary to advanced
mathematical thinking.

This paper was presented at the Australasian Bridging Conference in Mathematics at Auckland University,
New Zealand on July 13th, 1997. It is based on earlier published articles together with later developments.



Introduction : Thinking about Symbolism

This paperwas prepared for araudience of school mathematics teachers
and university mathematicians. It migtiterefore be appropriate talk
about some topic in mathematics, but instead | wistuto our attention
from the mathematics alone to the way in which whkink about
mathematics. We all have the experience of thinking in our own personal
way and may haveensedhat others do not always think in exactly the
samemanner. In particular, we do natways thinkmathematicallyabout
mathematics. Let me explain what | mean by this.

Justbefore | started writing this article on my computer, | decided to
tidy up some of the files on my computer desk-top, throwing some into the
waste-basket and movingthers to a choice of two different folders. At
each stage | had to decide which of the folders omiste-basket thile
should go to and move it. After doing several of these | moved the icon for
the waste-baskdtom down in the left-hand corner up to the right in a
more convenient place. As | toadach decision, it was not lorgefore |
became immersed in the process and found myself moving unwanted files
not to icon for the waste-basket, but down to the bottomctafher where
it was previously found. So, | had failed to make the actioase efficient
because deeply ingrained in my subconscious was the physical wbtoa
to put unwanted files. Although tonsciouslychose to do the action
efficiently, unconsciously there were deeply ingrained habits of old that
took command of my thoughts and actions.

It is this kind of idea that | am trying to focus on at the momfiten
we operate on mathematical symbols we may learn to operateruieth
formulated in a mathematicaénse, but in thionger run weuse all kinds
of deeply ingrained mental and physical processesatoy out agiven
mathematical operation, arnldese ingrained processa® not thesame as
natural laws of mathematicBor instance, though we might learn dolve
the equation
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by “multiplying both sides bya’, we may later“see” the a move across
from the left-hand denominator to the right-hand numerator.
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It proves efficient to utilise our humaactions of “moving” symbols
around, yet there is also a need to be able to reflect on the action to relate it
to mathematical decision-making processes. The problem ighess often
get translated into unconscious acts that mayassociated withrules of

thumb such as “change sides, change signs”, “cross-multiply”, fitwoises
make a plus” etc.



The tensions that arise in such mental activiaes complex and can
manifest themselves in\ariety of ways. Not only may old rulagmain
unchanged and be usethppropriately, new rules may supplant oldes
and be usethcorrectly whenrearlier work is recalled. Fomnstance,rules
of thumb in arithmetic can be mistranslated in algebra, and those in algebra
can be mistranslated in arithmetic. An example of fhrener iswhen a
fraction is seen to involve “dividing the top number by the bottom number”

o) that% Is correctly computed by dividing 12 by 2. Yet in the algebraic

expression?f;—lﬁ2 “dividing the top number by the bottom number’ may be

incorrectly given asa®. In algebra the rule to comput®® x4a® to give
12a° by “multiplying coefficients and adding powers” may be mis-applied
back in arithmetic to compute® x4°® as 12°. Both of theseerrors (and a
variety of others) prove to be made by a significant proportion of students.

Such errors have led to a theory of “buggy arithmetic” where children’s

mistakesare seen to be aesult of “mal-rules” ratheithan arbitrary slips.
But such a theory is already missing the boat. To attempt to seackone
how to get correct answers only by correcting theirors may simply
replacing one rote-learnt routine by anoth8uch alimited strategy is
likely to fail to help the individual build up a coherent overarchsegse of
mathematical conceptualisation.

Instead we must look more closely at the subtle relationship between the
mathematics and the manner in which it is conceived by the individual. It is
my observation that the routines that we learn in mathematics serve in two
very distinct capacitief-or most theyenable individuals tacarry out a
specific computation, but then there is a “parting of the wayisst
described eloguently to me by Eddie Gray (eg. Gray, 1991, 1988)e
remain fixed in the mechanics of theutine — able tgerform it, able to
build up a collection of routines to operate in different circumstances.
Others develop a more flexible way of ussygnbols — seeing them both
as processes to be computed and also as mental concepts to be manipulated.
For such fortunate individuals arithmetic takes amae generativéorm,
where known facts, such as 4+4 makes 8 are used to generate derived facts,
such as 14+4 makes 18 or 4+3 makes 7.

A consideration of the possible _
formal links required (as illustrated) ® @
suggest that thesare more complex '\
than counting on (4), 5, &. The only @3 is one less thanBa
way that the cognitive links can give an ‘
advantage is that they must highter

and therefore different from tHermal "

deductions.




