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This presentation presents evidence that the way the human brain
thinks about mathematics requires an ability to use symbols to
represent both process and concept. The more successful use
symbols in a conceptual way to be able to manipulate them
mentally. The less successful attempt to learn how to do the
processes but fail to develop techniques for thinking  about
mathematics through conceiving of the symbols as flexible
mathematical objects. Hence the more successful have a system
which helps them increase the power of their mathematical
thought, but the less successful increasingly learn isolated
techniques which do not fit together in a meaningful way and may
cause the learner to reach a plateau beyond which learning in a
particular context becomes difficult.

Introduction

At the age of 16 the number of children passing their General Certificate of
Secondary Education at grades A, B, C is currently increasing year by year
(although there is a worrying trend that the number with the lowest grades is
remaining stubbornly stable). At age 18 there is an improving spectrum of
passes at A-level, although mathematics is becoming a less popular subject.
Despite an apparent trend for top students to get better marks in school
examinations, university lecturers claim that the students arriving at university
lack basic skills. In particular:

(i) They lack fluency in arithmetic and algebraic skills,

(ii) They are less able to solve problems involving several steps,

(iii) They do not perceive the need for absolute precision and proof in
mathematics.

The contrast between the apparent success as seen from a school perspective yet
failure from a university perspective has led to unseemly accusations flying in
all directions. My own perception of the phenomenon is that the two viewpoints
are focusing on different things and arguing at cross-purposes. To be able to
unravel the conundrum, we need get an insight into what is happening when
individuals learn mathematics and begin to “think mathematically”. By doing so
it is hoped that some light can be shed on the situation.
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Let us begin to look at some fundamental questions to see how it is that
individuals learn to use mathematics in a powerful and productive way.

Cognitive considerations

The human brain is a huge simultaneously processing system. To be able to
make conscious decisions using such a mechanism requires the individual to
filter out inessential detail and to focus attention on the important essentials.

The basic idea is that early processing is largely parallel – a lot of different
activities proceed simultaneously. Then there appear to be one or more stages
where there is a bottleneck in information processing. Only one (or a few)
“object(s)” can be dealt with at a time. This is done by temporarily filtering
out the information coming from the unattended objects. The attentional
system then moves fairly rapidly to the next object, and so on, so that attention
is largely serial (i.e., attending to one object after another) not highly parallel
(as it would be if the system attended to many things at once).

(Crick, 1994, p. 61)

The process leads to the sensation in which the conscious mind focuses
attention on things of current interest, manipulating them in the mind, then
passing on to related ideas which occur in the conscious train of thought:

There seems to be a presence-chamber in my mind where full consciousness
holds court, and where two or three ideas are at the same time in audience, and
an ante-chamber full of more or less allied ideas, which is situated just beyond
the full ken of consciousness. Out of this ante-chamber the ideas most nearly
allied to those in the presence chamber appear to be summoned in a
mechanically logical way, and to have their turn of audience. 

(Galton, Inquiries into human faculty and its development, 1883)

This limited focus of attention means that thinking is enhanced by two
complementary processes:

• compressing data to fit in the focus of attention,

• linking data in the brain to be able to bring other ideas in the huge
long-term memory into the focus of attention for processing.

In mathematics, compression of data occurs in various pragmatic and elegant
ways. For instance, we may draw diagrams to represent information succinctly,
use words to stand for complex ideas, or mathematical symbols to to represent
problem statements that can be manipulated to produce solutions. The last of
these proves to be particularly powerful and subtle.

