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Introduction 

In preparing successive generations of mathematicians to think in a creative mathematical 
way, it is difficult to convey the personal thought processes which mathematicians use 
themselves. So many students, unable to cope with the complexity, resort to rote-learning 
to pass examinations. In this paper I shall consider the growth of mathematical 
knowledge and the problems faced by students at university. If they are given 
opportunities to develop mathematical thinking processes, albeit with initially easier 
mathematics, they may develop attitudes to mathematics more in line with those preferred 
by mathematicians while standard mathematics lectures designed to “get through the 
material” may force them into the very kind of rote-learning that mathematicians abhor. 

The development of mathematical thinking 

Mathematicians struggle with ideas in research, but the ideas taught to undergraduates 
have been organised in a clear and logical sequence. Why is it that, when presented with 
these well-organised theories, students struggle too? Is it just students’ lack of effort or 
intellect, or are there other reasons? 

Axiom I: All mathematicians are born at age 0. 

Axiom II: to reach the age M of mathematical maturity, the mathematician must pass 
through ages 0, 1, 2, …, M–1. 

Theorem: A cognitive development is necessary to become a mathematician. 

Proof: Since no child aged 0 has produced any important mathematical theorem, 
something happens between ages 0 and M that makes mathematical thinking possible.
       

This “proof” which caricatures a mathematical style is perhaps amusing but certainly 
mathematically flawed. The non-existence of a known counter-example is clearly 
insufficient to prove something. But if we think in mathematical terms about how humans 
think, our arguments are also liable to fail. This happened, for example, in the set-
theoretic approach to school mathematics in the sixties when the apparently obvious route 
of introducing modern mathematics into schools failed to produce the understanding that 
was expected. It is therefore clear that we must take the nature of cognitive growth much 
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more seriously if we are to understand the development of mathematical thinking. I 
propose to do this by hypothesising fundamental cognitive principles and considering the 
consequences. 

Cognitive Principle I: For survival in a Darwinian sense, the individual must maximise 
the use of his/her cognitive structure by focusing on concepts and methods that work, 
discarding earlier intermediate stages that no longer have value. 

Corollary: The individual is likely to forget much of the learning passed through in years 
0, 1, ..., M–1 and the mathematician is likely to attempt to teach current methods that 
work for him/her, not methods that will work for the student. 

One finally masters an activity so perfectly that the question of how and why students 
don’t understand them is not asked anymore, cannot be asked anymore and is not even 
understood anymore as a meaningful and relevant question. (Freudenthal,1983, p. 469) 

After mastering mathematical concepts, even after great effort, it becomes very hard to 
put oneself back into the frame of mind of someone to whom they are mysterious.  
 (Thurston, 1994, p. 947) 

This is not something that should cause embarassment to mathematicians, for it is 
sensible for a professional to do everything to climb to the summit of his or her 
profession. But it does suggest that there is need for professionals of a possibly different 
kind to devote attention to the cognitive growth of mathematical thinking to help the next 
generation to scale similar heights.  

To understand cognitive growth it is useful to consider a second principle, which may 
seem initially to have little to do with mathematics, but proves in practice to have 
everything to do with its underlying power of mathematical thinking: 

Cognitive Principle II: The brain has a small focus of attention and a huge space for 
storage and therefore cognitive growth needs to develop: 

 (a) a mechanism for compression of ideas to fit in the focus of attention. 

 (b) a mechanism for linking with relevant stored information and bringing it 
to the focus of attention in an appropriate sequence.  

Mathematics is amazingly compressible: you may struggle a long time, step by step, to 
work through some process or idea from several approaches. But once you really 
understand it and have the mental perspective to see it as a whole, there is often a 
tremendous mental compression. You can file it away, recall it quickly and completely 
when you need it, and use it as just one step in some other mental process. The insight 
that goes with this compression is one of the real joys of mathematics.  
 (Thurston, 1990, p. 847) 

But how do we help growing mathematicians to achieve these levels of compression? 
Simply telling them the theory proves sadly to be insufficient: 

… in their university lectures they had been given formal lectures that had not conveyed 
any intuitive meaning; they had passed their examinations by last-minute revision and by 
rote. (W. W. Sawyer 1987, p. 61) 

To help students become mathematicians I hypothesise we need to provide them with an 
environment in which they can construct their own knowledge from experience and learn 
to think mathematically: 
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Cognitive Principle III: A powerful agent in learning with understanding is by going 
through mathematical constructions for oneself and then reflecting on one’s own 
knowledge – thinking about thinking. 

