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Introduction 
This presentation considers the developing role of the computer in advanced 
mathematical thinking, focusing on the learning of advanced mathematics by 
university students. It will consider different characteristics of advanced 
mathematical thinking and report research into the use of the computer in 
undergraduate learning whilst being cognisant of the differing needs and 
abilities of students concerned. 

Two Types of Advanced Mathematical Thinking 
In some ways university mathematics is an extension of the methods of school 
mathematics, particularly mathematical techniques which involve the use of 
numeric and algebraic methods (although the latter are less well covered in 
more recent years in school than they may have been in earlier times). In other 
ways university mathematics requires a reconstruction of old ideas to take 
into account formal methods of building theories from definitions and proof. 
A significant problem here is that mathematicians – who have already 
developed formal techniques and see the power of the method – have a very 
different view of mathematics from students who must build towards this 
more subtle form of thinking from their current developmental position. 

The difference between these two forms of advanced mathematical 
thinking can be instanced by the case of linear algebra (figure 1). Here it is 
assumed that the student has already met various numeric, symbolic and 
graphic approaches to linear equations in one and two variables. To deal with 
the technicalities of solving m linear equations in n unknowns can be carried 
out by extending familiar techniques of manipulating equations. There are 
certain difficulties, one being the students’ perceived difficulties of extending 
visualisations in R2 and R3 to higher dimensions. However, the “usual rules 
of manipulating linear equations” naturally extend to the general case in 
higher dimensions. Alternatively, the theory may be built formally using the 
definition of a (finite dimensional) vector space V over a field F. The axioms 
for a vector space (abstracted by previous generations of mathematicians) are 
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now presented to the student who must use the definition of a vector space 
from which to construct its properties. Whilst a mathematician may see this 
as proving theorems about vector spaces, the cognitive reality is different. 
The student already has various intuitions about vector spaces from previous 
experience which may be used to suggest techniques of proof, but she or he 
must be certain that the theorem follows using only logical deductions from 
the definition and not from any additional intuitions. Cognitively the student 
must construct the meaning of a vector space from the concept definition. The 
reconstructive generalisation necessary to build the abstract vector space 
concept is cognitively far more difficult than the expansive generalisation 
needed to cope with vectors and matrices in Rn (for more detail, see Harel & 
Tall, 1991). My own son, who gave up mathematics after a term which 
included lectures on vectors, balked when faced with the definition of a vector 
space and took a degree in psychology instead. 

Students’ difficulties with the more formal aspects of mathematics are 
legendary both in the day-to-day experience of mathematics lectures and in 
the growing mathematics education literature (see Tall 1991b, 1992 for 
overviews). 

It is interesting to see that it is far easier to program software to work at 
the technical level (for example in MatLab) than the formal level. Some 
software  is designed to focus on formal ideas. For instance, the language 
ISETL has a syntax which is very close to set-theoretic language, as is 
evidenced by the following code for a function isgroup where isgroup(G,op) 

 
Figure 1: Two different levels of advanced mathematical thinking as exemplified in Linear Algebra 
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returns TRUE if (G,op) is a (finite) group, and FALSE otherwise (Dubinsky 
& Leron, 1994): 

 isgroup := func(G,op); 
  return (forall x,y in G | x .op y in G) 
   and (forall x,y,z in G | (x .op y) .op z) = (x .op (y .op z)) 
   and (exists e in G | (forall x in G | x .op e = x)) 
   and (forall x in G | (exists y in G | x .op y = e)); 
  end; 

This allows experience to be obtained by working with specific groups at the 
technical level, whilst providing intuitions from which to build more general 
formal ideas. 

In geometry, software such as Cabri Géomètre and Geometer’s Sketchpad 
enable the student to construct geometric figures that can be moved around to 
gain intuitions to suggest theorems. But the theorems themselves still need to 
be proved and (unlike the example given above in ISETL) the sequence of 
steps in the formal proof may not follow obviously from the computer 
experience. 