The problems that occur later in school and university begin much earlier,
starting with the way that the processes of simple arithmetic develop (or even
before). In level 1 of the National Curriculum, children are expected to be able
to handle addition of numbers up to ten by the process of “count-all”, counting a
set of objects, then another set, and putting the two together to count them all to
obtain the sum. Subsequently various other techniques are developed showing
greater efficiency:
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• Count-all: a succession of three simple counting processes, 3+4
is “1, 2, 3”, “4, 5, 6, 7”, then count “1, 2, 3, 4, 5, 6, 7”, usually
pointing at specific objects,

single count single count

single count

• Count-both is two counting processes, a simple count, eg “1,
2, 3”, then a count-on “4, 5, 6, 7”, usually using some technique
(eg four fingers) to keep a tally of the count-on,

single count count-on

• Count-on is a concept “3” and a process to count-on 4 after 3 as
“4, 5, 6, 7,”

3
concept count-on

• Count-on from larger is a variant of count-on which
shortens the counting process,

4
concept shorter count-on

(This is more spectacular where the numbers differ greatly in size, for
instance, computing 2+9 by counting on 2 after 9 rather than 9 after 2).

• Known fact regards the symbols as number concepts and
recalls the result as another number concept, “3+4 is 7.”

3 4
concept concept

concept (7)

• Derived fact uses the number facts themselves as manipulable
mental objects, operated on them to give new facts, eg “3+4 is
one less than 4+4=8, so it is 7.”

(Fuson, 1992; Gray & Tall, 1994)
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As children develop they initially interpret symbolism in process terms so that
the symbol 3+2=5 means “3 plus 2 makes 5”, and the equation 5=3+2 lacks
meaning because 5 does not make 3+2. The initial introduction of what adults
may see as “algebra” in solving equations such as

4+  = 7,

 + 3= 7.

represents completely different problems for children. At a certain stage the first
may be read “how many do I count-on after 4 to get to 7?” and the second is
much harder if it is read as “Which number do I start at to count on 3 and reach
7?”.

The following figure shows the results of a test given to children in years 1,
2, and 3, involving such problems (Foster, 1994):
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Children’s performance on arithmetic problems
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Each bar represents an individual child. The three parts of each bar represent the
number of correct responses to five written arithmetic problems (fifteen in all)
in the form:

 : a+b =  (1)

 : a+  = c, (2)

 :  + b = c. (3)

This reveals a familiar statistic—as the children get older, the performances get
better, which is the basis of the idea of successive levels of attainment which
children reach. But this is a grossly oversimplified interpretation. If the classes
are divided into thirds as “higher”, “middle” and “lower”, then qualitative
differences are revealed in the spectrum of performances.

Year 1 (1) (2) (3) Year 2 (1) (2) (3) Year 3 (1) (2) (3)
Higher 99% 81% 83% Higher 100% 96% 96% Higher 100% 100% 100%
Middle 86% 29% 29% Middle 93%76% 80% Middle 100% 98% 98%
Lower 59% 5% 1% Lower 74% 38% 20% Lower 93% 73% 53%

Percentage of correct responses in each category by year at different levels of attainment

Apart from tiny reversals shown in italics, the performances are all ordered
(1)≥(2)≥(3). In year 2 the higher attainers reach almost 100% whilst the middle
attainers do not do so until year 3. The higher and middle attainers all show (2)
approximately equal to (3), but the first year lower attainers cannot do items (2)
or (3) and those in years two and three continue to show a difference between
each of the three categories in the order (1)>(2)>(3).

It is not simply a question that the lower attainers do the same thing but
slower. The marks improve, but the methods at extremes of the spectrum may
be very different. Whilst the five-year olds who succeed are already beginning
to use their number facts in a flexible manner as both processes and concepts,
those who first succeed at a later age are more likely to rely on procedural
counting. Those nearer the top end of the spectrum are developing a way of
thinking which compresses knowledge into flexible symbolic form suitable for
more abstract developments. Those nearer the bottom end are focussing more
on procedures on physical objects which lock them in a mode from which
abstract thought is much more difficult, even, perhaps, impossible.

