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Instead of saying “wow, look at the clever math | can do with my computer”,
this presentation considers how mathematicians and students use symbols to
think about mathematics and formulates a theory to describe how software
using symbol manipulators can help and hinder the learning process.

. the property of yielding new truths as a result of merely mechanical
rearrangement of symbols [...] is to be found in some form wherever a system of
symbolism has been developed “to facilitate reasoning” in a particular province of
thought. The late Prof Jevons actually invented a “logical machine” in which the
exploration of the field of truth could be carried out by pulling levers and turning
handles. It would probably not be impossible, if only it were worth while, to
construct an “algebra machine” which could in a similar way be made to yield
from a given formula other formulae which follow from it.

(T. Percy Nunn,The Teaching of Algebyd914, p. 15.)

Symbol manipulators are reputed to “release the student from the drudgery of routine
manipulation so that they can focus attention on the concepts and solving problems”.
Mathematicians whd&now how to do mathematics and think about symbols are using
symbolic manipulators for a wide range of imaginative activities, as is witnessed by the
many articles in the proceedings of this conference each year. What is equally important
are the studies that consider what the studentdang, or even more subtly, what they
arethinking Mathematicians have a “symbol sense” that enables them to handle symbols
in a flexible and imaginative manner, but it is clear that students do not necessarily work
in anything like the same way. Formally mathematicians seek precision and unique
definitions, butcognitivelythey seem to use symbasnbiguousiyto represent either
processes tado mathematics or concepts think about. This has interesting
consequences for student learners, particularly those whose mental imagery of symbolism
is different from that of their teachers.

Symbols as Process and Concept

The notion of symbol acting as a pivot either gsracessto do mathematics or as a
conceptto think about mathematics is well-represented in the literature. It has a long
provenance in the psychology of mathematical thinking going back certainly as far as
Piaget and has entered the college level primarily through the independent pioneering
work of Dubinsky (1991) and Sfard (1991). Building on Piaget’s insight that “actions and
operations become thematized objects of thought or assimilation”, Dubinsky considered:

... the construction which is perhaps the most important (for mathematics) and
difficult (for) students ... is theencapsulationor conversion of a (dynamic)
process into a (static) object. (Dubinsky, 1991, p. 101.)

Such an idea is not without its critics, however, for instance Dorfler considered the notion
of a mental object absent from his own thinking:
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... my subjective introspection never permitted me to find or trace something like
a mental object for, say, the number 5. What invariably comes to my mind are
certain patterns of dots or other units, a pentagon, the symbol 5 or V, relations like
5+5=10, 5*5=25, sentences like five is prime, five is odd, 5/30, etc., etc. But
nowhere in my thinking | ever could find something object-like that behaved like
the number 5 as a mathematical object does. But nevertheless | deem myself able
to talk about the number “five” without having distinctly available for my
thinking a mental object which | could designate as the mental object “5”.

(Dorfler, 1993, pp. 146-147.)

It is in reconciling this view with the notion of encapsulation that we begin to gain further
insight into the cognitive psychology of symbols.

The notion of procept

Inspired by the work of Dubinsky (1991), Sfard (1991) and others, Gray & Tall (1991,
1993, 1994) reviewed old research and initiated new studies throughout mathematical
development, from young children calculating with symbols in arithmetic, older pupils
manipulating symbols in algebra (Crowley al, 1994) to college students developing
conceptualisations of higher order concepts such as limits (Li & Tall, 1993, Monaghan

al, 1994). This showed the importance of the symbol acting as a pivot between process
and concept. Eddie Gray and | introduced the notigoreéeptas an amalgam of three
things — process, symbol, concept — to allow us to discuss the phenomenon. Thus a
symbo] such as

x sint
Il1+logt

evokes both th@rocessof integration and theonceptof integral. The cognitive
combination of the three isprocept

We hypothesised that mathematicians used symbolismamaiguouswvay, to represent
either process or concept as appropriate, flexibly changing viewpoint, say from a function
as a process to a function as a concept, at will. But less successful thinkers see
mathematics as inflexible procedures, seeking the security of following a tried and tested
route to obtain an answer to a limited set of problems.

