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This paper addresses the development of mathematical thinking from
elementary beginnings in young children to university undergraduate
mathematics and on to mathematical research. It hypothesises that
mathematical growth starts from perceptions of, and actions on, objects
in the environment. Successful “perceptions of” objects lead through a Van
Hiele development in visuo-spatial representations with increasing verbal
support to visually inspired verbal proof in geometry. Successful “actions on”
objects use symbolic representations flexibly as “procepts” — processes
to do and concepts to think about — in arithmetic and algebra. The resulting
cognitive structure in elementary mathematical thinking becomes advanced
mathematical thinking when the concept images in the cognitive structure
are reformulated as concept definitions and used to construct formal
concepts that are part of a systematic body of shared mathematical
knowledge. The analysis will be used to highlight the changing status of
mathematical concepts and mathematical proof, the difficulties occurring in
the transition to advanced mathematical thinking and the difference between
teaching and learning the full process of advanced mathematical thinking as
opposed to the systematic product of mathematical thought.

Perception, thought and action

I find it useful to separate out three components of human activity as input (perception),
internal activity (thought) and output (action):

perception thought action

input internal processing output

This simple observation allows us to see mathematical activities as perceiving objects,
thinking about them, and performing actions upon them. I shall begin by considering
input and output before moving on to the nature of the internal processing.

Input and output – objects and action

Elementary mathematics begins with perceptions of and actions on objects in the
external world. The perceived objects are at first seen as visuo-spatial gestalts, but then,
as they are analysed and their properties are teased out, they are described verbally,
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leading in turn to classification (first into collections, then into hierarchies) the
beginnings of verbal deduction relating to the properties and the development of
systematic verbal proof (Van Hiele, 1959).

On the other hand, actions on objects, such as counting, lead to a different kind of
development. Here the process of counting is developed using number words and
symbols which become conceptualised as number concepts. This leads to fundamentally
different kind of development, described by Piaget, as follows:

... mathematical entities move from one level to another; an operation on such “entities”
becomes in its turn an object of the theory, and this process is repeated until we reach
structures that are alternately structuring or being structured by “stronger” structures.

(Piaget, 1972, p. 70)

Such an idea has led to a number of theories which highlight the duality of process and
concept. Davis (1975) noted children may not distinguish between the name of a symbol
and the underlying process. Skemp (1979) proposed a general “varifocal theory” in
which a schema seen as a whole is a concept and a concept seen in detail is a schema.
Greeno (1983) focused on the notion of “conceptual entities” which may be used as
inputs to other procedures. More recently, Dubinsky (1991) speaks of encapsulation of
process as object, Sfard (1991) of reification of process as object, and Gray & Tall
(1994) see the symbol as pivot between process and concept—the notion of procept.

The two sequences of development beginning with object and action are quite distinct.
I therefore hypothesise that, rather than view growth in elementary mathematics as a
single development in the manner of a neo-Piagetian stage theory, an alternative theory
is to see two different developments which occur at the same time. One is visuo-spatial
becoming verbal and leading to proof, the other uses symbols both as processes to do
things (such as counting, addition, multiplication) and also concepts to think about (such
as number, sum, product).

It is interesting to note that these developments can occur quite independently. The
Ancient Greeks developed a theory of geometry (including geometric constructions of
arithmetic) without any symbolism for algebra and arithmetic, and it is possible to
develop arithmetic and algebra without any reference to geometry. However, many
useful links have been made between visual and manipulative symbolic methods and it is
clearly opportune to take advantage of them to develop a versatile approach which uses
each to its best advantage.

In the advanced stages of such a development, certain subtle difficulties occur which
mean that advanced mathematical thinking must expunge itself of possible hidden
assumptions that occur when visual ideas are verbalised. In the nineteenth century a
number of flaws became apparent in Euclidean geometry and theoretical developments
in algebra (such as non-commutative quaternions) were over-stretching simple beliefs in
the manipulation of symbols. Research mathematics took a new direction using set-
theoretic definition and logical deduction. Theorems inspired by geometric perception
and symbolic manipulation were reformulated to give a new axiomatic approach to
mathematics that led on to greater generality.
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This theory is also flawed. The axiomatic method asks us to write down finite lists of
set-theoretic definitions and axioms and to deduce theorems in a finite number of steps.
But if we do this with an infinite set, such as the natural numbers, Gödel showed that
there are theorems that must be true but which cannot be proven in a finite number of
steps. Essentially, there will always be “too many theorems” to prove. Thus the existence
of a systematic body of formal mathematical knowledge is not the final quest in
mathematics, although it does offer a vital foundation upon which even more
sophisticated ideas can be built.