We believe that people learn best by doing and thinking about what they do. The abstract 
and the formal should be firmly based on experience. (Dubinsky & Leron, 1994, p. xiv) 

This principle will help students to become autonomous thinkers, and to become 
responsible for their own learning. Dubinsky & Leron use the programming language 
ISETL (Interactive SET Language) to get the students to engage in programming 
mathematical constructs in group theory and ring theory. Because the programming 
language is close to mathematical notation, it enables the students to construct abstract 
concepts like cosets and Lagrange’s theorem in a concrete manner, showing considerable 
success in what is traditionally a difficult area. 

A possible difference between this learning and the thinking of formal 
mathematicians is intimated by Thurston (1994, p. 167) who suggests that 

… as new batches of mathematicians learn about the subject they tend to interpret what 
they read and hear more literally, so that the more easily recorded and communicated 
formalism and machinery tend to gradually take over from other modes of thinking. 

Reflective thinking on these matters is an indispensible part of research mathematics. But 
it is rarely taught to undergraduates, where the focus is on content of lecture courses. At 
the school level problem-solving is a central part of the NCTM standards in the USA, and 
mathematical investigations are part of the British mathematics curriculum. Perhaps now 
is the time to introduce the study of mathematical thinking itself into university courses. 

Of the three cognitive principles mentioned, the first essentially warns that those who 
have reached a greater level of maturity may have forgotten how they learnt. We 
therefore consider the other two principles in detail, first the nature of mathematical 
compression, and then move on to the process of how to teach reflective mathematical 
thinking. 

The compression of knowledge in mathematics 

There are various methods of compression of knowledge in mathematics, including: 

 (1) representing information visually (a picture is worth a thousand words), 

 (2) using symbols to represent information compactly, 

 (3) if a process is too long to fit in the focus of attention, practise can make 
it routine so that it no longer requires much conscious thought. 

Method (1) is used by many (but not all) mathematicians. In his classic study of how 
mathematicians do research, Hadamard explained that, with certain exceptions: 

… mathematicians born or resident in America, whom I asked, … practically all … – 
contrary to what occasional inquiries had suggested to Galton as to the man in the street – 
avoid not only the use of mental words, but also, just as I do, the mental use of algebraic 
or any other precise signs; also as in my case, they use vague images.  
 (Hadamard, 1945, 83–84) 

Einstein reported that visual, kinetic and other imagery proved useful in his research: 
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The psychical entities which seem to serve as elements in thought are certain signs and 
more or less clear images which can be “voluntarily” reproduced and combined … The 
above mentioned elements are in my case, of visual and some of muscular type. 
Conventional words or other signs have to be sought for laboriously only in a secondary 
stage, when the mentioned associative play is sufficiently established and can be 
reproduced at will. (Albert Einstein, in a letter to Hadamard, 1945, 142–3) 

In recent interviews with research mathematicians, Sfard (1994) found exactly the same 
phenomena. One mathematician reported to her: 

'To understand a new concept I must create an appropriate metaphor. A personification. 
Or a spatial metaphor. A metaphor of structure. Only then I can answer questions, solve 
problems. I may even be able then to perform some manipulations on the concept. Only 
when I have the metaphor. Without the metaphor I just can`t do it.' 

'In the structure [which he created in his mind in the attempt to understand], there are 
spatial elements. Many of them. It`s strange, but the truth is that my student also has 
noticed it... a great many spatial elements. And we are dealing here with the most abstract 
things one can think about! Things that have nothing to do with geometry, [that are] 
devoid of anything physical... The way we think is always by means of something 
spatial... Like in `This concept is above this one` or `Let`s move along this axis or along 
the other one`. There are no axes in the problem, and still...' (Sfard, 1994) 

Mathematicians may use images in this way to relate ideas in their highly developed 
cognitive structure. Such thought experiments are highly advantageous in contemplating 
possible relationships before the question of logical proof arises. But it is necessary, as 
Hadamard said, to be “guided by images without being enslaved by them” (ibid, p. 88). 

Students do not have such a developed cognitive structure and instead they may be 
deceived by their imagery. They already have their own concept images developed 
through previous experience (Tall & Vinner, 1981). Such imagery is often in conflict with 
the formal theory (see Tall, 1991a, 1992 for surveys). Even though concepts are given 
formal definitions in university mathematics, students may appeal to this imagery and 
infer theorems through the use of their own thought experiments. For instance, 
“continuous” might carry the inference of something “going on without a break”, so a 
continuous function must clearly pass through all intermediate values, and must also be 
bounded and attain its bounds. For a proof by thought experiment, just imagine a picture 
and see. 

