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Symbol manipulators are reputed to “release the student from the drudgery of routine
manipulation so that they can focus attention on the concepts and solving problems”.
Mathematicians have a “symbol sense” that enables them to handle symbols in a flexible
manner, but students do not necessarily work in anything like the same way. Formally
mathematicians seek precision and unique definitions, but cognitively they seem to use
symbols ambiguously to represent either processes to do mathematics or concepts to think
about. This has intriguing consequences for student learners using computers, particularly
those whose mental imagery of symbolism is different from that of their teachers.

Symbols as Process and Concept: the notion of Procept

Following a long line of researchers, including Piaget (1952), Dubinsky (1991), Sfard
(1991) and others, Gray & Tall (1994) introduced the notion of procept as an amalgam of
three things—process, symbol, concept—to allow discussion of the phenomenon in
which a process such as counting becomes a concept such as number, or a symbol such as
2+3x  represents a process of evaluation and a concept of expression in algebra. We
hypothesised that mathematicians use symbolism in an ambiguous way, to represent
either process or concept as appropriate, but less successful thinkers may see
mathematics as inflexible procedures, seeking the security of following a tried and tested
route to obtain an answer in a limited context. Procedures which take place in time may
allow students to do mathematics but they are less suitable for thinking about
mathematics.

At all ages we found differences between flexible thinkers using symbols dually as
process or concept and those relying on symbolism to cue routine procedures. In algebra,
those who saw the symbols as procedures to be carried out are less likely to grasp the
meaning of the symbolism. Students conceiving of 3+2x as a process do not see it
making sense unless x is known to compute the value, but if x is known, there seems no
reason to complicate matters by using the symbol x. An equation such as

5x+1=11
might make sense as a problem where five times a number plus one is eleven, so five
times the number is ten,  and the number is two. But the equation

5x+1 = 3x+5
would be less likely to make sense because the equals sign no longer means “makes” and
there are now two processes to carry out, one on each side. The flexible thinker has a
meaningful way of manipulating equations to obtain a solution, but the procedural thinker
is more likely to learn mechanical routines (Tall & Thomas, 1991).

Further evidence can be gleaned from the way students interpret word problems
algebraically. Crowley et al (1994) found that the more complicated the word problem,
the more likely the student would write a “process” equation such as x+4=y (in which “x
plus 4 makes y”) rather than the more standard “assignment” equation y=x+4 (y equals
x+4).  Furthermore, those writing the “process” version were more likely to make errors,
showing that this is linked with students who are less successful.

At a higher level, limit concepts, such as lim
x→∞

2x + 5
3x + 4

 or 1
n2

n=1

∞

∑  involve symbols which

represent both a process of “getting close” and also the value of the limit. The research
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literature is full of examples of students who see the process “getting closer and closer”
without actually “reaching” the limit, or perhaps “only reaching the limit at infinity”
(summarised in Cornu, 1991). There seem to be “unavoidable misconceptions” (Davis &
Vinner, 1986) and students cope by using localised procedures for individual problems as
they occur (Williams, 1991).

Computer tools for manipulating symbols

In the previous discussion three essentially different kind of procepts arise:

• Operational procepts, such as those in arithmetic, or differentiation of
symbolic formulae, with explicit algorithms to compute a result,

• Template procepts, such as expressions in algebra, containing variables
where the procept may be evaluated by giving values to the variables,
but may also be manipulated symbolically as mathematical concepts,

• Structural procepts, such as limits, representing a process to give a
result but without a direct procedure to find it; instead a structure of the
relationships may offer various other approaches.

Of these, operational procepts are the easiest to program. The four rules of arithmetic
were came first, now readily available everywhere on hand-calculators. Template
procepts are more complex and the simplification involves specifying a list of templates
indicating which expressions (such as x*(–y)) may be replaced by others (such as –(x*y))
and performing an exhaustive search to simplify a given formula. Some cases, such as the
solution strategy for certain simple equations may be programmed as an algorithm so that
a symbol such as solve(ax+b=cx+d,x) becomes an operational procept instructing the
computer to print the solution of the equation ax+b=cx+d in terms of x.

Structural procepts need careful handling in symbol manipulators. Sometimes this
involves an intellectual form of cheating. Whereas we might compute a limit such as

lim
x→0

sin x

x

from first principles, perhaps using a visual argument, a symbol manipulator may have
more success by using L’Hôpital’s rule to get

lim
x→0

sin x

x
= lim

x→0

D(sin x)
D(x)

= cos0
1

= 1.

Limits may involve the student in potentially infinite processes allowing something to get
close, but not equal to, a specific value. Computer algebra software may attack the
problem using a totally different symbolic algorithm with a finite number of steps.

Symbol manipulators therefore use a variety of sophisticated programming devices
internally to carry out required processes to reveal the result to the user. They may carry
out the internal process without revealing the true relationship between process and
concept embodied in the cognitive notion of procept.
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Mental tools for thinking about symbols

The brain is a complex structure, with a huge long-term memory store and a limited focus
of attention. To use it to its fullest extent requires compression of information to fit in the
focus of attention and conceptual links to pull related ideas into the focus as and when
required. Compression of information into manipulable symbols gives great power:

I should also mention one other property of a symbolic system – its compactibility
– a property that permits condensations of the order F = MA or s= 1

2 gt2. In each
case … the semantic squeeze is quite enormous. (Bruner, 1966, p. 12.)

By writing a string of symbols and going through what Davis (1984) calls a “visually
moderated sequence”—considering the symbols, manipulating, considering the new
symbols, manipulating, … , and so on, until a solution is found—it is possible to use the
short-term focus and long-term connections to solve problems symbolically.

