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This presentation will consider the roles of visualisation and symbolisation in the 
cognitive growth of mathematics. Visualisation plays a fundamental role throughout, 
both in the global overview afforded by visual diagrams and the processing of 
symbolism through the ability to scan written symbols and shift attention to different 
aspects at will. Reference will be made to the author’s development of a visual 
computer approach to mathematics (the theory of generic organisers) and to the 
subtle role of symbols standing for both process and concept (the notion of procept). 
This will be placed in an extension of  the theory of Bruner in which each mode of 
mental representation has its distinct form of objects, actions and proof. 

 
Modes of mental representation 

Almost thirty years ago, when current graphic computer environments were not even a dream, 
Bruner (1966) distinguished three different modes of mental representation – the sensori-motor, the 
iconic and the symbolic. In his essay “Patterns of Growth” he wrote: 

What does it mean to translate experience into a model of the world. Let me suggest 
there are probably three ways in which human beings accomplish this feat. The first 
is through action. […] There is a second system of representation that depends upon 
visual or other sensory organization and upon the use of summarizing images. […] 
We have come to talk about the first form of representation as enactive, the second 
is iconic. […]  Finally, there is a representation in words or language. Its hallmark is 
that it is symbolic in nature. Bruner, 1966, pp. 10–11. 

Bruner considered that these representations grew in sequence in the individual, first enactive, then 
iconic and finally a symbolic representation, where the latter may have a power of its own which 
then depended less on the first two. Furthermore he hypothesised that “any idea or problem or body 
of knowledge can be presented in a form simple enough so that any particular learner can 
understand it in recognizable form” (ibid. p. 44). 

Although this claim is far-reaching, it has proved possible 
to appear to explain certain sophisticated logical ideas in, 
say, a simple visual form. However, different representations 
use different forms of knowledge which has advantages and 
hidden difficulties. 

In figure 1 the bold lines show Bruner’s proposed 
sequence of growth, together with other connections 
between the systems. For instance, the symbolic system 
passes written communication to the enactive system for 
writing and typing, the iconic system passes its drawing 
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Figure 1: Bruner’s three modes of representation 
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actions to the enactive system and there are many links between iconic and symbolic in 
mathematics, for example between symbolic functions and graphs. 

Modern psychologists and neurophysiologists regard the brain as a system of modules with 
groups of neurons working together both within groups and between groups to receive sensory 
perceptions and process them to pass messages to effectors to take appropriate actions (see, for 
example, Gazzaniga, 1985; Edelman, 1987, 1992; Paivio, 1986). However, I hope to show that it 
proves useful to focus on Bruner’s sub-systems to uncover subtle aspects of mathematical growth. 

In the early 80s I had begun working on a visual approach to the calculus using the computer 
corresponding to Bruner’s iconic mode to underpin the symbolic mathematical ideas (e.g. Tall, 
1985a). This might suggest a division between visual and symbolic modes. However, Michael 
Thomas and I (Tall & Thomas, 1991) found a significant visual element in algebra too. Bruner’s 
symbolic mode, must in essence be a visuo-symbolic mode in which the symbols are written or 
drawn and seen. Once written, the page may be scanned in any order and any part may be made a 
focus of attention to reflect on its meaning and to consider its relationship, at leisure, with other 
parts. Written symbolism allows far greater flexibility in use than the spoken word. 

We proposed the idea of versatile learning combining visual global gestalts for overall ideas and 
sequential manipulation of symbols. At that time we began to be aware of algebraic symbols being 
used in two very different ways – as generalised arithmetic where an expression such as 2+3x stood 
for a process of evaluation (once x is given a value) or as a manipulable mathematical object. The 
former causes great difficulty (sometimes termed “lack of closure”) for children unable to accept a 
symbol that could not be evaluated for unknown x . 