Visualising Mathematical Concepts 

Although the private images of mathematicians may be difficult to communicate, public 
images, such as diagrams and graphs enable a great deal of information to be embodied in 
a single figure. Software which allows visual representations to be controlled by the user, 
to see dynamic relationships make even more powerful use of visualisation. Having been 
fascinated by the non-standard idea that a differentiable function infinitely magnified 
looks like a straight line (within  infinitesimals), I wrote computer programs to look at 
computer drawn graphs under high magnification (figure 1). This allows a visual 
approach to the notion of differentiability. By using fractals such as the Takagi function 
(Takagi, 1903) – rechristened the “blancmange” function because of its similarity to a 
wobbly English milk jelly – functions could be drawn which never magnified to look 
straight (figure 2), hence intimating the notion of a nowhere differentiable function. 
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Indeed, a visual proof of this argument is 
easy to give (Tall, 1982). By taking a 
small version of the blancmange function 
bl(x), say w(x) = bl(1000x)/1000, for any 
differentiable function f(x), consider the 
graph of f(x)+w(x). This looks the same on 
the computer screen to a normal 
magnification, but under high 
magnification (say times 1000), wrinkles 
appear. This shows visually that, for every 

differentiable function f(x) there is a non-
differentiable function f(x)+w(x), so there 
are at least as many non-differentiable 
functions as diff-erentiable ones (figure 
3). 

A problem with visualisation is that 
the human mind picks up implicit 
properties of the imagery and the 
individual builds up a concept image that 
incorporates these properties. Graph-
plotters tend to draw graphs that consist of 

continuous parts. So I designed a graph 
plotter to simulate functions that are 
different on the rationals and irrationals 
(Tall 1991b, 1993). (The routine uses a 
continued fraction technique to compute a 
sequence of rationals approaching a given 
number and, when a term of the sequence 
is within  of the number, it is said to be 
( –N)-pseudo-irrational if the denominator 
of the fraction exceeds N. By suitably 
fixing the size of  and N, computer 
numbers can be divided into two subsets, 
(pseudo)-rationals and (pseudo)-
irrationals that model various properties of rationals and irrationals.) 

This allows visual insight into more subtle notions. For instance, just as 
differentiability can be handled visually by magnification maintaining the same relative 
scales on the axes, continuity can be visualised by maintaining the vertical scale and 
stretching the horizontal scale to show less and less of the graph within the same window. 
A continuous function is one such that any picture of the graph will pull out flat.  Figure 4 
shows a picture of a graph of a function f(x) which takes the value 1 if x is rational and x2 
if x is irrational. By pulling it horizontal, it is visually continuous at x=1 and x=–1, but 
this clearly fails elsewhere. 

magnify

 

Figure 1 : magnifying a locally straight graph 

magnify

 

Figure 2 : magnifying the nowhere differentiable 

magnify

 

Figure 3 : magnifying an interesting graph 
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Figure 4 : Stretching a graph horizontally to “see” if it is continuous 

Visual software has been developed in a wide variety of ways, such as Koçak (1986), 
Hubbard and West (1990) for visualising the solution of differential equations, and a 
growing mountain of software resources presented each year at the annual Technology in 
College Mathematics Teaching conferences. Such software can give students powerful 
gestalts to enable them to imagine sophisticated mathematical ideas as simpler visual 
images. For instance, suppose that a student knows that a differentiable function is locally 
straight and that a first order differential equation such as dy/dx=–y simply tells the 
gradient dy/dx of that graph through a point (x,y). Then it is visually clear that a good 
approximation to the solution can be made by sticking together short straight-line 
segments with the appropriate gradient. Drawing a picture shows how good this 
approximation is and visually confirms the existence of a solution, motivating theorems 
of existence and uniqueness of solutions provided that the gradient is defined along the 
solution path.  This can be valuable both for students who will become mathematics 
majors and those who will use mathematics in other subjects. I have found such 
techniques of enormous value teaching science students who have little time for the 
formal niceties. It proves a good foundation for mathematics majors too, but one must not 
underestimate the difficulties of linking the visual imagery – which comes as a 
simultaneous whole – and the logical proofs which involve a different kind of sequential 
thinking. 

Using symbolism to compress process into concept 

Symbols such as Ax=c for a system of linear equations express a relationship in a far 
more compact form than any corresponding use of natural language. But there is a 
common use of symbols in mathematics which introduces compression in a subtle way 
rarely used in ordinary language. It is a method of compression that mathematicians are 
aware of intuitively but do not articulate in any formal sense, yet it becomes of vital 
importance in cognitive development. Let me illustrate this with the concept of number 
and the difference between a mathematician’s definition and the cognitive development 
of the concept. 