Symbols as process and concept

Inspired by asuccession ofhinkers on cognitive development—including
Dubinsky (1991) and Sfard (1991)—Eddie Gray and | noted, as had others
before us, that symbols in arithmetic, algebra, calculus, and a wide range of
other mathematical contexts had a certain characteristic. The following
symbols illustrate this:

5+4, X4, 3t+2Db,

3 3 .
. X —a d[snx+cosx[] .2m 2 o 1
lim—7mM, — —————— e cosxdx, y . —,
X-a yx—a dXDX2+3X+1[r IO Zn-an
These all play a dual role representing both a mathematioakssto be
carried out and theesult of that process. Fomstance 5+4 evokes the
processof addition to produce theonceptof sum 5+4, which is 9,83-2b is

a both process of evaluation and a concept of algebraic expression, and

z:qiz is the process of evaluating an infinite sum to find the hraitie

n
(which happens to be2/6).

The nameprocept was introduced for the combination of symbol,
process and concept which occurs when a symbol evokes a process to give
the resulting concept (Gray & Tall, 1994). We were interested in the way
in which individualsinterpret symbols in arithmetic, algebra amdlculus,
causing some students to find mathematics essentedly yetothers
finding it increasingly difficult.

We emphasise that tlemgnitive notion of procept carries with it no
implication as to howthat cognitive structure iduilt. Indeed one of our
purposes was to investigate the concept-building of such symbols. However,
in many practical contexts, we often found that the meaningywofbols
developed through a sequence of activities:

(a) procedure where a finitesuccession of decisio@d actions

IS built up into a coherent sequence,

(b) processwhere increasingly efficienivays become available

to achieve the same result, now seen as a whole,

(c) procept where the symbols are conceived flexibly as

processes tdo and concepts tthink about

Initially the individual builds an “action schem@h the sense ofPiaget) as

a coordinatedsequence of actions. At th@ocedural level, the focus of
attention concentrates on how to do each step and how this leads to the next.
Following Davis (1984), weise theterm “procedure” for aspecific finite
sequence of decisions and actions. In contrastetime “process” idused in

a more generatense, such as “the process of addition” or the “process of
solving a linear equation”. A process may have several different procedures
which give the sameesult. For instance, theymbols 2x+3) and X+6
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involve two differentsequences otomputation, but represent what we
consider to be the same process. In this way the funf{txpn2(x+3) is the
same function ag(x)=2x+6 because they have identical input and output.

The addition 2+7 might be performed in a variety vadys, say by
counting two sets, then both together, or starting at 2 and counting on 7, or
counting on 2 starting at 7, or simply knowing that 2+7 makes 9. Now the
symbol 2+7 may be seen not only apracess(of addition), but also as a
concept(of sum), so that 2+7 not onigakes9, but 2+7is 9. This canead
to a rich web of relationships, so that, if “2+something” is 9, then the
“something” is 7, and on to other facts involving place vakgh as
32+7=39 or 70+20 =90.

The child whoseesaddition only as a “counting-on” procedure is likely
to seesubtraction as a “counting-backdrocedure, countindpack 9-2 in
two steps as8, 77, or 9—7 as count-back seven stéps7, 6, 5, 4, 32"
incorporating lengthy counting procedures that prove to be increasingly
more difficult to carry out correctly.

Proceduresallow individuals todo mathematics, but learning lots of
separate procedures and selectingajeropriate one for a given purpose
becomes increasingly burdensonfoceptsallow the individual not only
to carry out procedures, but to regaasgmbols as mental objects, so they
can not onlydo mathematics, they can alsloink about the concepts. For
such a student witbowerful mental connectiongreater abstractiogives
greater simplicity, whilst theless successful student isft with ever
increasing complexity and the greater likelihood of failure.

To DO To perform To THINK
routine mathematics about
mathematics flexibily & mathematics
accurately efficiently symbolically
Procept
Process(es)
Procedure(s)
Progress

Process
Procedure(s)

Procedure Sophistication

of development




A consequence of this is that those students whah@lomake enough
appropriate mental connections may be able to do the current problems but
have afar greater mental burden and falhck on the need to routinise
mathematics to be able to “do” tipeocedure to get an answer. They can
therefore“do” a problem in a limited context argke this aSsuccess” but

are not developing the long-tergonnections to be able to think about
more sophisticated ideas.

| conjecture that this is a major reason why mastydents are
“damaged” by their experiences in school, apparently learning hddoto
mathematics but unable to link togethdeas whichare, for themgither
meaningless or too complex. The common fall-back position is to routinise
specific procedures to be able to do routine examples, but without the
flexibility to cope when the problem is dressed up in a different manner or
in a new context. regret thathis is also a common fall-back position for
many school teachers, especially in thter stages ofsecondary education
where the going is gettingpugher forstudents meeting symbols that they
need to manipulate but do not fully understand.