Mathematical symbols which represent either process or concept – the notion of procept 

In subsequent work with Eddie Gray on children’s arithmetic exactly the same phenomena occurred 
in arithmetic that had occurred in algebra (Gray & Tall, 1991, 1993, 1994). Children use number 
symbolism both as a notation representing a process (counting) and a concept (number). Addition 
also begins as a process, usually with some form of counting so that “3 + 2 makes 5”, before it is 
encapsulated as the known fact “3 + 2 is 5”. This encapsulation of process into object uses the 
symbolism as a pivot to represent either process or concept. We coined the term procept to 
represent this amalgam of process and concept with a symbol operating dually for either. The 
symbol can be spoken, heard, seen and read and the combination of these sensory perceptions and 
actions gives it a cognitive existence as a mathematical object. But it is more powerful than that – 
the process can be used to do mathematics and the object can be used to think about it. 

A few examples of procepts throughout arithmetic, algebra, calculus and analysis are as follows: 
 3+2  (process of addition, concept of sum), 
 +2  (process of “add two”, concept of “+2” (sometimes noted as +2)), 
 3/4  (process of division, concept of fraction), 
 3+2x  (process of evaluation, concept of expression), 
 lim

x→0

sin x
x

 (process of tending to limit, concept of limit), 
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 dy/dx (process of differentiation, concept of derivative), 
 lim

n→∞
ak

k=1

n

∑  (process of n tending to infinity, concept of limit). 

The notion of ‘procept’ enabled us to focus on how some children see symbolism mainly as process 
and others use it flexibly as either process or concept, giving them a huge advantage. 

We found at least three different kinds of procepts which helped our analysis at different levels: 
• operational procepts such as 3+2 which have a built-in process of computation to 

produce the result,  
• template procepts such as 2+3x whose built-in process cannot be performed until 

certain place-holders are given values, but the symbol can itself be manipulated, 
• structural procepts such as 1 / n3n=1

∞∑  which have an associated process (tending to 
a limit) but do not have a built-in method of calculating the value of limit itself. 

The notion of process being encapsulated as object has a wide coverage in the literature (e.g. 
Greeno, 1983;. Dubinsky, 1991; Sfard, 1991; Harel & Kaput, 1991; etc.). As individuals mature 
they often see symbolism first as a process to be performed and only later (if at all) encapsulate 
symbols as manipulable objects – for instance, in arithmetic, (Gray & Tall, 1991, 1993, 1994), in 
algebra, (Tall & Thomas, 1991; Crowley et al, 1994); in limits (Schwarzenberger & Tall, 1977, and 
other studies summarised by Cornu, 1991), programming limits in a structured computer language, 
(Tall & Li, 1993), investigating limits with a symbol manipulator,  (Monaghan, Sun & Tall, 1994). 

Refining Bruner’s symbolic category 

Not all symbols in mathematics are procepts. For instance, classical Euclidean geometry uses 
symbols such as ABC for a triangle acting as names for geometrical objects without being 
manipulable in the same way as numbers or algebraic expressions. These symbols are essentially 
mathematical extensions of everyday verbal language. Moving on to advanced mathematical 
thinking, there are yet new methods of construction to conquer – the logical system of defining 
mathematical objects and making formal deductions from the definitions. 

I therefore suggest a refinement of Bruner’s symbolic mode to take account of (at least) three 
different types of symbol system which Bruner (1966, pp. 18, 19) had alluded to in passing as 
“language in its natural form” and the two “artificial languages of number and logic.” These sub-
systems I call verbal, proceptual, and logical. Each treats mathematical objects in a different way,  
has different ways of acting on mathematical objects and has its own form of proof (Figure 2). 

The enactive sensori-motor system is at the root of our activity, beginning with perceiving 
objects in the external world and acting upon them. The notions of object and action upon object 
provide two very different motive forces in mathematics; emphasis on (geometric) objects leads to 
Euclidean geometry and emphasis on actions (encapsulating process as object) to arithmetic and 
algebra. The enactive system has a simple method of proof – verification by physical experiment. 

The iconic visuo-spatial system uses iconic representations to enable us to sense spatial 
relationships and consider “thought experiments” where we imagine certain conditions holding in a 
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static or dynamic gestalt to “see” if a conclusion holds. Such proofs are holistic, without necessarily 
having any logical deduction. 