We found differences between those students of all ages who viewed such symbolism as
cueing a procedure to be carried out and those who had a more flexible view as process
or concept. In arithmetic procedural children invariably counted and placed heavy
burdens on themselves as the problems became more complex. Meanwhile, more
successful flexible thinkers moved easily between process and concept, deriving
relationships where they proved useful or counting efficiently where necessary.

In algebra, those who saw the symbols as procedures to be carried out could not grasp the
meaning of the symbolism. An expression such ax 8i2not make sens®es a process
unlessx was known to be able to compute the value, and then, if the value was known,
there seemed no reason to complicate matters by refernmdtoequation such as

5x+1=11
mightmake sense as a problem where five times a number plus one is eleven, so what is
the number? Here a flexible thinker might see that this meant five times the number is 10,
so the number is two. The equation

Sx+1 = X+5
would be less likely to make sense because the equals sign no longer means “makes” and
there are nowwo processes to carry out, one on each side. From here, the procedural



thinker may learn to respond to rules without reason, including “change sides, change
sign”, “move all thexs to one side”, etc. The flexible thinker can see that the equation
gives two different ways of getting the same result. Thus the two sides of the equation
represent the same thing. So, adding the same thing to both of them again gives the “same
thing” on both sides (but not the same “same thing” as before!). The flexible thinker has a

meaningful way of manipulating equations to obtain a solution. (Tall & Thomas, 1991).

Further evidence can be gleaned from the way students interpret word problems as
algebraic notation: do they write “process” equations suchk-e&=" (perhaps meaning

“x plus 4 makey”) or standard “assignment” equationsx+4). Crowleyet al (1994)

found that the more complex the word problem, the more students wrote the process
order rather than the assignment order, with those writing the process order making
significantly more errors.

At a higher level, limit concepts, such as

. 2x+5 d
involve symbols which represent both a process of “getting close” and algaltleef
the limit. The research literature is full of examples of students who see the process
“getting closer and closer” without actually “reaching” the limit, or perhaps “only
reaching the limit at infinity” (summarised in Cornu, 1991). Put simply, students often
see the limit as a “process of becoming” rather than a mathematical concept. (Monaghan,
1986). At college level the student seems to face “unavoidable misconceptions” (Davis &
Vinner, 1986) and copes by using localised procedures for individual problems as they
occur (Williams, 1991).

It becomes manifestly clear that the flexible use of symbols is at the heart of powerful
mathematical manipulations. But how can this be reconciled with the view of Dorfler that
there are no mental objects which correspond to numbers and many other mathematical
symbols other than the symbol itself and a host of mental relationships?

There is a resolution of this dilemma. It is clear that we do not t hink of humbers as
“objects” in the same way as we think of objects in the external world. But we do use
words to stand for objects, and we us®rds and symbol$o stand for numbers,
variables, expressions, and so on. It is no accident of language that we speak of the
“number concept” and “the concept of variable” but not the “number object” or “the
object of variable”.

The number concept hasancept imagén the individual's mind that consists of “all the
mental pictures and associated properties and processes” (Tall & Vinner, 1981). The
symbols in mathematics are used in our conscious mind and written more permanently on
paper to allow us to link up to all these processes and relationships. Even though they
may fail to have mental objects which represent them specifically does not mean that we
cannot use the symboss ifthey were mental objects. We can do this provided that we
have a rich concept image structure that allows us to conjure up all the relationships
required to perform the necessary computations and manipulations on the symbols which
are the external manifestations of this internal activity.

Regrettably, the lack of concept imagery is so prevalent that procedural learning is seen
to be the only way that the majority of students can learn. This is exemplified by the
worst horrors of “college algebra” which is often accompanied by beautifully prepared,
visually attractive texts, even with colour coded instructions, whose sole message it to
instruct students to rote learn procedures to be “successful” in algebra.