The notion of procept

It often happens that a mathematical process (such as counting) is symbolised,
then the symbol is treated as a mathematical concept (such as number) which is
then manipulated as if it were a mental object. Here are just a few examples:
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symbol process concept

1, 2, 3, ... counting number
3+2 addition sum
–3 subtract 3, 3 steps left negative 3
3/4 division fraction

3+2x evaluation expression
v=s/t ratio rate

sin A = opposite
hypotenuse

trigonometric ratio trigonometric function

y=f(x) assignment function
dy/dx differentiation derivative

f (x) dx∫ integration integral

lim
x→2

x2 − 4
x − 2
1

n2

n=1

∞

∑










tending to limit value of limit

σ ∈  Sn permuting {1, 2, …, n} element of Sn

solve(f(x)=0,x
)

solving an equation solution of equation

Given the wide distribution of this phenomenon of symbols evoking both
process and concept, it is useful to provide terminology to enable it to be
considered further.

Defini t ion : An elementary procept is the amalgam of a process, a
related concept produced by that process and a symbol which represents both
the process and the concept.

Defini t ion : A procept consists of a collection of elementary procepts which
have the same object (Gray & Tall, 1994).

These definitions are of a cognitive concept to model what seems to happen in
the cognitive structure of the individual. The mathematically oriented child does
not only think that 2+3 “makes” 5, but that 2+3 is 5, as are 4+1, 7–2, 10

2 , and
so on. The procept “5” grows to include all these different ways of making five,
so that it becomes cognitively richer as the child grows. It is this cognitive
richness that gives the individual power as a mathematician. It represents the
way that individuals seem to use symbols to give great flexibility in thinking –
using the process to do mathematics and get answers, or using the concept as a
compressed mental object to think about mathematics – in the sense of
Thurston:
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I remember as a child, in fifth grade, coming to the amazing (to me)
realization that the answer to 134 divided by 29 is 134

29  (and so forth). What a
tremendous labor-saving device! To me, ‘134 divided by 29’ meant a certain
tedious chore, while 134

29  was an object with no implicit work. I went
excitedly to my father to explain my major discovery. He told me that of
course this is so, a/b and a divided by b are just synonyms. To him it was just
a small variation in notation. (Thurston, 1990, p. 847)

Perhaps the reason why mathematicians haven’t formulated the definition of a
procept (as they have done other profound simplicities such as “set” and
“function”) is that mathematicians seem to think in such a flexible ambiguous
way often without consciously realising it, but their desire for final precision is
such that they write in a manner which attempts to use unambiguous definitions.
This leads to the modern set-theoretic basis of mathematics in which concepts
are defined as objects. It is a superb way to systematise mathematics but is
cognitively in conflict with developmental growth in elementary mathematics
where arithmetic and algebraic processes become mathematical objects through
the form of compression called encapsulation. In this way the viewpoint of the
mathematician is not synonomous with the needs of the child in developing
mathematical knowledge.

The more mathematically oriented children seem to develop this flexibility
early on, the less mathematical do not and this imposes a great strain on their
focus of attention, causing them to fall back on rote-learning of procedures
which will do mathematics at the time, but are far less likely to be suitable for
holding in the small focus of attention to reflect upon and build more
sophisticated ideas.

I hypothesise that greater mathematical success comes not from remaining
linked to the perceptions of the world through our senses, but through using the
symbolism that is especially designed for doing mathematics and for thinking
about it. We have only so much conscious focus of attention to use at any one
time and rely on the richness of internal connections to build up the flexible
characteristics of the mathematical mind. Those who use internal conceptual
connections to fit together mathematical processes and concepts in a flexible
manner have a greater chance of success than those who burden their already
strained memory with long procedures needing concrete support.

Fract ions

If the difficulty of compressing counting procedures into number concepts is
unresolved, the problem grows still larger in later developments. For instance,
in the study of fractions, a child who does not have flexible knowledge of
arithmetic of whole numbers will find it more difficult to coordinate the notion
of equivalent fractions and a child who sees a fraction 2

3  as a process “take
three equal parts and select two of them” is going to have great difficulty in
operating on fractions. For instance if 1

2 + 2
3  is interpreted as “divide something

into two equal parts and take one of them and add this to the result of dividing



– 8 –

something into three equal parts and take two of them”, then it is hardly likely
to make sense to someone already at the limit of their cognitive capacity.