This problem is far more prevalent than one mighish to
acknowledge,for instance, MacGregor anétacey (1993) asked the
following question of 255 mixed ability year 9 students (aged 13 to 14):

zis equal to the sum of 3 agdWrite this information in mathematical symbols.

Of the total questioned, 43% gave either an incorrect response teftgn
or y=3z), or made no attempt.

Studentsvery often learn to do whaileaseshe teacher, and is it no
wonder, when what they amsked to do often has meal meaning for
them. Aclassical case ithe definition of a negative or fractionpbwer.
For astudent who knows that a product of three fivex5(b) can be
written as 8, and a product of four threesx@®<3x3) can be written as?3
the rhythm of the notation sodniecomegart of their inner harmony “da
times da” is da raised to the power two, “da times da times da” is da raised
to the power three, and so on. After experience of meanlp as this,
what canal’2mean? Can it mean “half ammultiplied together’? Or can
a” be “minus twoas multiplied together”?

For manystudents, the idea tha™ means‘m lots of a multiplied
together” hasas a consequencéhe property thag® xa® is a> and, more
generally thata™a" is a™". But this explains aatural property of whole
number powerswhich disintegrates when the powers are taken to be
rational or negative numbers. The condegd no meaningat least it has no
meaning in the conventional sense. Hence the fact that the vahl€ afan
bededucedrom

a1/2 x a1/2 — a1/2+1/2 — a1 —a
also seems somewhat peculiar.



Somestudents who focus on the essentials of the notafienhappy to
accept thisargument. Such students havehe potential to become
mathematicians. But those who see it as a piece of conjuring, aimed to give
a meaning to the unmeaningful, to use rules without reaaom, only
naturally likely to see mathematics at this stagerakes that are to be
learned without having to have a reason.

Natural and Formal Learners

When faced with new mathematical ideas, individuals behavkffierent
ways. In arithmetic the moresuccessful studentalready have flexible
interlinked structures which support thee of symbolism both as process
to get results and concept to think about. Té¢ss successful focusore on
the security ofperforming the algorithms and have limitesliccesswith
routine problems. As their development continues through mathematics, the
differences begin to diverge evemore. In facing new ideasome have
little cognitive structure to build on and are likely to fall back efgnher
on rote learning. But even those with a growing richness of cognitive
structure develop different personal approaches.

One method of categorising different approaches isatp “does the
learner build on current structures nakesense othe new mathematics,
or does the learner try to make sense of the mathematics as a task in itself?”
In other words.does the student synthesfsem their experience to build
the new mathematical ideas or analyse the new mathematical ideas to build
a system in itself which may perhapater be integrated with old
knowledge. Duffin & Simpson (1993) call tHfermer “natural” learners
and the latter “alien”. As | struggle witthese ideas myself, prefer the
names “natural” and “formal”’. A natural learner tries to ma&ase of new
ideas using current knowledge, a formal learner gives the new knowledge a
chance to develop its own meaning by playing with it without initially
feeling the need to link it to other knowledge.

In faced with the introduction of fractional and negative poweasral
learners are likely to meet a conflict. Their experiencamis of “m lots
of a multiplied together” is fine fom2, a3, ..., a27, ... . But the concept of
a'? does not fit this meaning. This can have a variety of effiertshe
natural learner, itmay mean that the learner cannot give anganing
whatsoever to the notation and can only cling to anything that is given or
said in class tdhelp the student cope. This is the road meaningless
manipulation, learning rules to give the answer required by the teacher.

An alternative is to concede that’?> meanssomethingand toconcede
that the rule for powers coultbnceivably also apply to fractional powers
and then to see, for consistency, th#f can be taken to béa. A “formal”
learner may say “OK, | don't know what’? means, but for a time, let me
play the game presented to me as®kwhat happens.” This allows the
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individual to suspend beligbr a time and tamanipulate the symbols to
gain asense ofwhat might happen, leading to the possibility, indeed,
coherent likelihood that”? can be taken to béa. The formal learner,

with no immediate qualms about manipulating things that don’t seem to
have meaning, can eventually develop meafiom theactivities that are
carried out. Perhaps later thegn also look back with hindsight and see
that the extended definition ™ to include rational (and negativealues

of a, indeed, when the graph d®* or €* is drawn (perhaps by a
computer), the “filled-in"values ofx to include fractional anahegative
values begin to give a global alternative meaning of its own. Thus both a
natural learner, willing to restructurknowledge, and a formdlearner,
willing to take new ideas atheir face value and give meanitigrough
playing with them, have long-termossibilities of succes8ut the natural
learner who isconfused by the new meanings or the attemptadal
learner who is unable to get the new ideas to fit together in a coherent way
will face more serious long-term difficulties.