Computer tools for manipulating symbols
In the previous discussion three essentially different kind of procepts were considered:

» Operational procepts, such as those in arithmetic, or certain procepts in
higher mathematics such as the process of differentiation and the concept of
derivative, which have a built-in algorithm to carry them out,

* Template proceptsuch as expressions in algebra, which contain variables
and may be evaluated by giving values to the variables, but may also be
manipulated as symbols,

e Structural proceptswhich represent a process to give a result but may not
have a direct procedure to find it; instead a structure of the relationships
may offer various other approaches. Examples include limits of series or
solutions of certain differential equations, which may fail to have symbolic
solutions but may be solved by approximate numerical methods.

Of thesepperational proceptare the easiest to program. The four rules of arithmetic
were the first on the scene, now readily available everywhere on hand-calculators.

Template proceptsvere the next to be attacked on symbol manipulators. Some cases,
such as the solution of linear equations which cause great difficulties to many students,
were suddenly were seen to be operational. A syntax sudohas(ax+b=cx+d,x)
meaning “solve the equaticax+b=cx+d in terms ofx” could be used to instruct the
computer to carry out the manipulations required to give the solution.

Differentiation was regarded by one of my eminent mathematical colleagues not so long
ago as something requiring mathematical intelligence to perform. He said he had “a zoo
of functions” in his mind which he used whilst breaking down the problem to obtain the
answer. He was flabbergasted to realise that symbolic differentiation is a recursive
procedure that could be programmed on a computer. The differentiation process therefore
becomeoperationalfor the computer even it is not seen as such by the student. Even
more so, the integration process was regarded as not being given by a single process, but
involved selecting from a number of different possible procedures depending on the
nature of the function being integrated. The Risch algorithm killed that one too.

However, there still remain many other manipulations of symbols that do not have a

clearly defined algorithm and need a different approach. For instance, the simplification

of expressions requires a list of templates indicating which expressions (such as X*(-Y),

say) can be replaced by other expressions (e.g. —(X*Y)) and then the list is compared
with the given expression in all possible ways to successively move towards the result.

Generally, symbol manipulators are getting more sophisticated in dealing with such
activities. An early version dberive, simplified

--------- to give m——— e

and the limit option applied to this expressionhasnds to 0, gave noix*1, but

N LN(X)-LN(x/n)
é :



The current version dberive takes this further to:

n-1
n x

Structural proceptsneed careful handling in symbol manipulators. Sometimes this
involves an intellectual form of cheating. Whereas we might compute a limit such as

from first principles, perhaps using a visual argument, a symbol manipulator may have

more success by using L'Hopital’s rule to get

. 8snx _ .. D(sinx) _cosO _

im——=1Ilim = =
0 x-0  D(x) 1

Limits may involve the student in potentially infinite processes allowing something to get

close, but not equal to, a specific value. Computer algebra software may attack the

problem using a totally different symbolic algorithm with a finite number of steps.

1.

Symbol manipulators therefore use a variety of sophisticated programming devices
internally to carry out required processes to reveal the product to the user. They carry out
the internal process without revealing the true relationship between process and concept
embodied in the cognitive notion of procept.

Mental tools for thinking about symbols

The brain is a complex structure, built by the serendipity of evolution over many
millennia, not a computer with a top-down design. It has arouftinElirons, each with
between 500 and 20,000 synaptic connections from other neurons, each firing between 5
and 500 times per second (Crick, 1994). Various groups of neurons work together,
interconnecting with other groups to produce human thought processes (Edelman, 1992).