Advanced mathematical thinking today involves using cognitive structures produced
by a wide range of mathematical activities to construct new ideas that build on and
extend an ever-growing system of established theorems.

The cognitive growth from elementary to advanced mathematical thinking in the
individual may therefore be hypothesised to start from “perception of” and “action on”
objects in the external world, building through two parallel developments—one visuo-
spatial to verbal-deductive, the other successive process-to-concept encapsulations using
manipulable symbols—leading to a use of all of this to inspire creative thinking based on
formally defined objects and systematic proof (figure 1).

Internal processing and external representations

The cognitive growth that occurs in mathematics is implicitly designed to make
maximum use of the facilities available to homo sapiens. The two parallel developments
described relate to the complementary roles of perception (input) and action (output). In
between is the internal mental processing which is far more difficult to describe and
analyse. Crick suggests that:

The basic idea is that early processing is largely parallel – a lot of different activities
proceed simultaneously. Then there appear to be one or more stages where there is a
bottleneck in information processing. Only one (or a few) “object(s)” can be dealt with at a
time. This is done by temporarily filtering out the information coming from the unattended
objects. The attentional system then moves fairly rapidly to the next object, and so on, so
that attention is largely serial (i.e., attending to one object after another) not highly parallel
(as it would be if the system attended to many things at once). (Crick, 1994, p. 61)

Brain activity therefore has two highly contrasting features:

• a huge store of experiences and simultaneous activity,
• a small focus of attention,

(where the latter need not be a place in the brain to store items as in a computer but a
mental activity which is temporarily linked to conscious thought processes).

To minimise the cognitive strain it is essential to do two things:

• compress knowledge appropriately for the small focus of attention,
• construct linkages to other mental data to make it easy to use.

The first is an essential characteristic of mathematics:
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Mathematics is amazingly compressible: you may struggle a long time, step by step, to
work through some process or idea from several approaches. But once you really
understand it and have the mental perspective to see it as a whole, there is often a
tremendous mental compression. You can file it away, recall it quickly and completely
when you need it, and use it as just one step in some other mental process. The insight that
goes with this compression is one of the real joys of mathematics. (Thurston, 1990, p. 847)

It is achieved in a variety of ways—routinising processes so that they occupy little
conscious attention, using pictures to allow the viewer to focus at whatever level and on
whatever detail is desired, and using words and symbols (particularly procepts) to
compress the notation into small, mentally manipulable entities.

The second involves the development of conceptual knowledge with many links to
maximise retrieval. This also involves concept-process links enabling the successful
individual to carry out mathematical procedures to find answers to problems. However,
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Figure 1: Outline cognitive development from child to research mathematician
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if the mathematics places too great a cognitive strain, either through failure to compress
or failure to make appropriate links, the fall-back position resorts to the more primitive
method of routinising sequences of activities —rote-learning of procedural knowledge.

The status of mental objects

In cognitive growth, the mental objects we think about are constructed in several
different ways, each having a different status. The visual objects we see are direct
perceptions of the outside world, or rather, our own personal constructions of what we
think we see in the outside world. Later in geometry, objects such as a “point” or a “line”
take on a more abstract meaning. A point is no longer a pencil mark with finite size (so
that a child may imagine a finite number of points on a line segment (e.g. Tall, 1980)),
but an abstract concept that has “position but no size”. A straight line is no longer a
physical mark made using pencil and ruler, but an imagined, perfectly straight line, with
no thickness which can be continued as far as required in either direction. In Euclid, a
line is defined as “breadthless length” and a straight line “lies evenly with the points on
itself”. These words do not define a straight line in any absolute sense, but they help to
convey the meaning of the perfect Platonic object which we may “see” lying behind any
inadequate physical picture. As Hardy observed:

Let us suppose that I am giving a lecture on some system of geometry, such as the ordinary
Euclidean geometry, and that I draw figures on the blackboard to stimulate the imagination
of my audience, rough drawings of straight lines or circles or ellipses. It is plain, first, that
the truth of the theorems which I prove is in no way affected by the quality of my drawings.
Their function is merely to bring home my meaning to my hearers, and, if I can do that,
there would be no gain in having them redrawn by the most skilful draughtsman. They are
pedagogical illustrations, not part of the real subject-matter of the lecture.

(Hardy, 1940/1967, p. 125.)