Long-term difficulties with symbols in elementary mathematics

As the mathematicalurriculum develops through arithmetic, algebra and
calculus, the symbols operate in subtiferent ways, of which the
following are examples:

(i) arithmetic proceptssuch as 5+4,X3}, 1, +2;, or 1-54+2.3,
have explicit algorithms to obtain an answer, betome
increasingly difficult for the procedural learner.

(i) algebraicprocepts such as @3b, do not have an “answer”
(except by numerical substitution), but they can be
manipulated using more general strategies, whagain
coerces the procedural learner into rote-learningsofated
techniques,

(iii)  implied proceptssuch asl/2 or a—2, which are the results of
operations which initially have no meaning but can be
deduced from assumed properties of the symbolism,

(iv) potentially infinite proceptssuch as

3 3
. X —a o 1
!(ng X—a ' znzl?
involve a potentially infinite process of “getting close” to a
limit value, which may be computed by a numerical
approximation and sometimes by a symbolic algorithm.
(v) calculus proceptssuch as
d [(sinx+ cosx[]

dxOx? +3x+10

I X COS X dX



which are potentially infinite as limit concepts, but can
(sometimes) be computed by using the standard rules of
differentiation and integration.

At this moment in time | do not claim that these aredily different types

of procept, but they illustrate my point that thlee of symbolism for
computation and manipulation involve different problems different
contexts. Each of the above requires neways of thinking about the
symbolism, a change of conceptualisation that proves difficultmany,
particularly for “natural learners” who armable to cope with changes in
meaning. A child who thinks of a sum 4+3=7 as a counting procedure in
which “4 plus 3makes7” may find it difficult to cope with a symbauch

as 4+% which does not “make” anything, except perhaps to “do the bit 4+3
that makessense’and get X, which doesnot make sense. This leads to
great confusions for many students starting algebra.

Likewise, a student who is used to “doing” mathematics in a finite
number ofsteps mayfind it difficult to cope with the potential infinity of
the limit process. In practicetherefore, even if studentsare given
“explanations” of the potentially infinite limit process of calculating the
derivative at a point, they are very likely to be far happier with the security
of the calculus computation because itresniniscent of the operational
procepts of arithmetic. The rules for differentiation may not give a
numericalanswer, but they provide an algorithm that produces an answer
in a finite number of steps.

The variety and differences between the performandbesiedifferent
types of procept demonstrate the subtle difficulties underlying the
mathematicalcurriculum. Instead of being a comfortablsequence of
successive pieces @&nhowledge building coherently on what wdrgfore,
the mathematics curriculum is actually littered with subtle hurdlestripat
up thelearner, but are nalways apparent to thexpert. Ateach ofthese
points of difficulty some students succeed, but an increasiumgber fail.

The “failure” can be disguised by learning how to mlocedures anthis
becomes increasingly so as studentsofgr, including many whaoeturn

to teach in school, believing that repetition and rules of thumb are the
(only) way for all to learn mathematics.

The Transition to Advanced Mathematical Thinking

There are various possible points in the mathematics curriculum which may
gualify as signalling a change to “more advanéeans of mathematical
thinking”, including those in the previous section coping ws§mbols
defined by their propertiessuch asa’?, or those involving potentially
infinite processes, such as the notion of limit in the calculus, or those which
have not beenliscussedhere involving proof in geometry. However, the
significant change which has been widely considered msjar change in
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thinking processes is that in which definitions are given as axioms to build
up systematic mathematical theories (dee, instance, Tall, 1991). This
change often coincides with a mathematics students rmowe school to
university.

Definitions as criteria for building concepts formally

In thinking about a mathematical concept, suchliest, group, vector
space continuousfunction and so on, there is a great deal more cognitive
structure involved than the formal definitions and formetuctions made
from those definitions. The student must have previous experience which
develops intuitions that suggest what will make a good definition, and what
theorems are likely to be proved. Tall & Vinner (1981) defined the
concept imagdo consist of “the total cognitive structure thatassociated

with a concept, which includes all the mental pictures assdociated
properties and processes”. It is the concept image which provides the
underlying structure for thinking about the concept, bmthsciously and
subconsciously.