In the calculus, there is a huge array of software such as Mathematica, 
Maple, Reduce, MACSYMA, Theorist, Derive. Various implementations are 
becoming available on graphic calculators, for instance, the new TI-92 
includes Cabri Géomètre and Derive environments in addition to the usual 
graphic, numeric and programming facilities found on other graphic 
calculators. Once more, however, these concentrate more on the technical 
facilities which can be programmed into the software, than on the formal 
meanings which require reflection by the individual and personal 
constructions from concept definitions. 

When David Stoutemeyer produced MuMath (the predecessor to Derive), 
his main intent was to focus on the technical aspects to provide engineers with 
the technical support to cope with information which previously had to be 
looked up in extensive books of formulae. The idea that the software could be 
used for conceptual purposes in education was a secondary consideration 
which emerged later. 

Physical and mental representations of mathematics 
Computer software proves to be good at handling numeric, symbolic and 
graphic representations of mathematics. Numeric aspects are particularly well 
catered for because there are well-defined algorithms for calculation which 
are relatively easily programmed (as witnessed by the ubiquity of numerical 
calculators). Symbolic aspects have grown in prominence as the nature of the 
underlying symbol manipulation has been more carefully analysed and 
programmed with increasing success. Since the early eighties, graphic aspects 
have also been programmed with increasing subtlety, from the drawing of 
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graphs of one variable, solutions of differential equations and now on to two 
and three dimensional imagery of all kinds with an increasingly intuitive user-
interface. These give previously unimaginable environments for doing 
mathematics and thinking about it. 

However, the internal mental structure relating to the mathematical ideas 
is considerably more complex than the physical pictures or symbols we may 
draw on paper or on a computer screen. An extensive literature has grown out 
of the use of numeric, symbolic and graphic representations, using the 
computer to link graphs dynamically with tables of values and symbolic 
formulae. Graphic calculators are extensively used to draw graphs to interpret 
symbols and tables graphically. Software has been designed with dynamic 
links between various representations. Indeed, the spreadsheet Excel links 
tables of values to a graph which changes as the table entries change. The 
latter can be used for a variety of tasks such as drawing the successive values 
of an iteration to see the iteration converge (figure 2), or drawing the solutions 
of a differential equation using an iterative numerical method. 

 
Figure 2: Using a spreadsheet to calculate Newton-Raphson approximations to a root of f(x)=x2–2 

Linking symbolism to graphical representations can, however, produce 
unforeseen results. For instance, Caldwell (1995) expected students to find the 
roots and asymptotes of the rational function 

 

by algebraic means, only to be given a substantial number of approximate 
solutions such as 0.01 and 3.98 using a graphing calculator. Boers & Jones 
(1993) report students use of a graphic calculator to draw a graph of 

 
 

f (x) = x(x − 4)
(x + 2)(x − 2)

f (x) = x2 + 2x − 3
2x2 + 3x −5
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with a removable discontinuity at x=1. They found that more than 80% of the 
students had difficulty reconciling the graph with the algebraic information, 
for example, drawing an asymptote suggested by the zero in the denominator, 
despite the graphic evidence of the calculator (figure 3). 

 
Figure 3: graphic calculator display and student graph 

In both of these cases we find students moving from one representation 
(symbolic) to another (graphic). In the first case the students fail to relate back 
to the original algebra, in the second the original algebra conditions what they 
expect to see, and when they don’t see it, they imagine it. 