The mental “objects” constructed by process-object encapsulation have a very different
status. As Dörfler suggested:

… my subjective introspection never permitted me to find or trace something like a mental
object for, say, the number 5. What invariably comes to my mind are certain patterns of dots
or other units, a pentagon, the symbol 5 or V, relations like 5+5=10, 5*5=25, sentences like
five is prime, five is odd, 5/30, etc., etc. But nowhere in my thinking I ever could find
something object-like that behaved like the number 5 as a mathematical object does. But
nevertheless I deem myself able to talk about the number “five” without having distinctly
available for my thinking a mental object which I could designate as the mental object “5”.

(Dörfler, 1993, pp. 146–147.)

In terms of the notion of concept image of Vinner (Vinner & Hershkowitz, 1980), there
is no conflict here. Within our mental structure we have both recognition structures that
recognise, say, the perceptions of a physical object, such as a drawing of a triangle, and
we also have connected sequences of mental actions that are triggered to carry out
processes in time. The concept image of a procept uses the symbol to links to suitable
processes and relationships in the cognitive structure. Thus, although we may not have
anything in our mind which is like a physical object, we have symbols that we can
manipulate as if they were mental objects.
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I do not believe in my own case that I have things in my mind that correspond to
visualisations either. Despite working for many years on visualisations in mathematics
in which I can produce good external pictures on the computer screen to represent
mathematical concepts, the pictures I conjure up in my mind are very different from the
external representations. It is different with words. As I type this, I can hear the words in
my mind and if I start saying them as I type, what I hear out loud is what I hear in my
head. But homo sapiens has no “picture-projecting facility” for communication in the
same way as it has a verbal “sound-making facility”.

I have a theory therefore that when we visualise, we use not “picture-making”
facilities, but “picture-recognising facilities” which we have in plenty. We have many
structures that resonate with incoming visual stimuli to recognise them and we simply
use these recognition’s to attempt to build up our visuo-spatial imagery. The result is a
vague “sense” of a picture. Certainly in my case it is vague. I do not know what you see
when you think of a visualisation, perhaps you see an eidetic image in full colour. Then
again, what we all see may be just the emperor’s new clothes!

Many mathematicians say that they think in “vague” visuo-spatial ways as a
springboard for more abstract thinking. Hadamard (1945) reported that most of the
mathematicians he consulted did so. In his own case he even saw formulae in this way:

I see not the formula itself, but the place it would take if written: a kind of ribbon, which is
thicker or darker at the place corresponding to the possibly important terms; or (at other
moments), I see something like a formula, but by no means a legible one, as I should see it
(being strongly long-sighted) if I had no eye-glasses on, with letters seeming rather more
apparent (though still not legible) at the place which is supposed to be the important one.

(Hadamard, 1945, p. 78.)

Representations

In considering the kind of mental “objects” we have in different mathematical contexts,
it is interesting to return to the ideas of Bruner (1966) who formulated his theory of three
different types of representation of human knowledge:

• enactive,
• iconic,
• symbolic.

One of these is essentially a physical process (enactive) whilst the other two produce
physical objects that are drawn or written1 (iconic, symbolic). Iconic representations
drawn by hand, such as a free-hand graph, also have enactive elements in them,
suggesting a broader “visuo-spatial” concept. (For instance, one senses enactively that a
“continuous” graph going from negative to positive must pass through zero.)

Symbols as procepts in arithmetic, algebra etc., also have dual process-object
meanings. This in turn suggests that the symbolic mode of presentation needs

                                                
1Verbal symbolism can, of course, also be spoken, but the written word has great value as a permanent record that can be
scanned and reflected upon.
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subdividing as Bruner himself hinted when he mentioned, “language in its natural form”
and the two “artificial languages of number and logic”, (Bruner, 1966, pp. 18, 19).

Natural language occurs throughout mathematics to set the mathematical activity in
context. In the visuo-spatial to verbal developm ent, natural language becomes a vehicle
for describing iconic images and formulating proof. It can also be used to describe
properties of numbers, for instance, that addition is commutative because it is observed
to be always independent of the order (a fact easier seen by visualising the change in
order than carrying out the counting procedure—a valuable use of the interrelations
between visual and symbolic.) Meanwhile the “artificial language of number” has mental
objects which are procepts and the “artificial language of logic” in advanced
mathematics has concepts which are formally defined.