The detail of this activity is not understood. Indeed, Cohen & Stewart (1994, p. 8) tell the
joke “if our brains were simple enough to understand them, we’d be so simple that we
couldn’t.” However, some important factors about the brain are accepted. For instance, its
parallel processing is so complex that the only way to cope with the bottle-neck is to filter
out most activities from conscious thought at any given time and focus on just one or
two. This limited “focus of attention” or “short-term working memory” causes us to work

in a very special way. The information that is made part of our conscious focus must be
compressed so that as much as possible can be in focus in a compressed state, and to
operate at maximum efficiency, there must be powerful linkages with other mental
information that can be pulled in and out of our focus of attention at will.

The compression of information into symbolism that can be manipulated is what gives
mathematics its awesome power.

| should also mention one other property of a symbolic system — its compactibility
— a property that permits condensations of the dfeevlA or S= %gt?, ...in each

case the grammar being quite ordinary, though the semantic squeeze is quite
enormous. (Bruner, 1966, p. 12.)

By writing a string of symbols and going through what Davis (1984) calls a “visually
moderated sequence” of considering the symbols, manipulating, considering the new



symbols, manipulating, ... , and so on until a solution is found, it is possible to use the
short-term focus and long-term connections to solve problems symbolically.

To carry out manipulations meaningfully requires the building of conceptual relationships
between symbols, and this in turn enhances the memory of such relationships:

One advantage of the inclination to create connections between new and existing
knowledge is that well-connected knowledge is remembered better. There are
probably two explanations for this. First, an entire network of knowledge is less
likely to deteriorate than an isolated piece of information. Second, retrieval of
information is enhanced if it is connected to a larger network. There are simply
more routes of recall. (Hiebert & Carpenter, 1992.)

But what happens if the concepts are not compacted sufficiently to fit into the focus of
attention — as might be the case with long definitions in analysis — or if the connections
are inadequate for flexible linkages. This leads to the inexorable attempt to use the
brain’s primitive facility to practice and routinize long sequences of actions. Procedural
rote learning is the way the brain operates when it has failed to operate meaningfully.
Instead of flexible linkages between many concepts and processes, thaedirear
sequence of linkages — dais, thenthis, then ..., until the problem is solved. Brighten it

up with a bit of humor and a “lively approach” and it becomes a typical college algebra
text.

The problem is that such procedural methods are limited in two ways. First they are
inflexible and only operate in well-defined contexts (including carefully designed
examinations asking questions in a form that students expect to answer.) Second, a
procedure cannot be conceived as an entity, other than “if Ithegroblem, then | use

that procedure”. Once it is started, it must be carried through in sequence. If other
procedures are required, then they must precede or follow in sequence, so the student has
great difficulty in solving problems requiring two or more stages (Rashidi & Tall, 1992).

This weakness of rote-learning has been known since time immemorial

Mast er I wil propounde here ii exanples to you whiche if you
practice, you shall be rype and perfect to subtract any other summ
Scholar. Sir, | thanke you, but | thynke |I mght the better doo i

me the woorkinge of it.
Mast er .Yea but you nuste prove yourselfe to do som thynges that
never taught, or els you shall not be able to doo any nore then

and were rather to learne by rote (as they cal it) than by reason.
(Robert Recordelhe Ground of Artesl543)

The fact that so many teachers see the necessity of teaching procedurally is not a
vindication of the system, but an indictment of it. Sadly, it is not a new idea to see
symbol manipulation as a collection of routines to be practised, and perhaps not
understood:

If we consider the nature of Geometrical and Algebraical reasoning, it will be
evident that there is a marked distinction between them. To comprehend the one,

1This, and other historical quotes in this paper can be found in A. G. Hoivétistory of Mathematics
Education in EnglandCambridge: CUP, 1982.



the whole process must be kept in view from the commencement to the
conclusion — while in Algebraical reasonings ... the attention is altogether
withdrawn from the things signified, and confined to the symbols, with the
performance of certain mechanical operations, according to the rules of which the
rationale may or may not be comprehended by the student.

(Potts,Euclid’s Elements of Geome}ry845.)