When multiple representations first appeared, I was unsure about the 
claims made about their value and too timid to go against the surge of euphoria 
that came with them. For me they were intellectually tremendously satisfying, 
but I had concerns that mathematicians tend not to use several representations 
simultaneously, they shift from one representation to another, using whichever 
proves the most appropriate at the time. The above examples show that 
students don’t necessarily think in the same flexible way. More recently the 
euphoric tide has turned: 

Tables, graphs, and expressions might be multiple representations of 
functions to us, but I have seen no evidence that they are multiple 
representations of anything to students. In fact, I am now unconvinced that 
they are multiple representations even to us, but instead may be areas of 
representational activity among which we have built rich and varied 
connections. It could well be a fiction that there is any interior to our 
network of connections … just an expression of our sense, developed over 
many experiences that we can move from one type of representational 
activity to another, keeping the current situation somehow intact.
 (Thompson, 1993) 

Seeing mathematics from our expert perspective and attempting to pull 
students “up” to it is quite different from the realities of student development. 
To understand the latter requires more than armchair philosophising, it 
requires practical observation and careful cognitive theory-building. 
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A spectrum of student insights into mathematics 
Mathematicians have observed, anecdotally over the centuries, that some 
students can “do” mathematics, but others can only cope with routine 
problems after practice. Until recently mathematics teaching at university has 
concentrated on those that have a “natural talent” for mathematics, with the 
purpose of the degree (at least in pure mathematics) to be to produce the pure 
mathematicians of the future. There was a mistaken attempt in the sixties “new 
mathematics” to introduce set theoretic concepts into school mathematics, 
seeing the syllabus “from above” in the manner of experts. It didn’t work. 
Subsequently there was a broader move to teach mathematics in a way more 
meaningful to children at their own level, taking into account difficulties 
observed in empirical research (eg Hart, 1981). But, just as the “expert view” 
failed the majority in the sixties, the “meaningful view for the majority” in the 
eighties and nineties is being seen in universities as failing the more able by 
omitting “difficult” topics from the syllabus, leaving students ill-prepared for 
university mathematics. 

I suggest that the problem lies in an over-simplistic democratic view of 
student learning that all children go through the same stages but at different 
speeds. There is much research which suggests a different picture giving 
clearer substance to mathematician’s intuitions – that different individuals 
think in different ways which makes some more likely to succeed than others. 

Kruteskii (1976) and his co-workers (eg Dubrovna 1992, Shapiro 1992) 
used a wide range of mathematical problems to investigate the styles of 
thinking that distinguishes gifted and capable students from average or below-
average students throughout primary and secondary school. For our purposes 
what is important is to note the following: 
 (a) the capable, and especially the gifted, have highly connected 

conceptual structures that enable them to grasp the essential 
elements in a problem without losing track of the details, to 
focus on generalities, to curtail reasoning to an essential 
minimum, and to think flexibly. 

 (b) average students have less well-connected conceptual 
structures, are more likely to focus on specifics and learn to 
curtail reasoning only after practice at specific procedures. 

 (c) the below average tend not to distinguish essential detail from 
inessential detail, they remember random specifics rather than 
general strategies and often break down when carrying out 
mathematical procedures. 

 (d) the gifted, in addition, show a spectrum of preferences for 
different ways of thinking; of Krutetskii’s original 34 “gifted” 
individuals, 6 were classified as “analytic” (preferring 
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symbolic and logical reasoning), 5 as “geometric” (preferring 
visually based thinking) and 23 as “harmonic”, exhibiting a 
spectrum of relative preferences for verbal-logical and visual 
thinking.  

It should be emphasised that Kruteskii hypothesised that, whilst individual 
differences clearly exist, the qualities that make mathematical thinking 
powerful are teachable. My own view is more sceptical. I am convinced that 
all students’ thinking can be improved, but the extent of the improvement is 
constrained by the way in which individuals process information. In 
particular, the different ways of thinking have long-term implications which 
tend to cause a divergence between success and failure as the students mature, 
continuing into higher education. 

This is important in our study of advanced mathematical thinking, for not 
long ago only 10% of British students went on to study at university. In 
Krutetskian terms this would suggest that most of these were gifted in some 
way, at least well above average. Even so, experience showed that many failed 
to operate at a suitable powerful level in university mathematics. With the 
recent increase to 30% of the population now going on to higher education in 
Britain, many more will be classified as capable, or average. This suggests 
that the clientele taking university mathematics may change radically in some 
(but not necessarily all) universities. Different types of student almost 
certainly require different types of learning experience. 