Thus it is that fractions prove difficult for some and impossible for many and
so have no place in a democratic curriculum on a ladder which all will climb.
But the more successful students, who would find such things cognitively
simpler, may be denied adequate exposure to the topic to give it meaning.

The beginnings of algebra

Algebra suffers in the beginning from the difficulty many children have with
meaning. For instance, if an arithmetic expression such as 2+3 is considered as
performing a sum to get an answer, then an algebraic expression such as 2+3x
causes confusion. If it is read as a process, then it asks the child to add two and
three then do something with x and, if x is unknown, the operation cannot be
done. There is the further difficulty of parsing the expression (breaking it down
to do it in the appropriate sequence). If it is read in the usual order from left to
right, it is 2+3 (which is 5) and then x, which gives 5x. There is research
(Macgregor & Stacey, 1993) which shows that when children are asked to write
a simple sentence such as “y equals the sum of 4 and x” into algebraic notation,
many get it wrong, often writing y=4x, perhaps because the word “and” between
4 and x is interpreted just by writing the symbols next to each other (because the
child knows no mathematical symbol equivalent to “and”).

If the symbols are interpreted correctly then an equation such as
3x+1=7

is inherently easier than
3x+1=2x+1.
But this is not simply because the second is “more complicated”. In essence,

the first can be read as a process “3 times x plus 1 is 7”, and this can be
unravelled by seeing that if “something plus 1” is 7, then that “something”, in
this case “3 times x” equals 6, and this in turn shows x must be 2. The second
equation is more difficult because it seems to have a process on either side and
therefore may not make sense to children who regard “=” as “makes”. One way
of giving meaning is to consider each side as an expression, whose values are
equal. The solution method taught in school involves “doing the same thing to
both sides”, so that the two sides remain equal but are now different from what
they were before—a most sophisticated and confusing idea for the less
successful.

One “solution” to these difficulties suitable for a wider range of children has
involved linking them to the real world by interpreting an equation as a physical
balance to explain “adding the same thing to both sides”. I suspect this is a
pseudo-scientific approach. Those who are insightful enough to give algebra an
appropriate meaning do not need it and those who need it develop an approach
which sometimes seems to the casual observer to be mathematics but in reality
is likely to be something subtly different.
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Thus traditional algebra proves to be cognitively difficult for the majority of
students. Many educators attempt to improve the situation by giving it “real
meaning”. But mathematicians think powerfully precisely because they use the
links within mathematics and do not relate constantly to the real world. It may
therefore be that curriculum designers who desire to make algebra widely
understood are using methods that are broadly applicable but may be less
suitable for the mathematically oriented who eventually need a more powerful
abstract form of algebraic thinking.

Limiting processes

The idea of a limit also has notation that has connotations both as a limiting
process and a limit concept. This has proved a significant obstacle to
understanding the mathematical idea of a limit. For example infinite decimals
are considered as “going on forever” and “never reaching” the “final value”.
Although students may regard 0.333... as a repeating decimal whose value is the
fraction 1

3  because of its familiarity, a decimal such as 0.4576121212... with
the repeating pair 12 may not be seen as a fraction. For many years students are
becoming familiar with approximate decimals and so find the precision of
mathematical analysis and the formal limit process are foreign to their
experience.

Thus the limit is a procept which behaves quite differently from the procepts
of arithmetic which have built-in operations to give an answer in a finite
number of steps. The limiting process is potentially infinite and causes
difficulties because many students seem to believe that it never reaches its
conclusion.

Changes in the nature of proof in elementary mathematics

Euclidean geometry requires more than the proof structure of Euclid to make it
meaningful:

The deductive geometry of Euclid from which a few things have been omitted
cannot produce an elementary geometry. In order to be elementary, one will
have to start from a world as perceived and already partially globally known
by the children. The objective should be to analyze these phenomena and to
establish a logical relationship. Only through an approach modified in this
way can a geometry evolve that may be called elementary according to
psychological principles. (van Hiele Geldof, 1984, p. 16)

The development of geometrical knowledge is very different from that of
arithmetic and algebraic knowledge, involving teasing out the properties of
geometric shapes, describing and refining their meaning to give verbal
definitions of imagined “perfect” platonic figures. The difficulty of the
development of geometrical knowledge and proof has long been acknowledged.

