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In his later years as Professor of Mathematics at Cambridge, G. H. Hardy wrote:

The function of a mathematician is to do something, and not to talk about what
he or other mathematicians have done. Statesmen despise publicists, painters
despise art-critics, and physiologists, physicists, or mathematicians have
usually similar feelings; there is no scorn more profound, on the whole more
justifiable, than that of the ‘men who make’ for the ‘men who explain’.
Exposition, criticism, appreciation, is work for second-rate minds.

(G. H. Hardy, A Mathematician’s Apology, 1940, 2nd edn 1967, p. 61)

As a mathematics educator, I sense no need for an apology in attempting ‘to
explain’ the thinking of mathematicians, for it is also our duty ‘to make’
theories about the nature of mathematical thinking. I see the vital role of
understanding how experts and novices think mathematically and how this
knowledge can be of value in teaching mathematics to subsequent generations.
In particular I see the expert mathematical mind not as one always full of clarity
and cool deduction, but one which is itself susceptible to human
misconceptions.

Strauss, Sphärenklänge Walzer, opus 235, bars 14–20

The Music of the Spheres is a beautiful Strauss waltz which looks back on a
forgotten world of elegance and refinement, in turn referring back to the Music
of the Spheres with which the ancient Greeks used to describe the harmonies of
their universe. The ethereal sound of the music conjures up the sophisticated
rhythms and exquisite harmonies of the Waltz-king, Johann Strauss. But that is
our first misconception—it is not the music of Johann Strauss at all, but of his
less extrovert, more poetic and melancholic brother, Josef, whom Johann
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claimed was “the most gifted of us all.” Familiarity brings with it a lack of
critical sensitivity, a willingness to look on events through rose-tinted
spectacles. Just as some may look back at those elegant days in the ballrooms of
Vienna, so we may look back at the days of our youth when mathematics was
taught properly—in those good old days when it was always warm in summer
and snow fell on Christmas day. It is a nostalgia which clouds our reason and
limits us from seeing the possibilities that lie before us.

In this lecture I will look back at the classical mathematics of the Music of
the Spheres to see how, from the expert viewpoint of the time, the explanations
of the natural world were perfectly reasonable, but that mismatches between
theory and reality led to the need for theoretical change. I will take this as a
metaphor for some of the expert views of teaching and learning mathematics
today, to see how the coloured vision of the expert may involve misconceptions
in mathematics education.

Music of the Spheres

It would be natural for primitive man to see the perfection in circles and
spheres. Each day the sun rises as a glowing circle and pursues a curved path
through the sky and, in a slightly more intriguing manner, the moon waxes and
wanes through its cycle, reaching full circular glory every month. At night the
stars reveal a fixed pattern that moves around as points of light on a huge black
background. Early civilisations began to observe, record and predict for
astronomical and astrological purposes. As technology improved, it became
possible to make a circular plan of the stars in the heavens and the constellations
of the Zodiac, as on this 16th century astrolabe:

The positions of the stars on the disc or “rete” of an astrolabe.
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A second circular plan marked with bearings, degrees of altitude, and circular
time lines allowed the first disc to be lined up to accurately specify the positions
of the stars at a given time.

The markings to line up the position of the “rete”.

But certain stars are not like the others. Instead of remaining fixed, over a
period of time, five stars visibly “wander” around the night sky in intriguing
patterns.

The path of a “wandering star”

How could these patterns be described? The Pythagoreans in the Fifth Century
BC believed that the wandering stars, or planets, each moved on a sphere round
the earth, and the description of harmony in terms of ratios of whole numbers
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suggested a tenuous link between the harmonies of music and the motion of the
planets. This is the origin of the “music” or “harmony” of the spheres.

No written records have survived from the Pythagoreans, and it was Plato
(c..428 – c. 348 BC) who instructed the members of his Academy to develop a
theory of circular motion to model the movement of the planets. First Eudoxus
(c. 400 – c. 350 BC), then his pupil Callipus, and then Plato’s pupil Aristotle
(384 – 322 BC) proposed successively more complex models based on circular
motion on concentric spheres around the earth. The heavenly bodies were
considered to be in the order: moon, Mercury,Venus, Sun, Mars, Jupiter, Saturn.

