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DAVID TALL 
 

METAPHORICAL OBJECTS IN ADVANCED MATHEMATICAL THINKING 

In their critique of “object as a central metaphor in advanced mathematical 
thinking”, Confrey and Costa (1996) describes members of the Advanced 
Mathematical Thinking Group, including myself, as “reification theorists”. By 
selective quotation they attribute theories largely developed independently by 
Dubinsky and Sfard as being broadly shared. Whilst it is true that many share 
an interest in the relationship of process and object and the mediating role of 
symbols, the notion of “reification” is only part of the domain of discourse. In 
the book “Advanced Mathematical Thinking” to which Confrey and Costa 
refer, only two chapters out of thirteen can be considered as “reificationist” — a 
chapter by Harel and Kaput which focuses on the notion of “conceptual entity” 
as part of a wider theory and a chapter by Dubinsky on “Reflective 
Abstraction”. Quite different perspectives are also presented, for instance the 
first chapter lays out a much broader vista, and later chapters include Hanna’s 
philosophical chapter on “proof”, and Vinner’s chapter on “concept definition 
and concept image: and the work of the French school. In the final chapter (in a 
theory further elaborated in Tall 1995) attention is drawn to the considerable 
difference in development between visually-based theories (e.g. Van Hiele) and 
symbol-based theories (involving symbol as process and object) and how 
advanced mathematical thinking as a theory builds on both of them by creative 
problem-solving and logical theory building. By selectively choosing quotations 
relating only to process and object and remaining silent on everything else, 
Confrey and Costa misrepresent my theoretical position and, I suspect, that of 
other researchers in advanced mathematical thinking. 

Although their title focuses on the use of “object” as a central metaphor in 
advanced mathematical thinking, their argument seems more directed at the 
idea of first carrying out a process then reifying it as an object. To understand 
the nature of such a theory, one must understand the meaning of the terms used. 
Dubinsky asserts that by “process” he means “cognitive process” and includes, 
for example, the construction of a “permanent object” by “encapsulating the 
process of performing transformation in space which do not destroy the 
physical object” (Dubinsky et al. 1988: p. 45). It also means that, given, say the 
axioms for a group, then cognitive processes can be used to prove theorems 
about groups which can be construed as constructing properties of a mental 
object called “a group”. I have no difficulty with this viewpoint; however, I do 
see different types of process giving different types of cognitive development 
and prefer to separate these out. 
In describing a “procept” as an amalgam of process and concept, Gray and Tall 
(1994) refer to a process as a special kind of mathematical process, such as 
“addition of two whole numbers” or “evaluation of an algebraic expression” 
which can usually be performed by one or more specific procedures. A group is 
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therefore not a procept because the symbol G does not represent both a process 
and a concept (although elements of a transformation group are procepts, but 
that is another story). 
Dubinsky’s greater generality allows him a more all-encompassing theory 
including the notions of “permanent object”, “encapsulation of process as 
object” and “defined object” in formal theories. 
Because I see these three cognitive activities as very different, I choose to treat 
them separately as constructing meaning for perceived objects (through teasing 
out their properties), constructing meaning for mathematical processes (through 
carrying them out and reflecting on the symbols used), and constructing 
meaning for defined objects (through proving theorems which construct their 
properties). Sfard’s notion of “operational” and “structural” appear to have 
something in common with these ideas but there is work to do to relate the 
notion of “structural” to the status of perceived figural properties of visual 
objects and deduced properties of defined objects. 
So where does this place the critique of Confrey and Costa? If their criticism is 
of the notion of “object” itself, then there is nothing to stop this “object” having 
various aspects, including visual, figural, verbal, symbolic, kinasthetic, and so 
on. Even formal concepts in advanced mathematics are inspired by all kinds of 
imagery. It is this viewpoint I take in my “graphic approach to the calculus” 
which links visual properties of locally straight graphs to corresponding 
numeric and symbolic aspects leading to quantified definitions in real analysis 
or infinitesimal concepts in non-standard analysis. My own suggested approach 
(through dynamic visual global gradients of graphs) is quite distinct from the 
usual strict hierarchy which proceeds logically from the formal limit concept 
(Sheath & Tall, 1983; Tall 1985). The very first criticism that “mathematics is 
strictly hierarchically organised” simply does not follow from the use of the 
term “object”. 
Nor does it follow from the use of the term “procept”. Even though many 
traditional approaches develop mathematical processes before concepts, the 
cognitive theory I apply to the calculus sees function, derivative and integral as 
procepts but does not have to follow a specific strict hierarchy. I proposed a 
“principle of selective construction” (Tall, 1993) to deny the primacy of 
(mathematical) process over concept. Using computers to carry out procedures 
implicitly and display the results explicitly allows the resulting concepts to be 
studied before, or at the same time as, the corresponding mathematical 
processes. This uses alternate aspects of the concept, such as dynamic 
visualisation. For instance, in the British SMP 16-19 syllabus, the structural 
stability of the Newton-Raphson process is explored visually on the computer 
before the numerical formula for the procedure is introduced. 