In the verbal system everyday language is used to define idealised versions of geometric objects 
(such as a point having “position but no size”) and to describe constructions and relationships. The 
mental objects rather than the definitions are dominant in the thinking processes and for this reason 
I call them “objects defined” to emphasise that the object comes before the definition. 

The proceptual system concerns the symbols of arithmetic, algebra, calculus and so on, which 
are used to represent the result of a desired calculation or manipulation such as: 

 3+5, 2(x+3), f(x), g(f(x)), lim
n→∞

1 k3
k=1

∞

∑ , d
dx
(sin x) ,  1

x1

t

∫ dx .   

Because these symbols (with the exception of certain structural procepts) have built-in algorithms to 
carry out the processes, it is this area that is most easily converted to operate on the computer. 
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Figure 2 : Objects, actions and proof in different representational modes 
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The logical mode uses formal definitions of concepts as the basis of systematised proof. To 
emphasise the fact that the definition is now the fundamental notion (and any object satisfying the 
definition will have the deduced properties) I use the term “defined object”  to distinguish it from an 
elementary “object defined”. 

Focus of attention and the need for mental compression 
of information 

All the various mental subsystems work with the strengths 
and weaknesses of the human brain, in particular the 
combination of vast storage capacity with a narrow focus of 
attention. Data needs to be compressed  into a form which 
can be used effectively in the focus of attention and a mechanism is required to shift appropriate 
data in and out from the memory store. A primitive, but useful, compression method is to chunk 
several pieces of information together to think of them as a unit. For instance, the array on the right 
in figure 3 is more quickly seen to contain 20 items because they are grouped (chunked) into four 
sets of five. 

A far more powerful method of compression is language where a single word can stand for a 
whole complex of interlinked ideas. But procepts are even more powerful – they flexibly cue either 
processes to do mathematics or mental 
objects to think about mathematics. 

The role of the computer 

The computer can carry out procedures 
almost instantaneously, producing visual 
output on the screen. It is therefore 
valuable for giving visuo-spatial and 
proceptual support. (Figure 4). 
Geometric software such as Cabri 
Géomètre or Geometer’s Sketchpad 
allows the user to specify properties of 
geometric figures and then pull them 
around enactively with the mouse to 
perform “what-if” thought experiments. 
However, the individual must still reflect 
on these experiences to build the 
relations necessary for Euclidean proof. 

Proceptual software accepts symbolic 
input from the keyboard (or mouse-
driven actions), performing 
computations internally and providing 

 
Figure 3 : spatial chunking to ‘see’ a  number 
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Figure 4 : Using the computer to provide visuo-spatial and 

proceptual support for various levels of mathematical thinking 
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the user with the results of those computations to consider. 
Calculators and symbol manipulators  currently work with symbols in “closed form”, (given by 

arithmetic, trigon-ometric and exponential functions and their inverses). They thus tend to focus on 
conceptual models that work, rather than non-examples of concepts that fail  and consequently give 
limited experience appropriate for formal proof.  
Programming in appropriate procedural languages can be proceptual in nature. Early versions of 
BASIC were essentially procedural, allowing the programmer to specify the algorithms required. 
More sophisticated functional and object-oriented languages raise the level to where the procedures 
may be conceived as objects to be input into other procedures. The language ISETL (Interactive 
SET Language) is particularly valuable in that it mirrors the language of set theory operating on 
finite sets, allowing the user to specify a wide variety of constructs appropriate for logic, calculus, 
linear algebra, group theory, etc. By reflection on such computer activities the student may develop 
cognitive support for higher level formal proof (although the mental objects may be related more to 
programming experiences than formal “defined objects”). 

The foregoing discussion emphasises the difference between deduction and proof available in the 
different modes of thinking and the essential role played by individual learners in constructing 
appropriate meaning from software by reflecting on their interaction with the computer constructs. 

The computer also allows new curriculum sequences to be developed, using appropriate 
representations for the stage of development of the learner. Before the computer was invented, 
calculations in arithmetic, algebra and calculus needed to be mastered, practised and routinised and 
only when the symbolism had a stable meaning could it be studied in any sophisticated way. The 
computer makes other routes possible. For instance, using software to carry out a process internally 
so that the learner may study the resulting objects before mastering the mechanics of the process. 