Archimedes (c. 287–212 BC) made a sophisticated planetarium of bronze
and glass, driven mechanically by water power, which represented the motions
of sun, moon and planets, and the daily revolution of the fixed stars. Writing
over a century later, Cicero (106–43 BC) reported seeing the planetarium still in
action:

When Gallus set the sphere in motion, one could actually see the moon rise
above the earth;s horizon after the sun, just as occurs in the sky every day; and
then one saw how the sun disappeared and how the moon entered the shadow
of the earth with the sun on the opposite side. (Cicero, De Re Publica, 51 BC.)

Over the centuries, sophisticated “armillary spheres” were constructed to
represent the movement of the heavens and the paths of wandering stars around
the earth:

A woodcut of a fourteenth century armillary sphere charting the positions of the heavenly bodies.

The manner in which the wandering stars were able to reverse their direction as
they moved against the fixed background was described by Hipparchus (fl. 150
BC) using a new model with the planets moving in circles upon circles:
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 The path of W is similar to that of the “wandering stars”.

Ptolemy of Alexandria incorporated and developed these ideas in his
Mathematical Collection (He mathematike syntaxis) rechristened Algamest
(“the greatest”) by the ninth century Arabs; it became the foremost reference of
astronomy for well over a thousand years.

A simple mathematical thought experiment will show why the theory of
“circles on circles” is a good match for the motions of the heavenly bodies. If a
point P is moving in a circle radius r around the point O at an angle θ measured
from a fixed radius OF to the turning radius OP then, as the angle θ increases,
the point P moves round the circle clockwise:
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A point P moving in a circle centre O.

A small creature at P sees the point O is always a fixed distance r away, but in
the reverse direction:
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The view from the point P.

If the tiny creature is unable to sense it is moving and thinks it is staying in the
same place, then the point O will appear to be moving around it in a circle in the
opposite sense.

Of course, this is what is happening to us. When we look up at the sun
moving round the earth, we consider ourselves fixed and the sun as moving. As
a wandering star W moves in a circle round the sun S, as we saw earlier, the star
appears to be moving on a “circle upon a circle”:

E

S

W

Motion relative to the earth, E.

However, if we consider the sun fixed instead, and see the earth moving in a
circular orbit around it, we see a simpler picture:
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Motion relative to the sun, S.

However, even these more complex ideas failed to give an exact match for the
observed motion. Ptolemy knew this and had developed a more complex model
in which the Earth E was placed to one side of the centre of the large circle and
the motion of the centre of the smaller circle had uniform angular motion about
another point E' an equal distance on the other side of the centre.

E E'

S

W

centre

An “eccentric” version of the theory.

Over a millennium later, Copernicus (1473–1543) instated the sun as the centre
of a planetary system but returned to circular planetary orbits in D e
Revolutionibus, published just before his death. He was followed by Johannes
Kepler (1571–1630) who believed devoutly that the universe was an ordered
mathematical harmony and sought the underlying pattern that held it together.
He mused as to why there were only six (known) planets and, in a moment of
inspiration, linked this to the five regular solids. If the six planets were moving
on unseen spheres about the sun, could not the five regular solids be inscribed
between the spheres? (Mysterium cosmographicum, 1596).
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Kepler’s relation between the regular solids and the planetary orbits

He later tried to fit a large quantity of data about the planet Mars collected by
Tycho Brahe to the ancient theory of circles on circles and failed. Then he had a
further inspiration, this time one that would change our view of the heavens. In
1609 he published Astronomia Nova, explaining his new theory of planetary
motion. On page 285 of 337 pages, after many calculations relating to various
possible models which failed to fit the data, he reported how the scales fell from
his eyes:

O me ridiculum! ... demonstrabitur, nullam Planetae relinqui
figuram Orbitae, praeterquam perfecte ellipticam!

Kepler, 1619, p. 285.

The motion of the planets could be explained so simply, not as off-centre
circles, but as ellipses with the sun at a focus!

E

S

W

Planets moving in ellipses round the sun as a focus.
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In Harmonices Mundi (1619) he gave the planets a new form of music which
moved up and down as they moved alternately closer and further from the sun.
Saturn, the furthest away, sang a sonorous basso profundo, Venus, who moved
in a near circle remained on a single note, and eccentric Mercury dazzled up and
down as a coloratura soprano:

Kepler’s version of the “harmony of the heavenly bodies” Harmonices Mundi, p. 207

The two years 1665 and 1666 were a catastrophe for Britain, with first the Black
Death and then the great fire of London. But it was a good time for
mathematics. Young Isaac Newton had just completed his degree studies at
Cambridge in a course which still referred to the Geometry of Euclid and the
Astronomy of Ptolemy. However, he knew the heretical ideas of Kepler’s
empirical theory of planetary motion and the theory of Descartes describing
geometry in algebraic terms. He returned to Lincolnshire, working alone and
undistracted, using the symbolism of algebra to develop the theory of the
calculus, applying it with stunning power to explain the mechanics of the
heavens.