Even if the criticism of “object” is aimed at “reification theory” it need not 
apply to those who see “process” as any cognitive process, because this can 
involve any desired kind of cognitive activity. The criticism can possibly apply 
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to those who assert a strict “mathematical process to object reification” as may 
be the case with Sfard’s assertion that “operational must always precede 
structural”. 

I leave Anna Sfard and Ed Dubinsky to speak for themselves. I content 
myself by addressing a few matters of detail and one matter referring to the 
paper as a whole. 

In using quotations from my publications, Confrey and Costa state: 
The implications of this overall agenda for mathematical instruction included a 
number of assumptions: (a) history of geometry and number can be intellectually 
isolated from one another. (Tall, 1995: p. 62) 

The actual written text is: 
It is interesting to note that these developments can occur quite independently. The 
Ancient Greeks developed a theory of geometry (including geometric constructions 
of arithmetic) without any symbolism for algebra and arithmetic, and it is possible to 
develop arithmetic and algebra without any reference to geometry. However, many 
useful links have been made between visual and manipulative symbolic methods and 
it is clearly opportune to take advantage of them to develop a versatile approach 
which uses each to its best advantage. 

I did say geometry and number can be developed separately, but I did not say 
that they are “intellectually isolated”. I did not refer to the history of algebra at 
all, or to the history of arithmetic, except in the context of Greek geometry 
where I referred to the related geometric arithmetic. 

They go on to mention a further assumption: 
c) set-theoretic approaches, whilst still imperfect, represent our best thinking. (Tall, 
1995). 

I said no such thing. I did say that “[set-theory] is also flawed” and go on: 
Advanced mathematical thinking today involves using cognitive structures produced 
by a wide range of mathematical activities to construct new ideas that build on and 
extend an ever-growing system of established theorems. 

The ways in which this thinking can depend on different focus on visuospatial 
aspects and symbolic aspects leading to proof is beautifully illustrated by 
Saunders Maclane: 

In the fall of 1982, Riyadh, Saudi Arabia … we all mounted to the roof … to sit at 
ease in the starlight. Atiyah and MacLane fell into a discussion, as suited the 
occasion, about how mathematical research is done. For MacLane it meant getting 
and understanding the needed definitions, working with them to see what could be 
calculated and what might be true, to finally come up with new “structure” theorems. 
For Atiyah, it meant thinking hard about a somewhat vague and uncertain situation, 
trying to guess what might be found out, and only then finally reaching definitions 
and the definitive theorems and proofs. This story indicates the ways of doing 
mathematics can vary sharply, as in this case between the fields of algebra and 
geometry, while at the end there was full agreement on the final goal: theorems with 
proofs. Thus differently oriented mathematicians have sharply different ways of 
thought, but also common standards as to the result. (Maclane, 1994, p. 190–191.) 
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As he clearly indicates, even though proof is the final systematisation of 
advanced mathematics, and the framework on which further theories are 
developed, advanced mathematical thinking is so much more: 

We often hear that mathematics consists mainly in “proving theorem”. Is a writer’s 
job mainly that of “writing sentences”? A mathematician’s work is mostly a tangle of 
guesswork, analogy, wishful th9inking and frustration, and proof, far from being the 
core of discovery, is more often than not a way of making sure that our minds are not 
playing tricks. (Gian-Carl-Rota, 1980: p. xviii.) 

Such a view seems close to that of Confrey and Costa, if only it were used for 
students as well as researchers. But having used the cited paper Tall (1995) to 
set me firmly as a “reification theorist” they carefully omit any reference to the 
final part of the paper where I discuss the value of cooperative problem-solving 
and how this leads to mathematical attitudes desired by mathematicians, but not 
achieved by them through their standard teaching methods (Yusof & Tall, 
1994). By selective quotations they set up a dichotomy between my apparent 
view and theirs where I feel we have more in common than divides us. 

One final overall matter remains for me a matter of concern. This critique of 
“object as a central metaphor in advanced mathematical thinking” has relatively 
few references to specifics of advanced mathematical thinking in the broader 
sense I have sketched above. The major counterexample they cite relates to the 
sequence of learning about fractions. There are no specific references to any 
topics in university mathematics or to the construction of mathematical objects 
through definition and proof. I very much share Confrey and Costa’s concern 
about the horrendous difficulties faced by students taking university 
mathematics courses and the implications that strict “reification theory” may 
lead to inappropriate sequences of learning by not accounting for alternative 
aspects of the enterprise. But one cannot change the system without taking into 
account the mathematics that mathematicians do. 
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