It is essential to distinguish between elementary mathematics, (including geometry)
where objects are described and advanced mathematics where objects are defined. In
both cases language is used to formulate the properties of objects, but in elementary
mathematics the description is constructed from experience of the object, in advanced
mathematics, the properties of the object are constructed from the definition—a reversal
which causes great difficulties of accommodation for novices in advanced mathematical
thinking.

This gives a range of different types of representation in mathematics, including:

• enactive (physical process),
• iconic (visual),

and three forms of symbolic representation:

• verbal (description),
• formal (definition),
• proceptual (process-object duality).

The notion of “procept” helps in the analysis of cognitive difficulties related to
symbolism. When Eddie Gray and I first coined the term I felt, in a moment of self-
doubt, that all we had done was to give a name to something that was well-known to the
mathematics education community. Subsequently I realised it was more. By giving it a
name, we had essentially encapsulated the process of encapsulation. This enables us to
discuss different kinds of encapsulation in different contexts and to see how learners face
cognitive difficulties when procepts behave differently in different contexts.

For instance, in the development from the process of counting to the number concept,
the sequence of number words initially only function as utterances in the schema of
pointing and counting, but then the last word becomes the name for the number of
objects in the collection. In arithmetic of whole numbers, symbols such as 4+3 initially
evoke a counting procedure (count-all) which is then compressed via “count-on” (which
uses 4 as a number concept and +3 as a count-on procedure) to a “known” fact where
4+3 is the number 7. In this encapsulation there is a new concept, namely the sum, 4+3,
but it relates to a known object (the number “7”). However, for the process of equal
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sharing for 3/4 (divide into four equal parts and take three) to be encapsulated requires
the construction of a new mental object — a fraction. Hence the considerable increased
difficulty with fractions as a succession of encapsulations and mental constructions.

Arithmetic procepts such as 4+3, 3×4, have a built-in algorithm to compute the result,
which children come to expect. Such procepts are genuinely operational, in the sense
that one can operate on them to get an answer. But in algebra, procepts such as 4+3x
certainly have a process of evaluation (add four to three times x) but cannot be evaluated
until x is known. Such symbols are termed template procepts, in that they are templates
for operations which can be evaluated only when the variables are given appropriate
values. However, the symbols can still be manipulated as objects, in simplifying,
factorising, solving equations, and so on. The shift in focus from the symbolism of
arithmetic where the aim is to obtain numerical answers to the manipulation of template
procepts in algebra is one which causes severe difficulties for many learners.

Likewise, in the beginnings of calculus there are symbols which act dually as process
and concept. For instance, the limit procept:

lim
h→0

f (x +h) − f (x)
h

dually represents both process (as h gets small) and concept (the limit itself). This
causes further difficulties because it is not computed by a finite set of calculations
(Cornu, 1991). Instead, in a specific case such as f(x)=x2, first the simplification is
performed assuming h≠0, then the final result is computed by setting h=0. For other
expressions this confusing limit process soon becomes too complicated and derivatives
are computed by a collection of rules.

The limit concept causes great difficulties for students (Cornu, 1991, Williams, 1991).
The majority seem to continue to treat a limit as a process getting close rather than a
concept of limit. The usual default behaviour to cope with lack of meaning is to use the
rules of differentiation procedurally. It at least has the familiar quality that it is an
algorithm giving a result, albeit a symbolic one, making the limit procept operational.

Figure 2 uses this analysis of different forms of representation to show how they
feature in different mathematical topics. It outlines the visuo-spatial to verbal
development in geometry, the proceptual development in arithmetic and algebra, and the
relationships between them in measurement, trigonometry and cartesian coordinates.

At the top of the figure are the subjects which begin the transition to advanced
mathematical thinking. All of these require significant cognitive reconstructions.
Euclidean proof requires the realisation of the need of systematic organisation, and
agreed ways of verbal deduction for visually inspired proof (the use of congruent
triangles). The move into calculus has the difficulties caused by the limit procept. The
move into more advanced algebra (such as vectors in three and higher dimensions)
involves such things as the vector product which violates the commutative law of
multiplication, or the idea of four or more dimensions, which overstretches and even
severs the visual link between equations and imaginable geometry.
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The transition in all three subjects therefore requires considerable cognitive
reconstruction involving a struggle to understand. However, there is an even greater leap
to be made in advanced mathematical thinking to formal definitions (which changes the
status of the objects being studied) and formal deduction (which changes the nature of
proof). To see just how much change is required, let us briefly look at how the nature of
proof is dependent on the representations available and on the mathematical context.