Visuo-spatial overview, selective 
focus and generic examples 

Visualisation allows a large amount of 
data to be conveyed holistically 
enabling the individual to change 
focus from one part of the picture to 
another so that relationships may be 
observed. I illustrate this by briefly 
alluding to some of my earlier work. 

In Graphic Calculus (Tall 1985b, 
Tall, Blokland & Kok, 1990) I used 
visualisations to encourage students to 
give graphical meaning to concepts 
such as rate of change. The latter used 
the notion of zooming in on a graph. 

 
figure 5 : Magnifying the graph of y=sin2x by a factor of 8 

 
Figure 6 : Further magnifications by an extra factor of four each time 
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Although the graph may look curved at a normal scale, at a higher magnification it may look less 
curved (figure 5) and as the magnification grows, the curvature may lessen until the graph may 
appear to look straight (figure 6). Successive magnifications then do not change in gradient as 
homing in yields essentially the same picture as the magnification increases. 
A graph with this property is said to be locally straight. The gradient of the graph at a point can 
now be seen as the gradient of the 
magnified (almost) straight image. 
With this mental image a student 
can learn to look along the graph to 
see the changing gradient. This 
gives a new function, the gradient 
function which can be calculated 
numerically for a given function and 
its graph drawn, enabling the student 
to explore the properties of the 
gradient function of a graph and to 
construct intuitive meaning for what 
will be computed symbolically as 
the derivative. 

The notion of “locally straight” 
not only embodies an intuitive 
notion of differentiability, it also 
intimates that a non-differentiable 
function has a graph which will not 
magnify to look straight. (Figures 7, 
8). In this way the learner may 
develop intuitive notions of nowhere 
differentiable functions and other 
subtle ideas such as different left 
and right derivatives (where a graph 
magnifies to having a “corner” with 
different left and right gradients) before the mechanism of symbolic differentiation is introduced. 

Such insight enables the student to “see” a first order differential equation, say dy/dx=1/y, as a 
curve whose gradient at (x,y) is given by the equation, in this case 1/y. It is easy to program 
software to move a small line segment around the screen (figure 9) either by mouse or cursor 
movement and to leave a trace of appropriately positioned line segments to build up a solution 
curve. Here enactive mouse movement leads to a visual representation before any symbolic solution 
processes need be studied, in true Brunerian sequence (Tall, 1991a).  

 
Figure 7: Magnifying a Van Der Waerden  fractal function (with wrinkles) 

 
Figure 8: Successive magnifications show wrinkles at each level 

 
Figure 9 : Enactively building a solution of a differential equation 
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A software environment enabling the user to explore examples (and preferably non-examples) of 
a concept in preparation for a general concept embodied by the examples is called a generic 
organiser (Tall, 1989). Such environments do not picture the general concept; a specific quartic or 
quintic may represent a typical polynomial, but it is not possible in a single instance, to draw a 
general polynomial which may be symbolised as anxn+an–1xn–1+…+a0. 

For such reasons visualisation alone is eventually inadequate in mathematics (Dreyfus, 1991). 
Verbal or symbolic means become essential to represent general concepts and to formulate general 
arguments. At the research level, mathematicians often use visual imagery to inspire mathematical 
thinking that eventually leads to formal proof. But, as Hadamard (1945, p. 88) says succinctly, it is 
vital to be “guided by images without being enslaved by them”. 

Symbols, computation and generality 

Processing symbols is quite different from processing mental imagery. For instance, the problem: 
Amy’s older brother Ben is now three times as old as her. In four years he will only 
be twice as old. How old is Amy now? 

can be modelled algebraically by letting Amy be x years old so that Ben is 3x years old. In four 
years Amy will be x+4 and Ben 3x+4. As Ben is now twice as old as Amy, we have 

 3x+4 = 2(x+4). 
This equation drastically compresses the information into a compact form which can be solved 
algebraically by a sequence of manipulations: 
  3x+4 = 2(x+4) 
 expand brackets: 3x+4 = 2x+2x4 
 simplify: 3x+4 = 2x+8 
 subtract 4 from both sides: 3x+4–4 = 2x+8–4 
 simplify: 3x = 2x+4 
 subtract x from both sides: 3x–x = 2x+4–2x 
 simplify: x = 4. 
Experience leads to compression of several steps into one, such as: 
  3x+4 = 2(x+4) 
 expand brackets: 3x+4 = 2x+8 
 subtract 4 from both sides: 3x = 2x+4 
 subtract x from both sides: x = 4. 