The Mathematical Association was formed as the “Association for the
Improvement of Geometry Teaching” in 1871, yet the teaching of geometry has
never proved satisfactory for a wide range of pupils. In the sixties there was an
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attempt to replace synthetic Euclidean geometry by transformation geometry. In
terms of the theory presented here this is a significant move because the
transformations are both processes of transformation and objects of a
transformation group, and so they are procepts. The attempt was therefore to
make geometry computation-oriented rather than proof-oriented. This however
proved to be intellectually too demanding for the wide mass of pupils and it
failed. So geometry as both a deductive and a computational science has largely
been lost to elementary school to be replaced by broader concepts of “space and
shape”.

Again there is a loss for mathematically oriented students who might find
delight in seeing how proof is constructed in a verbal way based on visual
representations of geometric figures.

Reflect ions

The result of this analysis is that the mathematics of arithmetic, algebra and
calculus uses symbols both as processes and concepts and the mathematically
oriented student develops flexible ways of using them, both as compact symbols
that can be considered as mental objects in the limited focus of attention and as
ongoing mathematical processes to be able to obtain answers to problems. There
is evidence to support the hypothesis that the less successful student tends to
cling more to the security of known procedures to “get answers” but that these
are less suitable for thinking about than flexible symbols which can also be
considered as mathematical objects to be compared, related and operated upon.

The idea that we all go through the same developmental stages but perhaps
at a different pace is comforting to curriculum developers who may therefore
decide to design such a curriculum in successive levels for children to study. It
is a straw for politicians to grasp, for example in the legally enforced National
Curriculum in England, for it suggests that progress may be measured by the
level attained. According to this theory, children’s progress can be monitored by
assessing progress through specified stages and the changes will give a measure
of the quality of learning and teaching.

But it is a naive and damaging assumption. It is not only the things that
children can do that measures progress, but how they do them, and whether their
methods are of a kind that can be built on in subsequent development. This
discussion has shown that there is a broad spectrum of performance in which
those who are successful develop a flexible way of handling symbols so that
they may be flexibly manipulated to derive new facts from known ones. Those
at the other end of the spectrum learn fewer facts, are often unable to derive new
facts from old and in arithmetic fall into inflexible counting procedures related
to physical representations that tend not to generalise to problems involving
larger numbers. Short-term success might be bought for a time by their learning
routine procedures and attempting to rote-learn facts but this may only store up
problems for a later stage.
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A curriculum built up on evaluating what children can do, in which it is
possible to succeed at a given level by radically different thinking processes,
can lay foundations for eventual failure for those who do not develop methods
that will lead on to later developments and may limit those whose cognitive
structure develops in a way which is suitable for more powerful thinking.

Democracy in education does not therefore mean giving every child the
same sequences of learning, but at different paces. It means giving each child
the education that best suits the child’s individual needs appropriate for his or
her growing cognitive structure. And this in turn may very well mean that many
children need help with the physical meanings and relationships with real world
referents, but those who are succeeding in a flexible manner may need a more
reflective learning environment, less dependent on physical referents, that
encourages growth of more powerful conceptual relationships.

In the debate between university mathematicians and schoolteachers there
may be a situation in which each is focusing on different forms of mathematical
need, the schoolteacher for the need of a wide spectrum of children and the
mathematician on that part of the spectrum which may move on to study
university mathematics.

The perceived difficulties formulated at the beginning of this paper are all
consonant with the possibility that the more mathematically oriented children in
school are not getting the kind of curriculum for which they are capable, in the
name of producing a curriculum ladder for all. It is a curriculum ladder which
demands too much of the less successful so that they reach various plateaux
where their cognitive structure is no longer able to cope with the increasing
complexity, yet fails to support the mathematically able who need a more
powerful approach to build the long-term development needed in professional
mathematics.
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