Current research into undergraduate mathematical learning in analysis 
(Pinto, in progress) suggests that the successful do not find the subject easy. 
On the contrary even gifted students struggle to give meaning when 
reconstructing their knowledge to cope with the formalism. Less successful 
students have a shallower view of the concepts, with intuitive, visual 
interpretations of limit, continuity, maximum, supremum etc.; these intuitions 
support the theorems stated but do not connect to the formal meaning of the 
definitions, so the students fail to understand the proofs. 

The reasons why students end up in this position can be traced back into 
their earlier experiences in learning which have often degenerated into routine 
learning of procedures. Ausubel et al (1968) refer to the difference between 
meaningful and rote learning, a distinction which has been embedded in 
British education for several centuries: 

Master. … I wil propounde here ii examples to you whiche if you 
often doo practice, you shall be rype and perfect to subtract any 
other summe lightly … 
Scholar. Sir, I thanke you, but I thynke I might the better doo it, 
if you did showe me the woorkinge of it. 
Master. Yea but you muste prove yourselfe to do som thynges 
that you were never taught, or els you shall not be able to doo 
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any more then you were taught, and were rather to learne by rote 
(as they cal it) than by reason.  
 (Robert Recorde, The Ground of Artes, 1543) 
 (quoted in Howson, 1982) 

Skemp (1976) formulated a similar notion in the difference between 
instrumental and relational understanding, whilst Hiebert (1986) studied the 
difference between procedural and conceptual knowledge. 

These extremes of procedural and conceptual learning are not necessarily 
exclusive. The procedures allow one to do mathematics and the conceptual 
relationships allow one to think about it. Throughout the learning of 
arithmetic, algebra and the calculus, the symbolism acts as a pivot to act either 
as a cue to carry out a procedure (such as addition) or as the output of that 
procedure (the sum), as in these examples: 

symbol process concept 
3+2 addition sum 
–3 subtract 3, 3 steps left negative 3 
3/4 division fraction 

3+2x evaluation expression 
v=s/t ratio rate 
y=f(x) assignment function 
dy/dx differentiation derivative 

 integration integral 

 tending to limit value of limit 

s Î Sn permuting {1, 2 ,…, n} element of Sn 

A common development in mathematics starts with gaining experience of a 
process, first as a specific procedure, perhaps then with more flexibility in 
alternative ways which are more effective or curtailed, and finally conceived 
as a single entity. A symbol which first evokes a process becomes seen also 
as the resulting concept. The use of a symbol as a pivot between process and 
concept is called a procept (Gray & Tall, 1993, 1994). It gives enormous 
power allowing the individual to do mathematics (as a process) and to think 
about it (as a concept). 

The failure to think of such symbols flexibly as process and concept 
renders the individual unable to think in a powerful mathematical way. Instead 
the fall-back position is rote-learning. It may work well in routine problems, 
but it produces an escalating degree of difficulty in successive stages because 

f (x)dx∫

lim
x→2

x2 − 4
x − 2

1
n2n=1

∞

∑

⎫

⎬
⎪⎪

⎭
⎪
⎪
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it is more difficult to coordinate processes than to manipulate concepts. The 
failing student is therefore doubly handicapped. Not only is he or she finding 
the mathematics difficult, the kind of mathematics he or she is forced to use 
is itself more difficult than the flexible thinking available to the successful 
mathematician. 

Different kinds of procepts become successively more complex in 
arithmetic, algebra and calculus: 

• operational procepts, such as those in arithmetic or symbolic 
differentiation with built-in algorithms of computation, 

• template procepts, such as expressions in algebra where 2+3x 
can only be evaluated when x is given a numerical value, yet 
the expression itself can be manipulated as a mathematical 
object,  

• limit procepts, which involve a process of getting close to a 
limiting value and the concept of limit. 