The secret to understanding algebra lies in giving meaning to the symbolism, for
instance, by getting the students to construct solutions to problems that use symbolism in
a meaningful way (e.g. Demarois et al, 1992), or by using a computer language to find
out how to “talk algebra” with a computer (Tall & Thomas, 1991, Sutherland, 1994).

Students’ manifest difficulties in manipulating of symbols may be papered over by using
symbol manipulators to do the work, so avoiding student errors in manipulation, but the
guestion must be asked as to whether the symbols have any meaning, other than as a
procedural interface to put in the data for the computer to process and put out an answer.

Symbols and visual representations

As the comment of Dorfler earlier warned us, the use of a symbol to represent a process
and to give a result does not necessarily lead to a mental object (other than the symbol)
that can be brought to conscious attention. Cognitively, Linchevska & Sfard (1991)
propose that “rules without reasons” arise from the inability to conceive of processes as
objects. Historically, concepts such megativenumber,irrational number,imaginary
number,complexnumber show us the way that, just because we can operate with
symbols does not mean that we think of them as genuine objects.

The imaginary expressiof(—a) and the negative expressio -have this
resemblance, that either of them occurring as the solution of a problem indicates
some inconsistency or absurdity. As far as real meaning is concerned, both are
equally imaginary, since @ds as inconceivable a&-a).

(De MorganOn the Study and Difficulties of Mathematit831.)

Having a visual interpretation of these symbols.
such as the number line can help enormously (Tall
1994a, 1994b). But each extension of number 2 3 &

systems, from counting numbers to positive and 9 1
negatives, to rationals, to reals, to comple * 1Y
involve cognitive reconstruction. When a sixtng </ @ / %f J
grader familiar with the number line of integers A

was asked to draw some fractions, he drew an %

interesting diagram (Alstoet al, 1994). V

He still regarded a fractioas a processso that ‘f

“1/2 is “divide into two parts and take one of y

them”. The position of fractions on the line

depended on the interpretation of a fractmh Y

what He marked % of 2" at 1, “% of 3" at 1,
“3of4"atl, ..., "“1% of 4” at 6. A sixth-grader’s number line

At this stage he had not encapsulated the sharing process as a new number concept. If the
reader considers this to be irrelevant to college studies, it is necessary to respond that our
students are a product of their development and this leaves them with a wide array of
idiosyncratic concept images of mathematical concepts. Corresponding problems occur



with numbers all along the line (literally) as we shall see with students’ concepts of real
numbers.

Failure of the mind and computer to represent “real numbers”

Symbol manipulators use representations of numbers which are familiar to students, with
different types of number including integers, rationals, finite decimals, radicals such as
V2, 10J7, special mathematical numbers suchtas. Students may have mental images

of infinite decimals, repeating and non-repeating, but these can often represent “improper
numbers” which “go on forever” (Monaghan, 1986). Although the “real number line”
may seem “self-evident” to mathematicians, it is not to students. In fact it is not to many
mathematicians either, but that is another story! Romero i Chiesa & Azcéarate-Gimenez
(1994) asked students a number of conceptual questions about the real number line, both
in terms of decimals and the visual representation. They found absolutely no evidence to
suggest that students had any intuitive idea of the mathematical “real line”.

Try these three questions to see how you fare:

* Imagine a number line. What do you see?
Imagine this is magnified, what do you see now?
* What happens at infinite magnification?

Treat them intuitively, without arguing philosophically about their meaning and write
down your own response before reading on. [Yes, do it now.]

Interestingly, 47% of students questioned began by seeing the line as a whole and 28%
saw elements in it — frequently reported as disks or as little spheres. At infinite
magnification this changed to 20% seeing a line and 37% seeing individual elements.

What should anathematiciansee? Perhaps a line with no thickness made up of an
infinite number of densely packed points of no size? Let us not argue about how even an
infinite number of points of zero size can make up a finite line segment. Bear with me
and follow the implications through.