The solution process is a visually moderated sequence (VMS) of symbol manipulations (Davis, 
1984), where each manipulation is performed and written down to be used as a cue for the next one. 
This process has a strategy in which both sides are simplified by multiplying out brackets and 
collecting together like terms before getting all the numbers on one side and all the xs on the other, 
then divide by the coefficient of x (if it is not 1). A VMS uses mental resources to good advantage, 
focusing successively on the salient features to make the best use of our short-term attention. 

This solution of this equation can be generalised to include solutions of all equations of the same 
type, say ax+b=cx+d, has solution 

 x=(d–b)/(a–c), (provided that a≠c). 
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By programming algorithms to solve this and a 
range of other equations, a solve command can 
be implemented so that solve(ax+b=cx+d,x) 
gives the solution for x  The solve command 
compresses the solution sequence into a procept 
whose built-in process is computed by the 
software. 

Visual and symbolic computer solutions of 
problems 

Visual and symbolic software allow the learner to concentrate on different aspects of the solution 
process while the software does other parts of the process internally. For instance, to solve the 
equation of the previous section by practical drawing requires two points on each of the lines 
y=3x+4 and y=2(x+4) to be calculated to draw the lines through them (figure 10). 

A graph plotter eliminates the computation and the act of drawing and focuses on finding the 
value of x for which the two sides are equal. However, this admirable short-cut can have unforeseen 
circumstances; skills not used may be lost. For instance, a class of 17 students were asked the 
following question before and after a course using Derive on hand-held computers: 

“What can you say about u if u=v+3, and v=1?” 

The students had used the software to draw graphs but had no practice at substituting values into 
expressions. No student improved from pre-test to post-test and six who were successful on the 
post-test failed to respond satisfactorily on the post-test (Hunter, Monaghan & Roper, 1993). 

The use of symbol manipulators also causes students to go through very different processes for 
computing a result. To calculate the derivative no longer requires working from first principles or 
using the formulae for the derivative of a product, composite etc. Instead the process becomes a 
sequence of keystrokes, such as that in Derive: 

• select Author and type in the expression, 
• select Calculus, then Derivative, 
• specify the variable (e.g. x), 
• Simplify the result. 

This fits the human system of routinising a sequence of operations to perform them with little 
conscious effort, but it may not result in conceptual understanding. A group of students with 
personal symbol manipulators were able to compute derivatives, but when asked to explain, most 
referred to specific formulae and how to carry out the sequence of key-presses to get the answer 
(Monaghan, Sun & Tall, 1994). 

The transition to formal mathematics 

The differences in the nature of mathematical objects and of proof cause serious difficulties for 
many students starting university mathematics. Their previous experience is usually of “objects 
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Figure 10 : Solving an equation graphically 
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defined” and they have built rich concept 
images which suggest (by thought 
experiments) that many theorems of 
mathematical analysis are trivial. (One only 
has to imagine a continuous function 
negative somewhere and positive 
somewhere else to see that it must be zero in 
between!) Regrettably these concept images 
often conflict seriously with formal 
definitions, including function (e.g. Bakar & 
Tall, 1992; Dubinsky & Harel, 1993 etc.) 
and continuous function (Tall & Vinner, 
1981; Tall, 1992). A limit may be seen as an 
unencapsulated limiting process of getting 
closer rather than a limit object, or as a variable infinitesimal quantity (Cornu, 1991). 

Given the human propensity to interlink a wide range of mental images, it is natural to link 
visual, verbal, symbolic and other representations of a concept to give a wide array of possibly 
conflicting concept images. For instance, which graphs in figure 11 represent continuous functions? 