In elementary mathematics we build up concdpisn our experiences
in which the experience often comésst and the words araised to
describe it. It can also happen that words ased initially to describe a
concept, but then that concept is something which the individual is about to
encounter and gain experience of through interacting with it.

In advanced mathematics something new happens. When we say “a
group consists of a set and l@nary operation on that set satisfying the
following properties ...” we are doing more than stating some of the
properties which holdor a concept about to be encountered. We @s®
statingprecisely what is necessafyr somethingencountered to bealled
“a group” . In other words, the definition we give state a humbecridéria
which must be satisfied in order for us to know we are indeed dealing with
(an example of) the given concept.

A concept definition is a statement in words and symbols which
identifies a particular concept. lmdvanced mathematics a concept
definition specifiesprecisely what is required for a given notion to be
considered an instance of that concept. It may (and usually doesjnloage
attributes, but it cameverhave less. We use the attributes specified in the
definition to deduce other properties, so that we then know thasyestgm
which satisfies theriteria specified in the definition has all th@operties
deducedrom the definition. Thigyives a huge power of generalitpnce
the properties required ameducedfrom a definition, any system also
satisfying the definition also has those properties.

However, this can also create a huge potential conflict for the student. A
formal concept imagemust be constructed consistimonly of those
properties which can be formally deduckdm the definition. Yet, in
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building suchproperties, the concept image used to suggest possible
theorems and proofs. The individual must make an almost schizophrenic
separation between the intuitive appeal to the concept imageeinsds
mathematical truth and the formal deduction processes that estalilidines
practice, this separation rarely, if ever,accomplishedFor instance, if

one studies the Peano Postulates, how does one “know” that 2+2=4 or
999+2=10017 Is it througbeductiondrom thepostulates, or an elemental
knowledge built up since childhood? In practice it is of course a mixture of
the two, with a belief that those things that have not been forrdatiyced
could be proved if this were ever desired. Experts becaconastomed to

this convention, but novices may peofoundly disturbed in not knowing
what it is they are “allowed to knowtom their experientiaknowledge as
opposed to “knowing” from deductive proof.

The incorporation of experiential knowledge into forniadowledge
presents a subtle and deeply rooted conundftom which even the
greatest mathematician cannot escapealisegyreat difficulty to students
whose life experiences make thdamiliar and comfortable with aast
range of computations o mathematics, yet wary of handling what may
be (to them) needless and complicated proof.

For instance, Isat in a colleague’s analysis classt long ago as he
attempted to avoid too deep a discussion of the axioms for the real numbers
by suggesting that they coultksume anyproperties of thearithmetic of
numbers, but needed to prove things abthdir order. One of the
problemswas to use theules that any non-zero number was either
positive, or -a was positive (but not both), and that the sum and product of
positive numbers was again positive. To prove that 1 is positive waes
asked to note thagither 1 or —1 is positive, and if —1 were positive, so is
the product (-1)(-1), which is Binceonly one of 1, —1 can be positive,
the only possibility is that 1 is positive and not +Hencethey could
conclude that 1 is positive.

What afoolish exercise forstudents to be asked fmerform atthis
developmental stage! Their experience in number as young chithds
with the ordered sequence, 1, 2, 3, ... The number 2 comes “after” 1, and 3
“after” 2; 2 is “bigger” than 1 and 3 is “bigger” than 2, and 1 is certainly
“bigger” than nothing! So “1 is positive” is part of theassential belief
structure going back to their earliest memories. How foolish to ask them to
prove something theknow so intimately, using later developments in
which they are far less secure!

The effects of different cognitive styles in advanced
mathematical thinking: the case of the limit concept

What happens tmatural and formal learners when they encounter the
definitions and deductions of advanced mathematics? The nétaraler
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must take his or her current knowledge and attempt to fit the definition into
place. This usually requires a considerable amount of reflection and
reorganisation of knowledge which defeats many. Indeed, those “natural
learners” who have yet to understand the role of definitiofoamalising

an entirely new concept and deducing its properties, already “kn@amy

of the properties and are confused by the whole issue. Others, hooaver,
be successful andre characterised bgiving meaning to the definition
from their richness of experience.

Formal learners, on the other hand, are those who attempt to take the
verbal definition at its face value amnde it to extract meaning by playing
with it. Once again, some aseiccessful and sonfail, as we shalkee by
considering specific individual experiences in confronting the definition of
limit of a sequence.