Clearly if the magnification is a linear one of the fopfx)=k(x—a), movinga to the

origin and stretching by a fact&r a finite magnification gives a similar picture. Bukif

is infinite (for an infinite magnification), it requires working in a fidkdcontaining the

real number®k and an infinite numbek in K but not inR to perform the magnification
(Tall, 1980, 1982). We will only be interested in the image of real numbers under this
microscope. Amusingly if two real numbeasb can be seen simultaneously théa—a)
andk(b—a) must differ by a finite numbek(a—b). But forinfinite k andfinite a—b this

can only happen @& —b isinfinitesimal As a andb are both real, this meaasnustequal

b. So, under infinite magnification, ongnereal number can be seen. Did you get that?

The point to be made here is that the idea of a “common sense” version of the real line
which is generally available to all, mathematician or not, is just so much nonsense. Wood
(1992) found that a sizeable minority of university mathematics students believed that
there was no smallest positive number (because half of it would be less) bus there
first positive number 00...01 corresponding to 189@9... .

Handling decimals, especially finite ones, seems to gides@etesense to numbers,
increasing a digit at a time in the last place. Thus arithmetic manipulations with such
numbers conflict with the formal notion of the real numbers as a complete ordered field.



Working with symbol manipulators essentially reinforces the students’ intuitive image of
numbers formulated at the beginning of this section, which operate in a way that causes
conflict with the formal theory.

If you don’t use it you may lose it!

Focusing on certain aspects and neglecting others may cause the neglected items to
atrophy. For instance, students usibgrive on hand-held computers to draw graphs of
functions did not need to substitute numerical values for the independent variable to get a
table of values to draw the graph. As a result, they had little practice of numerical
substitution. This had unforeseen consequences. Some students who could calculate by
substitution before the course were unable to do so afterwards. The students were asked:
“What can you say aboutif u=v+3, andv=17?"
None of the seventeen students improved from pre-test to post-test and six successful on
the pre-test failed on the post-test (Hunter, Monaghan & Roper, 1993).

New procedures for old

Symbol manipulators provide ways of solving problems using the software to perform the
manipulations internally. But they do not remove the procedural aspects from the
mathematics. Instead they introduce new procedures. For instanceDasvgreplaces

the procedure of symbolic differentiation by a sequence of keystrokes:

selectAuthor and type in the expression,
selectCalculus, thenDerivative,

specify the variable (e.q),

Simplify the result.

What happened in a comparison of two schools in the UK, one following a standard
course, one usinBeriveis as follows:

f(x+h) = f(x)
5 .

Please explain the meaninngJfrg

... All the students in scho® gave satisfactory theoretical explanations of the
expression but none gave any examples. However, none Dethes group gave
theoretical explanations and only two students [out of seven] mentioned the words
‘gradient’ or ‘differentiate’. Four of théerive group gave examples. They
replacedf(x) with a polynomial and performed or described the sequence of key
strokes to calculate the limit. (Monaghan, Sun & Tall, 1994.)

Failure of some computer approaches to the limit concept

Given students’ (and professors’) idiosyncratic view of the number system, it is no
wonder that they also develop idiosyncratic views of the limit concept. Programming in a
computer language or numeric system with limited accuracy seems to make this worse.
For over fifteen years my department has used a course in BASIC programming designed
to give students intuitions to form a basis for the later formalities of mathematical
analysis. Li & Tall (1993) investigated this idea and found it flawed. The calculation of

the sum of a series took time so that, although 10 or 100 terms would be computed almost
instantaneously, 1000 terms might take longer and 10000 terms ten times as long again.
The result is that the students sensed that the process would never end, because the bigger
the number, the longer it took.