The Status of Proof

Given different types of representation and different ways of thinking about them, it
follows that there are likely to be different kinds of proof. In the enactive mode, proof is
by prediction and physical experiment: to show two triangles with equal sides have equal
angles, put them one on top of another and see. In the iconic mode, a picture is often
seen as a prototype, that can be thought of as representing not only a single specific case,
but others in the same class. The picture in figure 3, which demonstrates that four times
three is three times four will work for any other whole numbers and so may be visualised
as a generic proof that whole number multiplication does not depend on the order:
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Figure 2: Actions and objects in the building of various mathematical knowledge structures
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} 3 lots of 4

4 lots of 3}
Figure 3: Multiplication is independent of order

Visual proofs, however, begin to fail when pictorial prototypes cease to represent the full
meaning of the class of objects to which the proof refers. For instance, the difference
between real numbers and rational numbers is difficult to represent visually (although I
simulate it in some of my own software for schools, (Tall, 1991)). Here are two pictures.
The one on the left is of a continuous function on the rationals (the formula reads “if
x2>2, then the value is 1 else it is –1, on the domain where x is rational). The one on the
right is the real function taking the value x2(x2–1)+1 if x is rational, and 1 if x is
irrational. It is continuous only at x=–1, 0 and 1. (It is even differentiable at x=0.)

         

Figure 4: The first function is continuous, the second continuous at –1, 0, 1.

Developing meaning for pictures so that they give correct intuitions is a sophisticated
business, which is even more difficult to turn into formal proof. However, for some
professional mathematicians visualisation gives valuable insight in the sense of Dreyfus
(1991), whilst others, aware of the possible pitfalls, distrust them completely.

Verbal proof depends on the context in which it occurs. For instance, in Euclidean
geometry it is essentially a translation of visual generic proofs for triangles and circles
based on the pivotal notion of congruent triangles. It is not logical proof in the sense
accepted in modern axiomatic mathematics. However, it does introduce the learner to a
most important aspect of axiomatic proof, that of systematic organisation, proving
theorems in order, so that each depends only on previously established theorems.

Proof involving procepts is usually performed through using the built-in processes.
For instance, proof in arithmetic is either through a generic computation, “typical” of a



– 11 –

class of examples, or using algebraic computation, e.g. the proof that the sum of two
successive odd numbers (2n+1 and 2n+3) is a multiple of 4 (4n+4).

Proof at the formal level consists essentially of rearranging the content of a given set
of quantified statements to give another quantified statement. These statements relate to
definitions of formal mathematical concepts, so if certain properties of concepts are
given, others are deduced. The logical part of the deduction is just the tip of the iceberg.
The part under the water is a hazard for many trying to navigate for the first time. Expert
mathematical thinkers use so much more of their experience to choose concepts worth
studying, to formulate them in the most productive way and to select likely lines of
attack for proof.

A group of mathematicians interacting with each other can keep a collection of
mathematical ideas alive for a period of years, even though the recorded version of their
mathematical work differs from their actual thinking, having much greater emphasis on
language, symbols, logic and formalism. But as new batches of mathematicians learn about
the subject they tend to interpret what they read and hear more literally, so that the more
easily recorded and communicated formalism and machinery tend to gradually take over
from other modes of thinking. (Thurston, 1994, p. 167).

The move to advanced mathematical thinking, using a full range of personal mental
imagery to develop new theories formulated in terms of systematic proof is more than
just the appreciation of a formal development from definitions and axioms. It builds in
the kind of structure exhibited in figure 5, with the advanced mathematical thinker using
visuo-spatial ideas, symbol-sense and all kinds of intuitions to develop new theories that
can be woven into the Bourbaki-like systematic development that forms the solid
theoretical basis of the subject.

Where is the transition to advanced mathematical thinking?

In the description so far, the place where elementary mathematical thinking becomes
advanced has yet to be precisely defined. In figure 1, the “transition to advanced
mathematics” includes systematic Euclidean geometry, calculus and advanced algebra.
Certainly these subjects all involve inherent difficulties requiring considerable cognitive
reconstruction and, at various times in history (ancient Greece, the seventeenth and
nineteenth centuries, respectively), they were topics of mathematical research by the
most creative minds of their generation. Calculus and advanced algebra also contain a
significant quantity of the mathematics taught at university for students as service
subjects, so it would be politic to include these subjects as “advanced mathematics”.