The first of these gives the impression that mathematics is about getting 
answers, the second that it is about manipulation of symbols, the third causes 
difficulties because the limiting process no longer gives a straightforward 
computation to obtain the limit value. Most students sense the limit as an 
incomplete process rather than a limit concept. For instance, an infinite 
decimal is seen as a never-ending process of computation rather than a 
limiting value. 

At various stages in elementary mathematics symbols representing 
processes must be rethought as mathematical concepts and the way in which 
it happens gets progressively more complex, so more and more students get 
confused and resort to rote-learning of procedures to “get answers” rather than 
linking ideas in a conceptual manner. 

Given the input to universities of students with a great diversity of 
cognitive development, we therefore come to the question of how the 
computer might be helpful in the cognitive development of advanced 
mathematical thinking. 

The computer in developing advanced mathematical thinking 
In earlier sections we have already seen that current computer software deals 
with those things that can be readily programmed, including operational 
procepts (involving numerical calculations), template procepts (symbolic 
manipulation) and can do all the underlying numerical computations to draw 
pictures and provide an enactive interface to manipulate graphical imagery. 
Limit processes are dealt with more circumspectly; some have symbolically 
computable limits but others may only be computed to appropriate numerical 
accuracy. Overall, it is possible to provide software linking numeric, symbolic 
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and graphic representations. These will now be considered in turn and in 
various combinations. 

Various early forms of computer software, often involving graphical 
representations, had a theme of “giving a sense of the concepts”, rather than 
dealing with the underlying theoretical ideas. For instance: 

The real purpose of the program is to help the students expand their 
intuitions and their capacity to deal with abstractions.  
 (Schwartz & Yerushalmy, The Geometric Supposer, 1985) 
There are many investigations, allowing one or more learners to work 
together, or with a teacher, to develop a mental picture of the ideas to 
supplement the formal manipulations. (Tall, Graphic Calculus, 1985a) 

Our object is to give a ‘feel’ for probability distributions rather than go into 
details of the mathematics or special applications.  
 (Robinson & Bowman, Introduction to Probability, 1986) 

Using computer graphics changes a differential equations course, even at 
an introductory level, from rote memorization of techniques to a conceptual, 
visually oriented approach. … Why graphics? Because the human brain is 
made to process visual images. Because far more information can be 
transmitted in a picture than in a sheaf of tables. We can see many solutions 
all at once; we can see the patterns they form.  
 (West & Noonberg, Using MacMath in Differential Equations, 1994) 

Such pictures can inspire, but can also mislead, as in the case of drawing 
differential equation solutions where numerical methods may develop serious 
errors and the pictures may show the true solutions: 

So, you need proof to verify what you see. Thinking is essential when using 
graphics, there is a lot of intellectual work, not just pretty pictures.(West & 
Noonberg, 1994, p.492) 

In the development of the 16-19 Curriculum for SMP I designed software for 
the calculus (Tall 1991a) to be used in a conceptual way linking to the 
corresponding numeric and symbolic ideas. My own research (Tall 1985b) 
showed that students were well able to link visual ideas with symbolic ideas. 
I proposed that students should be shown non-differentiable functions afrom 
the outset. Because a differentiable function essentially “looks straight” when 
highly magnified, a non-differentiable one does not: it might have a left or 
right gradient, it might be highly wrinkled at all magnifications. Thus visual 
conceptual ideas are possible at an early stage to show the breadth of 
possibilities. 

This approach pays off in later stages where, for instance, the Newton-
Raphson method may be seen in a more conceptual light. First, the students 
are more likely to know that the graph of a differentiable function is locally 
straight, so they can see that a tangent is a good way of approximating the 
graph. Better still, they may also know that the tangent can be approximated 
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numerically, so a numerical approximation through two close points can be 
used, instead of differentiating to find the theoretical tangent. 