(i) Students building of operable definitions

Both formal and natural learners awapable of building a coherent
definition of limit. A formal learner may concentrate on the definition as
given and try to makaense ofit. Ross,for example, a “formalsense-
deducer” first routinised the definition by repeating it over and over again.
He also reflected on the definition and began to be able to use it in a
meaningful way. He wrote down the definition as follows (Pinto, 1996):

(o)
Avqaa b b e L& ¥ 60, INE e
o VY SN,

‘A. -L[ < €.

(Ross, first interview)

He went on to explain that he coped by:

“Just memorisingit, well it's mostly that we have written ilown quite a
few times in lectures and then whenever | do a question | try to dove
the definition andjust by writing it down overand over again it get
imprinted and then | remember it.” (Ross, first interview)

He did have some visual ideas as to what was gomgand drew the
following picture:

—————— e e e

- ~ N~
\\ S \;X R I

0
™

(Ross, first interview)
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However, he explained:

“Well, before, Imeanbefore Isawanyone draw that, iwas justumm ...
thinking basically as gets larger thai, a, is going toget closer td_, so
that the difference between themgising tocomevery small andbasically,
whatever valug/ou try tomake it smalletthan, if you gofar enough out
then the gap betwedghem isgoing to be smaller. That's what | thought
before seeing the diagrams ... something like that.” (Ross, first interview)
Three weeks later, when asked to write down what was meant to state that a

sequence wasot convergent to a limik, he first wrote down:

\4 o 3 N(g) o [V

ok V"%I\/
‘o\,\\L , < &,

(Ross, second interview)

then negated it by using the formal negation of quantifeassing a “not”
over a universal or existential quantifier changes one to the) otbajive:

VL
| ] Cyo .o \V/N(E)ell\f 3 SYY
T
I%i} 3¢
(Ross, second interview)

Note how he introducelSIL in the second statememprresponding to the
implicit unwritten L in the first statement. Butlespite this subtle
understanding of the original definition and its formal negation, there is an
error in the negation. By writing ¥ €>0, LIN(g)” in the original definition
to indicate thatN depends o, he then erroneously wrote the negation as
“Oe>0, O N(g)” but now N doesnot depend ore. Had hesimply written
“[0 e>0, N, then the portion of the negationl€>0, [J N” would have
been satisfactory, by default. In other words, by givadgitional meaning
to the definition, he exposed an error in the routine negation that would not
have been visible had he written out the definition in its basm. Such a
problem provecdeasy toremedy by asking him to think it througlahich
led to him being able to self-correct his error.

In essence, Ross’s initial method of working is to begin by familiarising
himself with the definitionroutinising it by practising saying it, thenyhen
he has the grasp write it down he plays around with it textract sense
from it (Pinto, 1997).

Another student, Chris, approached the task as a “ndeaater”, but
one who had great experience of reflecting deeply on whatasedoing
and reorganising his thinking to take account of new meaninga.oHesd
from his currentknowledge structure by drawing a picture and using it to
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build a meaningor the verbal definitionWhen asked tavrite down the
definition, he wrote:

| B Mﬁmbm, _,WW
MU £v0, tee  exb N e
M W I“H’Ll<f W”VM”}/\/

(Chris, first interview)

He explained:

“I don’t memorise that [the definition of limit]. | think of this [picture] every
time | work it out, and thenyou justgetused to it. Ican nearly writethat
straight down.”

"I think of it graphically ... you got a graph there and the function there, and
| think that it's got thdimit there... and there once likethat, and you can
draw along and then all the ... points afteare inside othosebounds. ...
When | first thought of this, it was hard to understand, so | thoughtilkd it
that’s then going across there and thadis ... Err this shouldn’'teally be a
graph, it should be points.” (Chris, first interview)
His description is suffused in physical movement, pointing atdgfaph,
fixing the limit value, gesturing above and below to show the rédrgge ¢
below to € above, moving along to the left to show increasmgthen
pointing to the numbeN, and gesturing once more to the region to the
right where the values of the sequence lie withof the limit.

Notice that Chris also made amror (drawing a curve instead @oints
for the values of the sequence), but again, he was alleftgorrectusing
his wider cognitive connections.

When it came to negating the definition, he first clarified idseie by
asking “did you meamuloes not tend to Amit L or does not tend tany
limit” and then thought through the whole thing meaningfully, writing:

“A sequenced,) does not tend to a limit if for arly, thereexistse>0 such

that p—L| = € for somen=N for allN O N.” (Chris, second interview)
This is an exceptional feat of thinking not found in many students. It is
more demanding than the formal method of negating quantiised by
Ross. Of 250 studentsajoring in mathematicasked to describe how they
remembered the definition of limit later in the course, only five mentioned
the use of a picture. Even if pictures are used irfitee place (which may
very well have happened with far more than the five who later recd)led
it seemsthat the visual approach is largely supplanted by the symbolic
definition when the latter becomes operable.