His use of symbols as a manipulable calculus to support sophisticated
computations proved to be a huge innovation given greater impetus by the
evocative symbols for differentiation and integration devised by Leibniz. The
powerful use of symbols as mental objects for manipulation—and how we
might see them from an appropriate viewpoint—will shortly become the focus
of our attention.

Misconceptions

The succession of new mathematical ways of looking at the heavens shows how
a change in viewpoint can give a profound new insight which often simplifies
our mathematical models rather than making them more complicated. However,
this can have subtle effects in the way in which we as adults, and also those
with an even greater expertise in mathematics view the learning of children. In
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essence, our perceptions are changed by our experiences and we have great
difficulty in appreciating the stages that learners pass through in developing
mathematical sophistication.

When I was invited to give a presentation to the International Congress of
Mathematicians in 1994, somewhat tongue-in-cheek, I suggested reasons why
mathematicians are good at mathematics but less good at thinking about how
others do mathematics:

Axiom I : All mathematicians are born at age 0.

Axiom II : to reach the age M of mathematical maturity, the mathematician
must pass through ages 0, 1, 2, …, M–1.

Theorem: A cognitive development is necessary to become a mathematician.

Proof: Since no child aged 0 has produced any important mathematical
theorem, something happens between ages 0 and M that makes mathematical
thinking possible. (Tall, 1994)

Of course this is a caricature of a mathematical proof, but it was done with a
purpose—to show that even mathematicians were once children at a time when
they had little of the sophistication that is developed by experts. The argument
went on to suggest:

Cognitive Principle I:  For survival in a Darwinian sense, the individual
[focuses] on concepts and methods that work, discarding earlier intermediate
stages that no longer have value.

Corollary : The individual is likely to forget much of the learning passed
through in years 0, 1, ..., M–1 and the mathematician is likely to attempt to
teach current methods that work for him/her, not methods that will work for
the student. (ibid.)

Such forgetting of earlier struggles is characteristic of many levels of activity.
When children were taught initial activities as a precursor to more formal
mathematics:

After the formalization had been taught, or three months later, the practical or
pre-formalization work which led up to it was often forgotten or not seen as
significant. (Johnson (ed.), 1989, p. 219)

Likewise, when I developed computer software to show students how to zoom
in to magnify part of a curve on a computer to “see” how steep it is, I was
confident that they would see this as a powerful way to approach differentiation.
Two months later, when they had spent a great deal of time on tangents, I asked
them how they would teach differentiation to a student new to the concept, and
hardly anyone spoke of magnification; the most common response was “as the
gradient of the tangent”. They had not lost the notion of magnification, for they
used it to say that certain graphs with “corners” did not have a gradient because
they “did not magnify to look straight”, but they operated in the classroom with
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“their current best approach” and only brought the more fundamental approach
to mind when their current approach failed them, (Tall, 1986).

To remember how one first learned concepts after many years of expertise at
a more sophisticated level is very difficult:

After mastering mathematical concepts, even after great effort, it becomes
very hard to put oneself back into the frame of mind of someone to whom they
are mysterious. (Thurston, 1994, p. 947)

Just as the ideas of Ptolemy lasted for a thousand years, because they worked, so
do experts develop a point of view which works for them, but may not be
suitable for the growing mind of the learner.

A majestic failure for the experts was the introduction of “the New Math” in
the nineteen sixties, where it was assumed that it was only necessary to give
truthful definitions in set theoretic terms and the children of the world would be
free to build up their own knowledge of mathematics. Even though the
axiomatic method based on set-theory has been a success in generating coherent
mathematical theories at research level, it proved “not to fit” the thinking
processes of growing children.