It is therefore possible to let the program step through a sequence of 
approximations, taking the opportunity to zoom in as required, which will 
reveal the locally straight graph as being virtually indistinguishable from the 
numerical approximation to the tangent. Furthermore, once the principle of 
the Newton-Raphson iteration is established it is possible to try various 
starting points to see what happens if one starts on a curved part of the graph 
away from a root. Thus questions of stability of solution depending on the 
starting value can be raised at the very beginning. The graph of sinx is an 
interesting (chaotic) case! (Figure 4.) 

 
Figure 4 : Tabulating the Newton-Raphson iteration 

Very few other curricula have followed such a conceptual lead. For instance, 
the Harvard Consortium decided that 

… we should be showing students the power of the calculus, not the special 
cases where it fails. …if we teach Newton’s method, we should not 
emphasize the cases where it doesn’t work. (Sudholz, 1995, p. 57) 

Instead, those that use computers in the calculus broaden concepts a little (for 
instance by using piecewise defined functions) but they generally fail to grasp 
the conceptual nettle to show not only where the calculus works, but also 
where it may fail. In terms of sales, the most conceptually radical course 
(Dubinsky et al, 1995) based on a theory of cognitive development, sold 1,200 
copies in the fall of 1994, Calculus with Mathematica (Davis et al, 1994) using 
Mathematica notebooks, sold 4,000 copies, whilst the text of the Harvard 
Consortium mentioned above sold 60,000 copies. (Further details of these and 
other calculus reform projects can be found in Tucker & Leitzel, 1995). 
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Powerful combinations of visual and symbolic 
Early research showed that it was possible to use symbol manipulators to carry 
out routine manipulation successfully whilst using graphical software for 
visual conceptualisation. 

Palmiter (1991) taught integration to students using the symbolic software 
MACSYMA to perform all the computations for five weeks whilst a 
comparison group were taught the same course without a computer for ten 
weeks. At the end of the course both sets of students took one exam on 
conceptual ideas and another on techniques under identical conditions, except 
that in the techniques exam the MACSYMA students had half the time but 
could use the symbol manipulation software. The results showed a significant 
improvement in the students using the computer over those without: 

 
 Class   
Examination MACSYMA Traditional T2 p<? 
Conceptual 89.8% (±15.9) 72.0% (±20.4) 1.20 p<0.001 
Computational 90.0% (±13.3) 69.6% (±24.2) 0.92 p<0.001 

Although students using symbol manipulation software are likely to get far 
less practice at routine manipulation, some authors suggest that this need not 
prevent them from developing the facility to carry out the manipulations by 
hand. Using the early symbol manipulation software MuMath for twelve 
weeks with just three weeks to practice techniques: 

Students showed deep and broad understanding of course concepts and 
performed almost as well on a final exam of routine skills as a group who 
had studied the skills for the entire fifteen weeks.  
 (Heid, 1984, p. 2; 1988) 

When students studied calculus using Mathematica, focusing on conceptual 
ideas and using the software to carry out the computations, it has been claimed 
that: 

Early evaluations indicate that students have no disadvantage in advanced 
courses based on hand calculations.  
 (Davis, Porta & Uhl, 1992, p. 311) 

Such students may grow to see mathematics in a new light: 

I was helping a friend in the normal (read: old-fashioned, obsolete) section, 
and I worked a problem down to the integral and stopped there, satisfying 
myself that a computer could take it from there. My friend looked at me, 
stunned that I had not done the hardest part of the problem and considered 
myself finished. I was finished, for I had done the thinking behind the 
problem and didn’t want to bother myself with the petty details of working 
through memorized procedures. That’s what a computer’s for.(ibid, p. 310) 
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On the other hand, there is evidence that focusing on certain aspects and 
neglecting others may cause the neglected items to atrophy. For instance, 
sixth-form students using Derive on hand-held computers to draw graphs of 
functions did not need to substitute numerical values for the independent 
variable to get a table of values to draw the graph. As a result, they had little 
practice of numerical substitution. This had unforeseen consequences. Some 
students who could calculate by substitution before the course were unable to 
do so afterwards. The students were asked: 

 “What can you say about u if u=v+3, and v=1?” 
None of the seventeen students improved from pre-test to post-test and six 

successful on the pre-test failed on the post-test (Hunter, Monaghan & Roper, 
1993). 