For many learners (1) is the graph of a continuous function, but often because it seems to have a 
formula y=x2 which “varies continuously” (Tall & Vinner, 1981). Graph (2)  “jumps” discontin-
uously at the origin and seems discontinuous (even though y=1/x  (x≠0) is continuous in the formal 
sense everywhere in its domain). Graph (3) also seems discontinuous because it jumps. But I 
cheated because I didn’t say it is only defined for rationals: 

y =
+1 if x is rational and x 2 > 2
−1 if x is rational and x 2 < 2
⎧ 
⎨ 
⎩ 

 

and this function is continuous (everywhere in its domain). Graph (4) looks crazy, but the formula   

y =
         1            if x is rational
(2x +1)(x −1)2  if x is irrational

⎧ 
⎨ 
⎩ 

 

is discontinuous everywhere except x=1 12  where it is continuous and x=0 where it is differentiable! 
Formal continuity (even these extreme kinds) can be given a visuo-spatial basis by stretching the 

graph horizontally (figure 12). If a graph eventually pulls out into a horizontal line, one may 
imagine this line to have f(x0) in the middle and to be a strip of thickness ±e (for error). The 
horizontal interval x0–d, x0+d can then be selected suitably small so that, when x is in it, the point 
(x, f(x)) lies in the strip with f(x) between  f(x0)±e. This gives the formal definition of continuity: 

 Given  e > 0,  d > 0 can be found so that x0–d < x < x0+d implies f(x0)–d <  f(x0) <  f(x0)+d. 

The visual meaning easily yields a thought experiment to prove a differentiable function is 
continuous (zoom in with equal scales to see a locally straight graph, then stretch the picture 
horizontally). Such visualisations also support concepts in integration (Tall, 1993), including the 

(1) (2)

(3) (4)  
Figure 11: Which of these are graphs of continuous functions? 
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proof of the fundamental theorem for a continuous function. When I drew a computer picture for 
the area under a continuous, non-differentiable function in class, a student remarked without 
prompting that “the area function must be differentiable everywhere once but nowhere twice”! 

A visuo-spatial approach like this can give students  powerful intuitions but, once again, it is not 
by itself sufficient. A definition derived from a picture is more likely to be conceived as an object 
defined (with powerful concept image) rather than a defined object (with formal definition to be 
used in formal proof). It requires considerable further effort (which often ends in failure) for the 
student to construct the meaning and implications of the definition with its subtle use of quantifiers. 

A versatile combination of mathematical activity 

We have outlined the manner in which mathematical ideas grow in various modes of representation 
– enactive, iconic, verbal, proceptual and logical and the ways in which each supports different 
aspects of mathematical thinking. A versatile approach uses whichever method is most appropriate 
to support the required thinking at a given time. But as we have seen, this is easier said than done. 

Visual approaches can give valuable cognitive underpinning to support thought experiments and 
may be valuable to those not pursuing formal mathematics for it gives insight into more 
sophisticated ideas and problems which may occur. But those who need to study formal 
mathematics will still need to make the difficult transition from thought experiments to formal 
proof. 

Proceptual approaches calculating with numbers and manipulating symbols are powerful for 
modelling real world activities, for doing mathematics and for providing a vehicle for thinking 
about mathematics. Symbol manipulators may help by avoiding long sequences of algebraic 
manipulation, especially at a time when less effort in practising algorithms means that students have 
less algebraic fluency. But they are not a universal panacea, indeed, they may become new 
procedural devices in which meaningless sequences of key-presses replace rote-learned sequences 
of algebraic operations. They still need to be placed in a context which gives a rounded meaning to 

 
Figure 13 : The graph of y=if(rat(x),1,(2x+1)(x–1)2, drawn to equal scales, then stretched horizontally to pull flat at x=1.5 
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both the procedural and conceptual, and considerable cognitive re-construction remains necessary if 
the individual is to proceed to more sophisticated formalism. 

Mathematical thinking is not a coherent structure in which successive ideas build continuously 
on previous ones. Working in one context invariably has specific connotations which require 
reconstruction in  more sophisticated contexts. By attempting to understand how different cognitive 
sub-systems of the brain work and interact, we may yet make some small progress towards 
developing a versatile approach to mathematics using human resources to their best advantage. 
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