According to the set-theoretic view of Bourbaki, (cardinal) number concepts are about 
equivalences between sets. But a set-theoretic approach to number was tried in the “new 
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math” of the sixties and it failed. Why? Almost certainly because the set-theoretic 
approach is a natural systematisation when everything has been constructed and organised 
but it is less suitable as the beginning of a cognitive development. In essence it is a 
formulation which is likely to be suggested by experts who have forgotten their earlier 
development (cognitive principle I) but it proves unsuitable as an approach for the 
growing individual. 

Even though small numbers of two or three objects can be recognised in a glance, 
cardinal numbers for these and larger numbers begin cognitively in young children as a 
process: the process of counting. Only later do the number symbols become recognised as 
manipulable number concepts. 

It often happens that a mathematical process (such as counting) is symbolised, then 
the symbol is treated as a mathematical concept and itself manipulated as a mental object. 
Here are just a few examples: 

symbol process concept 

3+2 addition sum 

–3 subtract 3, 3 steps left negative 3 

3/4 division fraction 

3+2x evaluation expression 

v=s/t ratio rate 

sinA =
opposite

hypotenuse  
trigonometric ratio trigonometric function 

y=f(x) assignment function 

dy/dx differentiation derivative 

f (x) dx  integration integral 

lim
x 2

x 2 4

x 2

1
n2

n=1

 

 

 

 

 
 

 

tending to limit 

 

value of limit 

  Sn permuting {1, 2, …, n} element of Sn 

solve(f(x)=0,x) solving an equation solution of equation 

Given the wide distribution of this phenomenon of symbols representing both process and 
concept, it is useful to provide terminology to enable it to be considered further. 

Cognitive Definition: An elementary procept is the amalgam of a process, a related 
concept produced by that process and a symbol which represents both the process and the 
concept. 
Cognitive Definition: A procept consists of a collection of elementary procepts which 
have the same object (Gray & Tall, 1994). 
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Caveat: This is a cognitive notion, not a mathematical one. Anyone with a mathematical 
background might be tempted to define an elementary procept as an ordered triple 
(process, concept, symbol) and a procept as an equivalence class of ordered triples having 
the same object. Such an approach is of little cognitive value in that the purpose of the 
procept notion is to echo the cognitive reality of how mathematical processes are 
compressed mentally into manipulable mental objects. This has been the focus of 
attention of many researchers in mathematics education both at school and university 
level, including for example, Piaget (1972), Greeno (1983), Davis (1984), Dubinsky 
(1991), Sfard (1991), Harel & Kaput (1991). The cognitive process by which processes 
become conceived as manipulable objects is called encapsulation by Dubinsky, following 
Piaget. 

Had the definition of procept been a mathematical definition, doubtless some 
mathematician would have made it before. But the procept notion implies a cognitive 
ambiguity – the symbol can be thought of either as a process, or as a concept. This gives 
a great flexibility in thinking – using the process to do mathematics and get answers, or 
using the concept as a compressed mental object to think about mathematics – in the 
sense of Thurston: 

I remember as a child, in fifth grade, coming to the amazing (to me) realization that the 
answer to 134 divided by 29 is 13429  (and so forth). What a tremendous labor-saving 

device! To me, ‘134 divided by 29’ meant a certain tedious chore, while 13429  was an 
object with no implicit work. I went excitedly to my father to explain my major 
discovery. He told me that of course this is so, a/b and a divided by b are just synonyms. 
To him it was just a small variation in notation. (Thurston, 1990, p. 847) 

I claim that the reason why mathematicians haven’t made this definition is that they think 
in such a flexible ambiguous way often without consciously realising it, but their desire 
for final precision is such that they write in a manner which attempts to use unambiguous 
definitions. This leads to the modern set-theoretic basis of mathematics in which concepts 
are defined as objects. It is a superb way to systematise mathematics but is cognitively in 
conflict with developmental growth in which mathematical processes become 
mathematical objects through the form of compression called encapsulation. 