Axioms and formal proof are a powerful tool for organising mathematics
into a logical and systematic theory, but they are the final part of the
mathematical process, not the beginning of it. It is here that the vision of the
expert falters in attempting to formulate a way of teaching the learner. The
expert seeks clarity and accuracy of expression. Concepts are very carefully
defined, so that they can be used unambiguously in a formal theory. But clear
definitions of concepts and lack of ambiguity seem to play little part in the
child’s earlier learning of mathematics. So what does?

Insights from  work  at the Warwick  Mathematics Education Research
Centre

Over the years, a number of different research studies at the University of
Warwick have pointed to a phenomenon that suggests a radical rethink of how
we view mathematical learning.

The first Director of the Mathematics Education Research Centre, Richard
Skemp, is justly remembered as the formulator of a number of highly original
theories of mathematical thinking, not least for his work on “instrumental
understanding and relational understanding”, (Skemp, 1976). However, I wish
to draw attention to an idea in his paper which has received less attention than
the items in the title, namely, the concept of “faux amis”. This refers to words
which mean different things in different languages, such as “médecin” for a
“doctor” in French, rather than the apparently corresponding English word
“medicine”. This underlines the idea that certain words, which apparently have
a clear and specific meaning in one community, say a community of experts,
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may have a very different meaning to another community, say a community of
learners.

The second Director, Rolph Schwarzenberger, took a great interest in what
were, apparently, student misconceptions about mathematical concepts. In
particular, he was responsible for focusing on students’ ways of conceptualising
infinite decimals, such as √2=1.414…, π=3.14159…, and the most interesting
example of 0.999… . When a questionnaire revealed that the vast majority of
students thought that “nought point nine recurring” was less than one, he asked
a sequence of questions requesting students to translate decimals into fractions,
including 0.25, 0.05, 0.3 (re-inforced as 0.3, not 0.3 recurring), 0.333… (0.3
recurring), and 0.999… .

 Many students were happy to write
0.333… = 1/3

and this led two thirds of them to write
0.999… = 1

(by multiplying the previous answer by three), including over a third of the total
who had previously asserted that 0.999… was less than one. A number of
responses bore evidence of mental conflict, with verbal comments and crossings
out. At the time we, as mathematicians, had our ideas why the students were
confused, and we responded by writing a paper to tell teachers how students
might be taught the ideas of real numbers and limits so that they would
“understand” (Schwarzenberger & Tall, 1978). However, the limit concept
proved to have difficulties that did not necessarily respond to “good teaching”
and this became  a significant area of research in the ensuing years.

For instance, Monaghan (1986) found that sixth-formers views of infinity
were very little changed by their mathematical teaching and that they viewed
repeating decimals as “infinite numbers”, in extent, if not in size. Their view of
the “real number line” had various friendly numbers, such as whole numbers
and fractions of which they felt secure, and numbers such as π, e, √2 with which
they developed a working security, but infinite decimals were often seen as
“improper”. Other research studies continue to highlight such problems with
decimals and limits (eg Williams, 1991, Cornu, 1991, Monaghan et al, 1994).

In another apparently unlinked area, Thomas (1988) performed research on
the learning of algebra with younger children using computers. The learning
environment involved children programming variables in BASIC (where the
child specified the computations to be made, such as A=2:PRINT 3+2*A, and
the computer carried out the computational processes. The children also enacted
the internal processes by a game in which they would record the value of
variables in boxes drawn on a large sheet of cardboard and carry out the
operations themselves. This research showed that the participating children
were better at conceptualising expressions such as 3+2x than corresponding
control children who were more likely to find the expression
meaningless—after all, how could they calculate 3+2x unless they knew the
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value of x? This is a well-known phenomenon (e.g. Küchemann, 1981; Booth,
1984) called, at the time, ‘lack of closure’—but what did this mean, and why
did it cause such difficulty?

An innocent conceptual question in arithmetic (Thomas, 1988) gave further
interesting data:

Is 
6
7    the same as 6÷7?

76% of the children following the experimental computer course said “yes”  as
compared with only 44% of those following a standard algebra course. At the
time we called this the “process-product” obstacle, because:

… many of the controls did not consider the two notations equivalent because

“ 
6
7   is a fraction, 6÷7 is a sum.”

This reveals the perception of 6÷7 as a process involving value-operation-
value rather than as a global entity – the single number – produced by this
process. (Tall & Thomas, 1991).