There were some changes in the students’ understandings during the course. In some
instances there were subtle modifications of the meaning of terms such as “tends to” and
“limit”:

Complete the following sentences: 1, 1/2,1/4,1/8, ... tendsto

The limit of 1, 1/2, 1/4, 1/8, is

[13 ” Wy 1477 1 1 1

tends to” / “limit 0/0) 0/% | &1&) O/?) 2/2 0/2 0/1
pre-test N=25) 0 11 1 5 0 2 2
post-test N=23) 8 3 3 0 4 0 2

The response “2” may indicate the sum of $keeiesl+1+2+.... An interview revealed

the response “1” for the limit related to an interpretation of the “limit” of the sequence as
the largest term. The most commonly occurring response changed from “tends to 0, limit
1/00” to “tends to O, limit 0” suggesting that the idea ofolds an indefinite nhumber,
arbitrarily small, is being replaced by the numeric limit O.

Despite a lecture attempting to support the experiences to give a meaning to an infinite
decimal as a limit, the hoary old chestnui¥‘@epeating” did not change its image:

Is 09=17? Y N ? no responsé
pre-test N=25) 2 21 1 1
post-test N=23) 2 21 0 0

Interviews revealed that students continued to concei®eas “a sequence of numbers
getting closer and closer to 1”, or not a fixed value “because you haven't specified how
many places there are” or “it is the nearest possible decimal below 1”. The programming
experiences did not change this view; the limit object cannot be constexaetyin

this environment, so old “process” ideas remain without becoming mental objects.

The responses to two other questions gave further insight:

(A) Canyou addd1+0[01+0[001+... and go on forever to get an exact answe&??N
(B) 1/9=00. Is 1/9 equal t® 1+ 0[01+0[0O1+...? (Y/?/IN

The favoured response on both pre-test and post tésttes (A) andYesto (B):

Responses to (A)/(B)Y/Y | Y/N|N/N|N/Y| N/? ?/N| nr/Y
pre-test N=25) 4 0 1 18 0 1 1
post-test N=23) 2 2 2 14 1 0 0

The majority regard 1+ 0[01+ 0[001+...=1/9 asfalse but 1/90[1+ 0[01+ 0[DO1+...

to betrue. Reading left to right the first represents a potentially infinite process which can
never be completed but the second shows how 1/9 can be divided out to get as many
terms as are required. Interviews suggested shades of meaning often consistent with this
view, again seeing the expressiofl+ 001+ 0[D01+... as gorocessnot as a value.
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Symbol Manipulation and Mathematical Proof

Symbol manipulators focus on getting results rather than taking the user through the
process of manipulation to obtain the result. There is an interesting side effect. The main
focus of study is on processes thatrk rather than processes that may fail. The net result

is that the motivation to suggeshy proof is necessary is often missing. For example,
virtually every graph ever drawn is of a differentiable function. Efforts to use absolute
values and integer parts to motivate non-differentiability and discontinuity, are
regrettably not typical non-examples. For instance the idea of a “generic continuous
function” which is everywhere wrinkled at any magnification is easy to imagine but
rarely drawn. If such a function were part of the system (modelled in some practical way)
it might be numerically integrated to give a smooth looking function whose derivative is
the original wrinkled function (Tall, 1992). Or if functions were drawn that are, in some
sense, modelled on the idea that they take different values on rationals and irrationals,
this may help to give visual support to more interesting non-examples (e.g. Rosenthal,
1992).

Well, what are we doing right?

It is sometimes difficult to appreciate just how fast technology is changing. Euclidean
geometry has been with us over two thousand years, the calculus over three hundred, but
widespread use of the computer in education is less than a decade. Given the huge
resources put into computers at college level it is natural that the first wave of activities
were surrounded with hype, trumpeting the good things that are happening. Indeed, this is
right to do, because without enthusiasm and belief, the doubters will hold back progress.
But now the first wave is established and the mature projects are subjecting themselves to
more careful scrutiny to find out whatrisally happening under the surface. As we have
seen in the examples in this presentation, it is likely that any attempt to use the computer
in mathematics learning will have gains and losses. Indeed, under the surface, the
student’s images of mathematics is very different from the mathematical formalism it is
intended to embody. It is therefore right to focus our attention on the students’ thinking
processes and address the wider issues of what is happening in our students’ learning.
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