Sequential and procedural compression 

A mathematician puts together a number of ideas in sequence to carry out a computation 
or a sequence of deductions in a proof using method (3). Hadamard performs such mental 
actions successively focusing on images before arguments are formulated logically: 

It could be supposed a priori that the links of the argument exist in full consciousness, the 
corresponding images being thought of by the subconscious. My personal introspection 
undoubtedly leads me to the contrary conclusion: my consciousness is focused on the 
successive images, or more exactly, on the global image; the arguments themselves wait, 
so to speak, in the antechamber to be introduced at the beginning of the “precising” 
phase. (Hadamard, 1945,  80–81) 

Students who have little of this internal structure see in a proof just a sequence of steps 
which they feel forced to commit to memory for an examination: 
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Maths courses, having a habit of losing every student by the end of the first lecture, 
definitely create a certain amount of negative feeling (as well as a considerable amount of 
apathy) and the aim for the exam becomes the anti-goal of ‘aiming to get through so I 
don’t have to retake’ rather than the goal of ‘working hard to do well because I enjoy the 
subject’. (Female mathematics undergraduate, 2nd Year) 

This use of memory for routinizing sequential procedures is a valuable human tool when 
the mental objects to be manipulated will not all fit in the focus of attention at the same 
time. The memory scratch-pad available is small – about 7±2 items according to Miller 
(1956). 

When individuals fail to perform the compression satisfactorily they do not have 
mental objects which can be held simultaneously in memory (Linchevski & Sfard, 1991). 
They are then forced into using method (3) as a defence mechanism – remembering 
routine procedures and internalising them so that they need less conscious memory to 
process. The problem is that such procedures can only be performed in time one after 
another, leading to an inflexible procedural view of mathematics. Such procedural 
learning may work at one level in routine examples, but it produces an escalating degree 
of difficulty at successive stages because it is more difficult to co-ordinate processes than 
manipulate concepts. The failing student fails because he or she is doing a different kind 
of mathematics which is harder than the flexible thinking of the successful mathematician. 

The transition to formal mathematics 

Students usually find formal mathematics in conflict with their experience. It is no longer 
about procepts – symbols representing a process to be computed or manipulated to give a 
result. The concepts in formal mathematics are no longer related so directly to objects in 
the real world. Instead the mathematics has been systematised (à la Bourbaki) and 
presented as a polished theory in which mathematical concepts are defined as mental 
objects having certain minimal fundamental properties and all other properties are 
deduced from this. The definitions are often complex linguistic statements involving 
several quantifiers. 

This formal meaning is difficult to attain. For instance, of a group of mathematics 
education students studying analysis as “an essential part of their education”, none could 
give the definition of the convergence of a sequence after two weeks of using the idea in 
lectures. Of course these students are not the “best” students studying analysis, but their 
failure is typical of a spectrum of levels of failure in understanding mathematical 
analysis. Even distinguished mathematicians remember their struggles with the subject: 

... I was a student, sometimes pretty good and sometimes less good. Symbols didn’t 
bother me. I could juggle them quite well... [but] I was stumped by the infinitesimal 
subtlety of epsilonic analysis. I could read analytic proofs, remember them if I made an 
effort, and reproduce them, sort of, but I didn't really know what was going on.   
 (Halmos, 1985, p.47) 

Halmos was fortunate enough to eventually find out what the ‘real knowing’ was all 
about: 

... one afternoon something happened. I remember standing at the blackboard in Room 
213 of the mathematics building talking with Warren Ambrose and suddenly I understood 
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epsilon. I understood what limits were, and all of that stuff that people were drilling in me 
became clear. I sat down that afternoon with the calculus textbook by Granville, Smith, 
and Longley. All of that stuff that previously had not made any sense became obvious...  
 (Halmos in Albers & Alexanderson, 1985, p. 123) 

Regrettably many students never reach enlightenment. Although visual images may 
suggest theorems, the use of definitions demands a new form of compression of 
knowledge. The definitions used in mathematics must be written so that the information 
may be scanned to allow different parts to become the focus of attention at different 
levels. For instance, the definition of continuity is heard as: 

For any ay in the domain of the function eff, given an epsilon greater than zero, there 
exists a delta greater than zero such that if ex lies in the domain of eff and the absolute 
value of ex minus ay is less than delta then the absolute value of eff of ex minus eff of ay 
is less than epsilon. 

It is far too long to be held meaningfully in the focus of attention through hearing alone. 
It only begins to make sense when compressed in symbolic writing concentrating first on 
continuity at a point a D: 

A function f:D R is continuous at a D if: 
 >0,  >0 such that x D, |x–a|<  implies |f(x)–f(a)|< . 

Then various parts can be scanned and chunked together: 

 >0,  >0 such that . 

This may be focused at one level as  

For all >0, there is a >0 such that an implication is satisfied    , 

or at another as 

For all >0, there is a >0 such that one condition  implies another    . 

It is possible to concentrate on part of the sentence, such as x D, x a <  or 

 
. 