It was with the publication of Gray (1991) that the key to unlocking these
disparate experiences came to light. Working with younger children, (ages 6 to
12), Gray investigated how they solved addition and subtraction problems with
small numbers when they did not immediately know the answer. He found—as
had many before him—a wide range of solution processes. But from the broad
spectrum, when he did something that was “not politically correct” by
comparing responses from pupils the teachers considered to be the “more able”
with the “less able” throughout the primary school, he found the solution
processes tended to diverge. When the “less able” could not do a problem, they
invariably counted the solution (often inefficiently) or used their fingers or other
physical supports to develop idiosyncratic routines to solve individual problems
in ways which often did not generalise to larger numbers. Meanwhile, the “more
able” not only knew more facts (as would be expected), but when they did not
know, they often used other known facts to build a solution or, when they
counted, they invariably selected an efficient method to do so.

Two examples on video

Put another way, the less able often used inefficient and inflexible counting
processes which placed a great strain on their cognitive resources whilst the
more successful reduced the strain by using the number symbols
flexibly—either as processes to calculate a result, or as concepts to think about
and manipulate mentally.

This idea of processes (such as counting) being reconceptualised as concepts
(such as number) had been around in the literature for a long time, at least since
Piaget asserted that
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mathematical entities move from one level to another; an operation on such
‘entities’ becomes in its turn an object of the theory, and this process is
repeated until we reach structures that are alternately structuring or being
structured by ‘stronger’ structures. (Piaget 1972, p. 70).

In recent years, conversations with Sfard and Dubinsky—who respectively
speak of “reifying” or “encapsulating” a process as an object—has refocused
our thoughts on this phenomenon (Dubinsky, 1991; Sfard 1991; Sfard &
Linchevski, 1994). It seems foolish now to see the struggle in our Ptolemaic
conception as we moved in ever-decreasing circles, produced various theories to
“explain” what was going on. Then in a conversation, Eddie Gray and I realised
what was missing – no-one had encapsulated the process of encapsulation! No-
one had given a name to the “thing” that could be conceived either as a process
or as a concept.

On the spur of the moment the name “procept” was born – as a symbol that
could be thought of as a process or a concept. It is with affection that I
remember Rolph Schwarzenberger arriving at the critical moment to greet our
new term with some scepticism because he “doubted its etymology”. I laughed
and said something to the effect that when you are growing new plants you
don’t start by pruning them, you begin by putting manure all over them
(although perhaps I used a different word from ‘manure’).

Bernard Scott, who was head of Sussex Mathematics Department when I
started my first job as an assistant lecturer, often said that “by giving a name to
something, you acquire power over it.” So it happened.

In the context of symbolism, the faux amis of Skemp could now refer to the
different meanings of  procept. A problem like “8+6” for one child would evoke
a counting process, for another a number concept, so the same symbol can mean
different things to different children. Even more interesting, it can also mean
different things to the same person at different times. The successful thinker
uses symbolism not in a precise unique way, but in a flexible and ambiguous
way to evoke either process or concept and learning often proceeds with a
symbol used to signify a process becoming also used for the product of that
process. The process of counting becomes encapsulated as the concept of
number, the process of addition becomes the concept of sum, the process of
repeated addition becomes the concept of product, the process of division of
whole numbers becomes the concept of fraction, and so on and so on.

In arithmetic we saw the success of those who used the symbolism flexibly
as process and concept and the lesser success of those who thought mainly in
terms of counting procedures and seemed to become locked in a procedural
strategy of learning a growing collection of mechanical rules.

This in turn sets up even more serious problems in algebra. Children who
consider arithmetic symbols as processes will see 5+6=11 not as a concept,
“5+6 equals 11”, but as a process, “5+6 makes 11”. Seeing an algebraic symbol
3+4x as a process which cannot be performed when x is unknown will lead to
the “lack of closure” reported in earlier research.
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This gives insight into why many children cannot make sense of algebra, and
why some may be able to cope with an equation like

4x+3=11
yet fail with a more complex equation like

4x+3 = 17–3x.
It is not simply that the second is more complicated because “x” appears on

both sides, but a problem of interpreting the meaning. If the symbolism is
intepreted only as process, the first equation might be read as

“four times a number plus three makes eleven,”
and this can be mentally manipulated as numbers to give

“four times the number is eight,”
and so

“The number is two!”