Symbol manipulators can also give new kinds of meaningless procedures 
for (weaker?) students who may rote-learn sequences of key-strokes in place 
of rote-learnt symbolic procedures. For instance, Derive replaces the 
procedure of symbolic differentiation by a sequence of keystrokes: 

• select Author and type in the expression, 
• select Calculus, then Derivative, 
• specify the variable (e.g. x), 
• Simplify the result. 

In a comparison of two schools in the UK, one following a standard course, 
one using Derive, the students were asked: 

Please explain the meaning of . 

… All the students in the school [following the standard course] gave 
satisfactory theoretical explanations of the expression but none gave any 
examples. However, none of the Derive group gave theoretical explanations 
and only two students [out of seven] mentioned the words ‘gradient’ or 
‘differentiate’. Four of the Derive group gave examples. They replaced f(x) 
with a polynomial and performed or described the sequence of key strokes 
to calculate the limit.  
 (Monaghan, Sun & Tall, 1994.) 

Failure of some computer approaches to the limit concept 
It is well-known (Monaghan, 1986) that students (and professors) have 
idiosyncratic views of the nature of the real line. In fact there is a Catch-22 
situation where real numbers cannot be understood without limit concept, nor 
limits fully appreciated without real numbers. Programming in a computer 
language or numeric system with limited accuracy seems to make this worse. 
For over fifteen years my department has used a course in BASIC 
programming designed to give students intuitions to form a basis for the later 
formalities of mathematical analysis. Li & Tall (1993) investigated this idea 



 14 

and found it flawed. The calculation of the sum of one series took time so that, 
although 10 or 100 terms would be computed almost instantaneously, 1000 
terms might take longer and 10000 terms ten times as long again. The result 
is that the students sensed that the process would never end, because the bigger 
the number, the longer it took. The net result was that half the students 
believed that an increasing sequence bounded above may simply continue 
creeping up without ever converging to a limit. These refused to accept the 
completeness axiom because they did not believe it! (which is not really so 
strange because they had little real understanding of numbers beyond the 
rationals which fail to be complete anyway...) 

These students were intending teachers following a mathematics education 
course who were capable rather than gifted. They illustrate the kind of 
difficulties that such students may have. There were some changes in their 
understandings during the course, including subtle modifications of the 
meaning of terms such as  “tends to” and “limit”: 
 Complete the following sentences: 
 1, 1/2, 1/4, 1/8,  …      tends to ___________  
 The limit of 1, 1/2, 1/4, 1/8, is  ___________  

“tends to” / “limit” 0 / 0 0 /   /  0 / ? 2 / 2 0 / 2 0 / 1 

pre-test (N=25) 0 11 1 5 0 2 2 
post-test (N=23) 8 3 3 0 4 0 2 

But despite a lecture attempting to give meaning to an infinite decimal, the 
decimal “0×9 repeating” did not change its image: 

 

Is  Y N ? no response 
pre-test (N=25) 2 21 1 1 
post-test (N=23) 2 21 0 0 

Interviews revealed that students continued to conceive  as “a sequence of 
numbers getting closer and closer to 1”, or not a fixed value “because you 
haven’t specified how many places there are” or “it is the nearest possible 
decimal below 1”. 

Two other questions gave further insight into decimals as processes: 

(A)  Can you add  and go on forever to get an exact answer? Y/?/N 
(B)      Is 1/9 equal to ? (Y/?/N) 

The favoured response on both pre-test and post-test is No to (A) and Yes to 
(B):  

Responses to (A)/(B) Y / Y Y / N N / N N / Y N / ? ? / N nr / Y 
pre-test (N=25) 4 0 1 18 0 1 1 
post-test (N=23) 2 2 2 14 1 0 0 

1
∞

1
∞

1
∞

0 ⋅ !9 = 1

0 ⋅ !9

0 ⋅1+ 0 ⋅01+ 0 ⋅001+!
1/ 9 = 0 ⋅ !1 0 ⋅1+ 0 ⋅01+ 0 ⋅001+!
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Why do the majority regard  as false but 
 to be true. If these sentences are read as processes 

rather than equality of objects, the first is a potentially infinite process which 
can never be completed but the second shows how 1/9 can be divided out to 
get as many terms as are required. In this way computer experiences may fail 
to dislodge a firmly held intuitive belief. 