In a pilot study I interviewed mathematics majors at a university with a high 
reputation for pure mathematics, and found a wide difference in performance between the 
unsuccessful for whom the theory made no sense at all and the successful who understood 
the logical necessity of proof. But even the most able student interviewed did not always 
internalise the definition and operate with its full meaning several weeks after it had been 
given and used continually in the lectures. Others who were failing to use the definition 
went back to their visual images of a continuous function as a “graph drawn without 
taking the pencil off the paper” and performed thought experiments based on these 
images. They considered the statement of the intermediate value theorem to be simple 
and “obvious” but found the formal proof impossible to follow. Students such as these 
resort to damage limitation using rote-learning of procedures as reported in another 
investigation: 
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… everyone is faced with courses whose purpose they have failed to grasp, let alone their 
finer details. Faced with this problem, most people set about finding typical questions and 
memorising the typical answers. Many gain excellent marks in courses of which they 
have no knowledge. (Second year university mathematics student) 

What else can the failing student do? As Freudenthal said succinctly:  

…the only thing the pupil can do with the ready-made mathematics which he is offered is 
to reproduce it.  (Freudenthal, 1973, p.117) 

Can we teach students to “think mathematically”? 

Can we encourage students to think like mathematicians? Even though we may not make 
every student a budding research mathematician, can we not alter attitudes and methods 
of doing mathematics that fosters a creative way of learning? 

If students are given a suitable environment to relax and think about problems of an 
appropriate level, then such aspirations prove to be easy to attain. Typical problems (to be 
found in Thinking Mathematically, Mason et al, 1982) include: 

• If a square is cut into regions by straight lines, how many colours are 
needed so that no two adjoining regions are painted the same colour? 

• Into how many squares can one cut a square? 

These problems, on the face of it fairly easy, prove to be challenging, especially when 
proof is required – for instance proving that it is not possible to cut a square into two, 
three, or five squares. The latter statement proves to be true under certain circumstances, 
but false under others. I will not spoil it by refining the conditions on the problem, except 
to say that the alternative solution was given by a thirteen year old girl in a master class, 
when it had not occurred to me or to several hundred mathematics undergraduates over a 
decade of problem-solving classes. 

Reflective thinking in mathematics is built up by Mason et al following the How To 
Solve It approach of Polya (1945), but made more student-friendly by breaking problem-
solving into three phases. The first is an entry phase in which the student must focus on 
the nature of the problem by asking “what do I want”, reflect on any knowledge that may 
be available to begin the attack (“what do I know”) and then think “what can I introduce” 
to move from what is known to what is wanted. The second phase is an attack which 
occurs when sufficient information is at hand to start to make the connections, and leads 
either to a dead-end, or to an insight which moves the problem on. The “dead-end” is 
seen as a valuable state because at least one method tried has not worked and by returning 
to the entry phase and re-assessing the position a new attack may ensue. If an insight 
occurs which may appear to solve the problem, then the third review phase needs to be 
undertaken, checking the method carefully, reflecting on how it was achieved and storing 
away strategies for future problems, then considering how to extend the problem in new 
ways. Whatever level of student participating in such a course, be it with children in 
school or final year mathematics students, the result appears always to be the same – a 
release from the routines of learning mathematics to pass examinations and a new spirit 
of adventure and confidence bred from success. 
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Yudariah Binte Mohammad Yusof worked with me as I taught the course on one 
occasion and she developed attitudinal questionnaires to ask students their opinions about 
mathematics and problem-solving. She then taught the course herself at another 
university and questioned 44 of her students before and after the course and then six 
months later during which time they took regular mathematics courses again (Yusof & 
Tall, 1994). She also showed the questionnaires to 22 lecturers who taught the students 
various courses and asked them “How do you expect a typical student to respond?”, then 
“How would you prefer the students to respond?” 

In almost every case the change in student response from before to after the problem-
solving course proved to be in the same direction asthe change from what the lecturers 
expected to what they preferred. Thus the problem-solving caused an attitudinal change 
in the students in the direction desired by the lecturers. However, in almost every case, 
during the regular mathematics the students’ attitudes turned back again towards what 
the lecturers expected and away from what they desired. 

Some students appreciated that their knowledge in problem solving helped them to 
learn mathematics and solve problems more effectively: 

The problem solving techniques help me come to terms with the abstract nature of the 
maths I am doing. I try to connect the [mathematical] ideas together and talk about it with 
my friends. It is not that easy though. But I felt all the effort worth it when I am able to do 
so. (Male industrial science student, majoring in mathematics) 

But a considerable minority (14 out of 44, that is 32%) reported that the mathematics they 
were being taught did not allow them to think in a problem-solving manner: 

Since following the course I know mathematics is about solving problems. But whatever 
mathematics I am doing now doesn‘t allow me to do all those things. They are just more 
things to be remembered. (Male computer education student) 

I believed mathematics is useful in that it helps me to think. Having said that it is hard to 
say how I can do this with the maths I am doing. Most of the questions given can be 
solved by applying directly the procedures we had just learned. There is nothing to think 
about. (Female industrial science student majoring in mathematics) 

So what does this tell us? One interpretation may be that the problem-solving had 
relatively easy problems that allowed the students to “think mathematically” but that 
“serious” mathematics is demanding. 