The second equation, 4x+3 = 17–3x, is of a different order of difficulty because
it cannot be conceived as a single arithmetic process giving a known result.
Children who see symbolism mainly as process may read it as two different
processes deemed to be “equal”. However, it is not the processes which are
equal, but the number concepts produced by the two evaluations. Understanding
requires a flexible view of symbolism as process and concept, without which
the likely fall-back position is one which attempts to rote-learn a collection of
solution procedures without having any sound conceptual structure. Hence the
likely failure in algebra of children who do not develop a flexible view of
symbolism.

The third area of research mentioned earlier—the meaning of infinite
decimals and limiting processes—also involves symbols doubling as process
and concept. Students who see infinite decimals as processes going on forever
and never finishing are bound to conceive of them as “improper” quantities
which never end. This relates to difficulties that students have with limits,
which seem to be seen as a “variable quantity” that “gets close” rather than a
fixed value that can be approximated as near as required. The focus seems to be
more on the process of getting close than the concept of limit.

Implications for Mathematics Education

The notion of procept proves to have implications throughout primary school
arithmetic, secondary school algebra, senior school calculus and university
analysis, indeed, everywhere that processes are given a representation as a
symbol which can itself be manipulated as a mental concept. It offers a new
viewpoint from which to observe the learning process when mathematical
symbols are manipulated.

The human brain works in a massive simultaneous-processing manner and
only copes with the complexity by filtering out most of the activity and only
focussing on a small quantity of mental data (Crick, 1994, p. 61). It therefore
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benefits from representations which compress information in a way that can be
handled easily by the short-term focus of attention. The encapsulation of long
counting processes as immediately available number concepts compresses
knowledge into a form that is easily usable by the human brain. A procept is
available as process to perform sequential computations and also as a concept
respresented by a compact symbol that can be easily manipulated in conscious
attention. The child who is less successful at compressing processes to concepts
has a harder task to achieve – a harder task for an already stressed cognitive
structure.

How unfair mathematics is! It becomes easier for the gifted and harder for
the less successful, but, perhaps, ’twas ever thus. And, almost certainly, this is
in direct contradiction to the principles underlying the National Curriculum
where ladders of “levels” are placed in each subject for the growing child to
climb. The principle appears to be based on the democratic idea that “all
children are equal” and “go through the same stages, but possibly at a different
pace”.

The theory of procepts suggests that this is a totally inadequate view. It
predicts that, in subjects such as arithmetic and algebra where processes are
successively encapsulated as concepts using symbols, children who get stuck at
the “process” level have an enormous task before them to make any sense of
successive levels. At this stage they are not doing the same thing as their more
successful peers who are mentally handling symbols as both processes to do and
concepts to think. The children who do not encapsulate do not have any
meaningful concepts to think with (Linchevski & Sfard, 1991).

This suggests that the idea of a single ladder for all is misguided. Like the
Ptolemaic view of circles upon circles, it is a theory which appears to explain
approximately what happens and seems a good enough approximation to allow
broad measurements to be made to measure children’s progress up the ladder.
As a statistical guide to progress, discrepancies in data between different
children are not regarded as important and it proves to offer a simplistic
indicator of relative success of children taught by different teachers in a
different schools. But there are very significant qualitative differences
developing in thinking processes which are less easily measured and these are
having very serious effects on the learning of our children.

For instance, children who do not see arithmetic symbols as flexible
processes and concepts are hardly likely to see algebraic symbols in a flexible
light. Therefore algebra will be meaningless to them other than a task to rote-
learn procedures to get answers. The remainder of the “algebra ladder” is
therefore a different ladder for them from that seen by the flexible thinkers and
is likely to be a highly inappropriate ladder to climb.

Conversely, the single ladder also militates against the learning of more
successful children who think in a different way and are being denied access to
topics which are too difficult for others. For instance, the concept of fraction



– 17 –

arises through compressing the process of sharing and is therefore a procept. It
is typical of an idea which is impossible for those who fail to encapsulate whole
number processes as concepts yet straightforward to those who have a flexible
“proceptual” view of number as process and concept.

Fractions are vanishing from the school curriculum because they are not
democratically possible for all on a single ladder. The consequences are
disastrous. In a recent letter to the Guardian, Sykes and Whittaker (1994) noted
a sharp drop in performance in fractions on students entering a university course
on Business Management. Only 50% of the students, with average A-level
grades of 22 points (grades BBC) can multiply one half times two thirds
correctly. Of these students, only 16% gave the correct answer to “the square of
0.3” in 1994 compared with 66% in 1987 (before the change to the new GCSE).
If this is typical of studenta with these A-level results, what chance will
university students have of doing probability which requires simple arithmetic
of fractions, or of handling rational functions in algebra, whose arithmetic is a
generalisation of fractional arithmetic?