Effects of Computer Algebra Systems on Mathematical Proof 
Symbol manipulators focus on getting results rather than taking the user 
through the process of manipulation to obtain the result. As such they focus 
on processes that work rather than processes that fail. Thus counter-examples 
are few and the need for general proof is not evident. Virtually every graph 
ever drawn is of a differentiable function. Efforts to use absolute values and 
integer parts to motivate non-differentiability and discontinuity, are 
regrettably not typical non-examples. Thus it is that computer algebra 
software continues to focus on the technical aspects of mathematics without 
little need for formal proof. 

Software can be designed for motivating more general concepts. for 
instance, the software written for the SMP 16-19 syllabus for the Archimedes 
computer includes a facility to model functions that take different values on 
rationals and irrationals and, with a little insight, software like Mathematica 
can give visual support to more interesting non-examples (e.g. Rosenthal, 
1992 who draws graphs of functions where f(p/q)=1/q for a rational p/q in 
lowest terms). 
The software written for the Archimedes computer for SMP 16-19 is, of 
course, a cheat, because all computer numbers, (especially 8-digit 
representations) are rational. However, by computing the continued fraction 
approximation to a number x and declaring it to be “pseudo-rational” if the 
denominator grows suitably large can separate computer numbers into two 
disjoint subsets which are intimately entangled. In the case of the SMP 
software, a randomly generated number has a 94% chance of being “pseudo-
irrational”, and this offers the possibility of discussing what happens with 
randomly Riemann sums which tend to alight far more often on pseudo 
irrationals. Figure 5 shows the area under the graph whose values are x (x 
rational) and 1–x (x irrational). Using a rational step length and the mid 
ordinate rule picks up only rational values. Using a random length picks up 
mainly (pseudo)-irrationals. By using double precision, the model can be 
fixed to give 99.99% pseudo-rationals, but I enjoy the inadequacy of the 
model in discussing ideas of randomness and irrationals with students. This 
nicely leads into an intuitive discussion of the Lebesgue integral! 

0 ⋅1+ 0 ⋅01+ 0 ⋅001+!= 1/ 9
1/ 9 = 0 ⋅1+ 0 ⋅01+ 0 ⋅001+!
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Figure  5 : calculating the area under a graph with rational and random steps 

Reflections 
Thinking about the empirical evidence gleaned from various educational 
studies, it becomes clear that there is much to do to understand the effects of 
the computer on undergraduate learning. Computer software is usually 
programmed to operate at a technical level rather than a formal level. It usually 
carries out the processes internally giving the student a new and not 
necessarily better view of the balance between process and concept, in which 
symbolic procedures may be replaced by sequences of key presses. But it has 
the potential to be used imaginatively to give all kinds of conceptual insights. 

In practice, when the need to complete the syllabus presses upon those 
giving courses, conceptual insights are often suppressed in favour of 
traditional concepts given a token computer support. However, as the 
computer is used more by mathematicians, conceptions of traditional 
mathematics will begin to change to fit the opportunities of the new medium. 
Proof will remain the ultimate test of mathematical viability, but hypothesis 
and computer experiment will grow. 

It remains important that even as new opportunities are taken by 
mathematicians in using the computer that attempts are made to see 
mathematics from a growing cognitive viewpoint of student learning. This 
will require careful experiment, observation and deep reflection about what is 
happening in undergraduate learning, cognisant of the broad spectrum of 
needs and learning styles to be found in our students. 
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