Evidence from another source suggests that more open methods can work in analysis 
courses. In an experiment in Grenoble, large classes of analysis students were encouraged 
to work in groups in the lecture hall to propose theorems which they and other students 
subjected to a process of either proof or refutation by counter-example. A small minority 
said they preferred being told how to do mathematics in lecture classes, but 80% said they 
preferred the exploratory form of learning (Alibert, 1988; Alibert & Thomas, 1991). 

It seems to me more likely that, because we fear failure in our students, we resort to 
the methods that “seem” necessary throughout mathematics. When students are likely to 
fail, we lack the faith in their ability to think for themselves and tell them how to do the 
mathematics in an organised way. The result is that they behave as we expect, rather than 
as we might prefer – they learn the material to pass the exam. 
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Reflections on Mathematical Thinking 

Currently the university mathematics community is under some stress because it earns 
part of its finance from teaching undergraduates and all is not well. In the UK the London 
Mathematical Society produced a report which changed the British undergraduate degree 
structure to allow for four years instead of the traditional three. Yet when I asked the 
LMS to change my area of research interest to “Advanced Mathematical Thinking”, the 
committee reluctantly refused because it was not an accepted heading in the American 
Mathematical Society’s listing of topics. A formal request passed to the AMS through the 
Committee for Undergraduate Mathematics Education (CRUME) was also rejected. 

Writing recently in the Bulletin of the American Mathematical Society,Thurston 
remarked: 

Mathematicians have developed habits of communication that are often dysfunctional. 

and he went on to intimate how so many mathematicians fail to communicate in research 
colloquia through using highly technical language without explanation or motivation for 
non-experts. He continued by noting a similar problem in teaching: 

...in classrooms .. we go through the motions of saying for the record what we think the 
student “ought” to learn, while the students are trying to grapple with the more 
fundamental issues of learning our language and guessing at our mental models. Books 
compensate by giving samples of how to solve every type of homework problem. 
Professors compensate by giving homework and tests that are much easier than the 
material “covered” in the course, and then grading the homework and tests on a scale that 
requires little understanding. We assume that the problem is with the students rather than 
with the communication: that the students either just don't have what it takes, or else just 
don't care. Outsiders are amazed at this phenomenon, but within the mathematical 
community, we dismiss it with shrugs.  (Thurston, 1994, p. 166) 

I cannot believe that mathematicians can continue to ignore the study of mathematical 
thinking as part of the totality of the profession, for if it is not done by mathematicians, 
others surely lack the mathematical knowledge to research it in depth. I suggest that the 
study of mathematical thinking be given a place in the canons of mathematical activity 
comparable with other areas of mathematics. Just as a topologist will defend a number-
theorist’s right to do research within the umbrella of mathematics I hope that specialists 
in mathematical research will similarly defend the right of mathematicians to do research 
into mathematical thinking. Respect will have to be earned by mathematics educators. 
But if opportunities to earn respect are not honoured then mathematics itself can only be 
the poorer. 

References 

Albers, D. J. & Alexanderson, G. L.: 1985. Mathematical People – Profiles and Interviews, Chicago: 
Contemporary Books. 

Alibert, D.: 1988. Towards new customs in the classroom, For the Learning of Mathematics, 8 2, 31–35. 

Alibert, D. & Thomas, M. O. J.: 1991. Research on mathematical proof. In D. O. Tall (Ed.) Advanced 
Mathematical Thinking, (pp. 215–230). Dordrecht: Kluwer. 

Davis, R. B.: 1984. Learning mathematics: the cognitive science approach to mathematics education. 
Norwood, NJ: Ablex.  



 –  14 –  

Dreyfus, T.: 1991. On the status of visual reasoning in mathematics and mathematics education, 
Proceedings of PME 15, Assisi, I, 32–48. 

Dubinsky, E.: 1991. Reflective Abstraction in Advanced Mathematical Thinking. In D. O. Tall (Ed.) 
Advanced Mathematical Thinking, (pp. 95–123). Dordrecht: Kluwer. 