These two students exhibit two quite distinct approachesidoessvith
the limit concept. One, the formal sense-dedufsmouses on theverbal
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definition, remembering it and reflecting upon it to extract its meaning. He
works from the mathematicdo extract meaning that is implicit in the
definition. The other, the natural sense-constructor, wnk® his own
experience using pictures and physical actions to givesense to the
conceptfrom which he can build the written definition (Pinto 1997) The
formal thinker focuses on the giveformalities of the mathematics and
deducesproperties of theconcepts by using théormal rules given, the
natural thinker builddrom personalideas to construct meanirfgr the
definitions and their properties and theses his naturally developed
intuitions to suggest theorems and to use definitions to prove them.

(i) Less successful students

A large number ofstudents cannot cope with the definition of limit and
remember it inaccurately (Pinto, 1996).
V9N

A Sequerce (1) Heds +o a tuct L R £ 20 A e ash

eV st
4 ; [da-L] < ¢ y/aw"ooeﬂ a2 VM

(Robin, first interview)
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(Colin, first interview)

Colin used a picture at this stage to support his thinking:

2

Unlike the visualisation used in the previous section by Chris,pibtsire
involves a restricted concept image of a decreasing functicse@uence.

His imagery therefore is not being distilled to give the essential meaning of
the limit Instead he is using a limited image to draw out limited meaning.
Although Colin denoted the limit by he considered it as a lower bound (a
common concept imageeefor example, Cornu, 1981, 1991). Hdso
wrote € instead ofl+e possibly relating the definition to thatroductory
work in the course which began by studyseguencewith limit zero. He
explained:
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“..umm, | sort of imagine the curve just coming doliee this and dipping

below a point which ig ... and this would bé&N. So as soon athey dip

below this point then.. the terms bigger thathis [pointing fromN to the

right] tend to a certain limit, ifou makethis smallenough [pointing to the

value ofg].”
Again heuses physicafjestures to demonstrate the ideas, butwristen
definition is flawed, with an existential quantifiesr € and the intimation

thatN is just “a large positive integer” without linking it explicitly ¢o
Unsuccessful Negation

Neither of these students could cope with fleemal idea of a non-
convergent sequence. For instance, Robin wrote:

“A sequencea, does notend to thdimit L if for any € > 0, thereexists a
positive integeN s.t. f—L| >¢€, wheneven > N.”
(Robin, second interview)
The original quantifiers for the definition of limit here remainchanged,
and all that is changed is the inner inequabtyL.| < € incorrectly negated
to give fn—L| >¢€. He is unable to treat the whole definition as a meaningful
cognitive unit, and simplyfocuses on thanner statement asomething
which he can attempt to handle.
The other student, Colin, said:

“Umm ... | would just say there doesmxist a positive integer because we
can't work it out ... no ... you cannot find an integer...”.

and wrote
Thereexists atermwhere §L| = € wheren = N, whereN is a positive
integer. (Colin, second interview)

(i) Further along the spectrum

Other students’ remembrances of the definition of limit agequencgtwo
weeks after encountering it) reveal a collage of isolated ideas (Tall, 1994).

(a) e & o S E=—N = é S-E& - et

(b) 2w €>c Flaom =t 1Z— =] <€

© Yoo (. S..{

>
M i ——  #od b o Qenct
E+A E-X.
AV N/ QIS PO JN
Where N
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In these cases the students remember isolated fagetsthe definition and
from their concept image. The first remembers something about thd ,limit
then changes the symbol t®darelating to the definition of limit of aeal
function rather than limit of a sequence. The seagentembers<, getting
within € of the limit, |—xp|<e, but fails to remember the role &f. The

third evokes thderm “series” (whichwasmore recent in their experience
than sequence), remembers the rangeahfies “something + something”
but gets it ag+A rather tharze. The fourth remembers dynamimagery,
including a warning that the sequer@n reach the limit, yehas an image
of an increasingequence not exceeding theit, and adds durther fact
that sn+1—Sn tends to zero, which is true but not part of the definition.
Bewilderment shineghroughout these responses. In the exam the
students pick up marks by usingrocedural methodsor proving
convergence of series involving computations which make them feel
comfortable, but few have any conception of the role of definitimme
find the world of formal analysis at variance withtheir real-world
experiences. Somegaining to be teachers daily teach young children by
example and see no relevarfoe esoteric proof in their future profession.
In interviews remarks such as the following arise:

| can do examplewith numbers and thingge that but | can’t do things
with definitions. | just don’t know what they are about.

| mean it's not as if these things are ré@u need taswot them up topass
exams but you are never going to use them again.