If the concepts are not compacted sufficiently to fit into the focus of attention, or if the
connections are inadequate, then a primitive strategy is to practise and routinize
sequences of actions. The problem is that such procedural methods are limited in two
ways. First they are inflexible and only operate in well-defined contexts (including
carefully designed examination questions in a form students expect to answer). Second, a
procedure cannot be conceived as an entity, other than “if I have this problem, then I use
that procedure.” Once it is started, a procedure must be carried through in sequence. If
other procedures are required, they must precede or follow in sequence, so the student has
great difficulty solving problems requiring two or more stages (Rashidi & Tall, 1992).

The fact that so many teachers see the necessity of teaching procedurally is not a
vindication of the system, but an indictment of it. Certain student difficulties
manipulating symbols may be papered over by using symbol manipulators to do the
work, but the question must be asked whether the symbols have any meaning, other than
as a procedural interface to input data for the computer to process and produce an answer.

Failure of the mind and computer to represent “real numbers”

Students have perceptions of decimals and the number line which conflict significantly
with the formal definition (Romero & Ascárate, 1994). Whilst they are familiar with
integers, rationals and finite decimals, they regard other special numbers such as π, e, √2
being different in kind, with infinite decimals “going on forever” and being somewhat
“improper” (Monaghan, 1986). These images tend to be supported by the different types
of number in a symbol manipulator without focussing on real numbers as elements of a
complete ordered field.

Decimals cause further subtle problems. For instance, Wood (1992) found a sizeable
minority of mathematics majors believed there is no smallest positive number (because
half of it would be less), but there is a first positive number, namely, 0⋅000...01,
corresponding to 1–0⋅999... Handling decimals, especially finite ones, seems to give a
discrete sense to numbers, in strict order, increasing a digit at a time in the last place.

If you don’t use it you may lose it!

Focusing on certain aspects and neglecting others may cause the neglected items to
atrophy. For instance, students using Derive on hand-held computers to draw graphs of
functions did not need to substitute numerical values for the independent variable to get a
table of values to draw the graph. As a result, they had little practice of numerical
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substitution. This had unforeseen consequences. Some students who could calculate by
substitution before the course were unable to do so afterwards. The students were asked:

“What can you say about u if u=v+3, and v=1?”
None of the seventeen students improved from pre-test to post-test and six successful on
the pre-test failed on the post-test (Hunter, Monaghan & Roper, 1993).

New procedures for old

Symbol manipulators provide ways of solving problems using the software to perform the
manipulations internally. But they do not remove the procedural aspects from the
mathematics. Instead they introduce new procedures. For instance, using Derive replaces
the procedure of symbolic differentiation by a sequence of keystrokes:

• select Author  and type in the expression,
• select Calculus, then Derivative,
• specify the variable (e.g. x),
• Simplify  the result.

When two groups of students in UK schools were asked:

Please explain the meaning of lim
h→0

f (x + h) − f (x)
h

,

… all the students [following a standard course] gave satisfactory theoretical
explanations of the expression but none gave any examples. However, none of the
Derive group gave theoretical explanations and only two students [out of seven]
mentioned the words ‘gradient’ or ‘differentiate’. Four of the Derive group gave
examples. They replaced f(x) with a polynomial and performed or described the
sequence of key strokes to calculate the limit. (Monaghan, Sun & Tall, 1994.)

Failure of some computer approaches to the limit concept

Given students’ (and professors’!) idiosyncratic view of real numbers, it is no wonder
that they also develop idiosyncratic views of the limit concept. Programming in a
computer language or numeric system with limited accuracy does not seem to improve
matters.  Li & Tall (1993) found that the increasing time taken to compute more terms of
a series emphasised the limit as an unfinished process, not a concept. They also found
that programming had little effect on the reading of equations from left to right, so that
the majority continued to believe that   0 ⋅1+ 0 ⋅01+ 0 ⋅001+K=1/9 is fa lse but
1/9=  0 ⋅1+ 0 ⋅01+ 0 ⋅001+K is true. If   0 ⋅1+ 0 ⋅01+ 0 ⋅001+K is seen as a process, rather
than a value, The first equation represents a potentially infinite process which can never
be completed but the second shows 1/9 being divided out to get successive terms.

Symbol Manipulation and Mathematical Proof

Symbol manipulators focus on getting results rather than taking the user through the
process of manipulation to obtain the result so that students may fail to experience the
meaningful interplay between process and concept. Even more seriously, they are
concerned with manipulations that work, not those which faii, so they are unlikely to
provide appropriate images for non-examples of concepts such as non-differentiability or
discontinuity. They therefore may fail to motivate essential theorems in analysis.
Carefully designed visual support may be provided by drawing suitable graphs, for
instance functions taking different values on rationals and irrationals (e.g. Rosenthal,
1992) but graphs usually involve prototypical ideas intimating restricted mental imagery.
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Reflect ions

The enthusiasm for new and exciting technology often focuses our mind more on the
mathematics than on the thinking of the student. But now the first wave of technological
change is stabilising, it is time to subject new approaches to more careful scrutiny to find
out what is really happening under the surface. As we have seen in the examples in this
presentation, it is likely that any attempt to use the computer in mathematics learning will
have gains and losses. Indeed, under the surface, the student’s images of mathematics are
very different from the mathematical formalism they are intended to embody. It is
therefore right to focus our attention on the students’ thinking processes and address the
wider issues of what is happening in their learning.
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