Dubinsky, E. & Leron, U.: 1994.  Learning Abstract Algebra with ISETL, Berlin: Springer-Verlag. 

Freudenthal, H.: 1973. Mathematics as an Educational Task, Dordrecht: Reidel. 

Freudenthal, H.: 1983. Didactic phenomenology of mathematical structures, Dordrecht: Reidel. 

Gray, E. M., & Tall, D. O.: 1994. Duality, ambiguity and flexibility: A proceptual view of simple 
arithmetic. Journal of Research in Mathematics Education, 25 2, 115–141. 

Greeno, G. J.: 1983. Conceptual entities. In D. Genter & A. L. Stevens (Eds.). Mental Models, (pp. 227–
252). Hillsdale, NJ: Lawrence Erlbaum. 

Hadamard, J.: 1945. The Psychology of Invention in the Mathematical Field., Princeton University Press, 
(Dover edition, New York 1954). 

Halmos, P: 1985. I want to be a mathematician – an automatography in three parts, MAA Spectrum. 

Harel, G. & Kaput, J. J.: 1991. The role of conceptual entities and their symbols in building advanced 
mathematical concepts. In D. O. Tall (ed.), Advanced Mathematical Thinking, Dordrecht: Kluwer. 

Hubbard, J. H. & West, B.: 1990. Ordinary Differential Equations (with software for the Macintosh 

computer), Springer-Verlag, New York. 

Koçak H.: 1986. Differential and Difference Equations through Computer Experiments, [for the I.B.M. 

Computer], Springer-Verlag, New York. 

Linchevski, L. & Sfard, A.: 1991. Rules without reasons as processes without objects – the case of 
equations and inequalities, Proceedings of the Fiftenth PME Conference, Assisi, Italy, II 327–324. 

Mason, J.: 1989. Mathematical abstraction seen as a delicate shift of attention. For the Learning of 
Mathematics, 9 2, 2–8. 

Mason, J., with Burton, L. & Stacey, K.: 1982. Thinking Mathematically, London: Addison-Wesley. 

Miller, G.: 1956. The magical number seven plus or minus two: some limits on our capacity for processing 
information. Psychological Review, 63, 81–97. 

Piaget, J.: 1972. The Principles of Genetic Epistemology (W. Mays trans.), London: Routledge & Kegan 
Paul. 

Polya, G.: 1945. How to Solve It, Princeton University Press, Princeton. 

Sawyer, W. W.: 1987. Intuitive understandings of mathematical proof, Bulletin of the Institute of 
Mathematics and its Applications, 23, 61–62. 

Sfard, A.: 1991. On the dual nature of mathematical conceptions: reflections on processes and objects as 
different sides of the same coin, Educational Studies in Mathematics, 22 1, 1–36. 

Sfard, A.: 1994. Reification as the birth of metaphor, For the Learning of Mathematics, 14 1, 44–54. 

Takagi, T.: 1903. A simple example of a continuous function without derivative, Proc. Phys.-Math. Japan, 

1, 176-177. 

Tall , D. O.: 1982.: The blancmange function, continuous everywhere but differentiable nowhere, 

Mathematical Gazette, 66, 11–22. 

Tall, D. O. (Ed.): 1991a. Advanced Mathematical Thinking, Kluwer:Dordrecht. 

Tall D.O. 1991b: Real Functions & Graphs  (for BBC compatible computers), Cambridge University Press. 

Tall, D. O.: 1992. The Transition to Advanced Mathematical Thinking: Functions, Limits, Infinity, and 
Proof. In: Grouws D. A. (ed.) Handbook of Research on Mathematics Teaching and Learning,  
(pp. 495–511). New York: Macmillan. 



 –  15 –  

Tall, D. O.: 1993. Real mathematics, rational computers and complex people,  Proceedings of the Fifth 
International Conference on Technology in College Mathematics Teaching, Addison-Wesley, 
243–258. 

Tall, D. O. & Vinner, S.: 1981. Concept image and concept definition in mathematics with particular 
reference to limits and continuity, Educational Studies in Mathematics, 12 2, 151–169. 

Thurston, W. P.: 1990. Mathematical Education, Notices of the American Mathematical Society, 37 7, 844-
850. 

Thurston, W. P.: 1994. On proof and progress in mathematics, Bulletin of the American Mathematical 
Society, 30 2, 161–177. 

Yusof, Y. b. M. (1995): Unpublished Ph.D. Thesis, University of Warwick. 

Yusof, Y. b. M., & Tall, D. O.: 1994. Changing Attitudes to Mathematics through Problem Solving, 
Proceedings of PME 18, Lisbon, 4, 401–408. 