Algebra is also “too difficult” for the majority and so insufficient exposure is
being offered to those who have flexible thinking processes that are more suited
to handling the symbolism. Indeed, when I participatied in the design of the
SMP 16–19 A-level, it was explicitly designed for students with an expected
low attainment in algebra.

Mathematics education is bringing in a welcome change to focus on “using
and applying mathematics” which includes aspects of mathematical
communication and mathematical proof. But, strangely, the effects on proof
may not be what is hoped for. Instead of concentrating on logical deduction, so
many of the investigations in school lead from arithmetic exploration to seeking
a generalisation in algebraic terms. The by-product is focused less on logical
deduction and more on the expression of algebraic generality, which it has been
suggested above is not well understood.

In a wide range of mathematics where symbols are used as process and
concept, the theory of procepts allows us to look at the situation in new ways.
Instead of seeking the precision of a set-theoretic approach with precise
definitions for things as objects, (a ‘set’ of things with certain properties), we
see the alternative of the flexibility, ambiguity and duality of an approach to
symbolism in a manner that seems more suitable for cognitive growth – through
constructing processes that have meaning, then encapsulating them as concepts
that can be meaningfully manipulated. In other words, thinking as
mathematicians think, rather than doing as they say they do!

Developments at Warwick Mathematics Education Research Centre

The age of information technology is upon us, so in addition to understanding
the processes by which individuals learn mathematics, the focus is also being
turned on the complementary way in which technology can complement human
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thinking. For instance, the computer can carry out routine algorithms of
arithmetical computation and algebraic manipulation, so they allow the learner
to take the opportunity of investigating the properties of the concepts whilst the
computer carries out the processes. This gives new opportunities in learning
previously unavailable, though the availability of computers to do these
processes does not remove the need for the human mind to understand them in
an appropriate sense.

In the Mathematics Education Research Centre, various researchers are
investigating the role of the computer in learning. The role of visualisation
using computers has been a central topic for research and development, for
instance, in a visual approach to calculus (Tall, 1986), which has been the basis
for much development of the SMP 16–19 curriculum. The computer has
featured widely in the use of spreadsheets for modelling mathematical and
scientific ideas (Beare, 1994), developments in using integrated programming
systems for Logo programming (e.g. Pratt, 199?) and relationships in collecting,
visualising and analysing data using portable computers (Ainley, 1994; Pratt,
1994). The following picture shows a microworld, designed using the software
Boxer by Dave Pratt, to investigate the path of a satellite moving in circles
round a planet, which is itself moving in circles round the sun:

Investigating the path of a satellite moving in a circle on a circle, programmed in the Boxer environment
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This microworld allows investigation of the “circles on circles” problem of the
Greeks either through the act of programming the problem or, in a quite
different way, through using the program to perform experiments in a way far
more immediate than the calculations that must have been performed by the
Greeks.

The Research Centre continues to consider the growth of mathematical
concepts from the first days of schooling through to university level both in
terms of visual and symbolic cognitive development, and of the reflective
thinking strategies involved in problem-solving. Its aim is to seek new and
simpler ways of understanding what it is that is happening in mathematical
thinking. To do so we should learn from history, that we may have the data
already to hand in our culture, if only we know how to look at it from the right
point of view. For instance, it is not the only the precision of symbolism that
gives it power, it is the manipulable way it can be used ambiguously as process
to do and concept to think about mathematics.

The Ancient Greeks pondered the movement of the planets and chose a more
complex theory of circles upon circles to explain the movement of the
wandering stars, when a change in viewpoint would help to see a simpler
phenomenon. After all, O me ridiculum!, all that is necessary to see that a circle
is an ellipse is to change the viewpoint!

circle

ellipse

VIewing a circle as an ellipse using a conic section
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The Greeks knew this in their theory of conic sections from the work of
Appollonius of Perga, Conic Sections in the 3rd century BC. However, they did
not see it as relevant in the context of describing the dynamics of the universe,
preferring instead the mathematics inspired by the music of the spheres. Are we
to let history repeat itself and fail to see how children grow to be
mathematicians?
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