When | try to prove things in my teachingshow examples and do it in
particular cases. In school I'll never have to teach stuff like this.

| work at the example sheets but after a while | gehad,all | want to do

is throw the papers all over the kitchen.
None of these even attempts to bfo@amal learner. Their naturdbcus is
on their experience, rooted in tiheal-world, where a definitiomvolves
saying enough about a particular concept to ensdoieeone else to be able
to identify it. Instead of “distilling theessence” ofthe definition in a
minimal, essentiaimanner, they build a growing knowledge base, which is
neither well-focused nor well-connected by adding information that might
perhaps be of some use to pass the examinations.

The two ends of the spectruare illustrated by the reactions of two
students orfirst being given the thirteen axionfsr the real numbers.
When asked why they thought thecturer had introduced the axioms,
Caroline, a mathematician in the making said:

-17 -



Well, when you prove things properly ymeed tosay exactly where to

start, what it is you are assuming, and that is what the axioms are for.
She already had a grasp of the formal approach and also brought with her a
rich personal knowledge base.

But Martin, who later gained a good degree in economics was bemused:

| dunno really. I've seen most of it before. | knew most of this stuff when |

was about five.
He lives in the real world where his pragmatic graspeocdnomics will
probably earn him a higher salary than a research mathematician and he
has no conception of thevorld of formal definitions distinctfrom his
powerful concept imagery.

Summary

In this presentation we haveeen how thelong-term development of
mathematical thinking in individuals leads tob&urcation of thinking
styles. In arithmeticfor example, the moresuccessful build a flexible
knowledge structure withsymbols both representing processes to get
answers and concepts to think abgutoblems. Theless successful
concentrate more on the procedures themsebesking the security of
being able to “do” mathematics in a routieensebut with lesslong-term
prospect of building flexible mathematical thinking structures.

As the curriculum content develops, neeas require not only
expansion of knowledge, but reconsideration and reconstruction of old
knowledge. Natural learners, building from what they knowntike sense
of the new, can onlysucceed in these contexts by a process of mental
reconstruction — involving cognitive conflict and confusions theed
powerful fortitude tosucceed. A feware successful, but manyail,
stretching the spectrum of success yet again.

Those who develop techniques to work with new knowledgefasraal
game to first be experienced and then understood, can alssugagss, but
for them the greatestuccessoccurs when later reflection allows them to
seetheir new knowledge fitting coherently within a wider conteagiain
almost certainly requiring cognitive reconstruction.

In the transition to advanced mathematical thinking, the focus of
attention changes to considering newgoretical worlds built upon clearly
stated axioms. Here the natural learner may attempt to give meaning to the
definitions from personal experienagying meaning to the theoryyhilst
the formal learner attempts to gain meaniragn the definition,extracting
meaningfrom the theory. Each athese approaches (and combinations of
the two) have the potentifdr successand failure. Natural learners, with
powerful and well-connected knowledge structures, who are also willing to
reflect on theirideas and struggle teeorganise it, have the potential to
build a new logical structure buiftom both intuition and theaxiomatic
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foundations. But many natural learners (often includingedret tosay,
many intending primary mathematics teachers) find the interplay of
intuition for concepts they “know” and formalisms they must “prove” to be
a bridge too far. Meanwhile, formal learners have the potential to play with
the new ideas and malsense ofthe new theory as a separa@nceptual
structure. However, this too may fail, as the definitions may appear too
complex to be handled in their entirety.

What does this tell us as we plor the mathematicsurriculum of the
future? It showsthat, even given apparently the safearning contexts,
some will succeed and somaill fail. Those whosucceed at the highest
level inevitably have a more flexible mental structure whilst the learning of
routine procedures can give limitesliccess todo mathematics without
necessarily helping tohink about it. Different learningstyles exist, for
example, those described herenatural andformal, and each can lead to
success offailure, depending on thimdividual's ability to cope with the
essence of ideas within an apparent profusion of detail. Our problem in the
future is to use these insights to maximise dhecess of asanydifferent
individuals as possible. The evidence hehews that a single methoull
not work with all students. There is still a rdie the sensitiveteacher,
aware of the needs of the student.
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