In the deliberations of the Advanced Mathematical Thinking Group of PME at its first
meeting in 1987, we found it impossible to come to an agreement and decided
pragmatically to take our brief to study mathematical thinking in topics beyond regular
mathematics from the age of sixteen. Pragmatism suggests that it would be pertinent to
include Euclidean geometry, calculus and advanced algebra above the line. However,
whereas each of these subjects has its own idiosyncratic difficulties, the universal
cognitive change occurs with the introduction of the axiomatic method, where
mathematical objects have a new cognitive status as defined concepts constructed from
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verbal definitions. This is therefore a more natural place to draw the line between
elementary and advanced mathematical thinking. It is essentially a change in cognitive
stage from the equilibrium of visual conviction and proceptual manipulation to defined
objects and formal deduction.

It remains valuable to consider the first level beyond elementary school mathematics
to be a preliminary stage of advanced mathematical thinking, in which elementary ideas
are stretched to their limits (literally!) before the theoretical crisis they generate requires
the reconstruction of a formal view. Many will not require the full range of formal
mathematics, being fully occupied with the proceptual complexities of the manipulation
of symbols in calculus and algebra. The full range of creative advanced mathematical
thinking is mainly the province of professional mathematicians and their students.
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The relationship between elementary and advanced mathematical
thinking

The changes in status of mathematical objects and mathematical proof at various stages
of development offer an alternative viewpoint to consider the relationship between
elementary and advanced mathematical thinking. Indeed, it reveals very different forms
of mathematics in school and university. The “New Math” of the nineteen sixties was an
attempt to introduce a set-theoretic deductive approach in elementary mathematics and it
failed. Now mathematics educators involved with mathematics in school are operating in
an age of democratic equality of opportunity which is predicated on a broad curriculum
suitable for the needs of the wide population. There are signs that the curriculum in
elementary mathematics is producing students less ready to study mathematics at
university.

A recent report (Pozzi & Sutherland, 1995) has highlighted perceived shortcomings in
students arriving in the UK to study engineering. An exchange of letters in the English
national press has revealed serious concerns about “falling standards” related to changes
in the English curriculum. For example, Sykes & Whittaker (1994) report that in 1994,
only 50% of the entrants to their business studies course could multiply 1/2 by 2/3 and,
whereas 66% could correctly calculate the square of 0.3 in 1987, by 1994 this had fallen
to 16%. The general consensus amongst university mathematicians in England is that
students arrive at university to study mathematics with less understanding of proof, less
proficiency in handling arithmetic (particularly fractions and decimals) and less facility
with algebraic manipulation.

The decline of Euclidean geometry in English schools has led to a loss of experience
with systematic proof. The increase in practical links with real world problems and loss
of manipulative practice seems to lead to less meaning within mathematics. Procepts,
such as fractions, involve many conceptual encapsulations, including the encapsulation
of counting as the concept of number, addition of whole numbers as sum, repeated
addition as product and the process of equal sharing as the concept of fraction. There is
little wonder that fractions proves difficult for a wide range of the population. Likewise,
the meaningless manipulation of symbols in algebra is a consequence of inability to give
them meaning as process and concept (Sfard & Linchevski, 1994).

It would be pertinent for a proportion of the mathematics education community to
focus on the learning of those students in elementary mathematics who might develop
the potential for advanced mathematical thinking, to analyse whether their learning
environment is suitable for their long-term development. Short-term it would be possible
to consider the ways in which the “more successful” do mathematics, to see if they need
a different environment from others. Perhaps some of the educational devices for
introducing mathematics in an elementary way, such as physical balances to introduce
equations, introduce cognitive baggage which is not in the long-term helpful for
cognitive compression.



– 14 –

Advanced mathematical thinking and undergraduate mathematics

At college level, mathematics is usually still taught in the “definition-theorem-proof-
illustration” sequence with little opportunity for developing a full range of advanced
mathematical thinking.

The huge quantities of work covered by each course, in such a short space of time, make it
extremely difficult to take it in and understand. … From personal experience I know that
most courses do not have any lasting impression and are usually forgotten directly after the
examination. This is surely not an ideal situation, where a maths student can learn and pass
and do well, but not have an understanding of his or her subject.

Final Year Undergraduate Mathematics Student

Rote-learning at university is even worse than procedural learning in school. At least
procedures can be used, even if the range of application is narrow, but a rote-learnt proof
that has no link to anything else has little value other than for passing examinations.
Regrettably, students who are good at routine problems in advanced mathematics often
fail when faced with something a little different (e.g. Selden, Mason & Selden, 1994).

Mathematicians seem to face a dilemma:
… we should not expect students to (re-)invent what has taken centuries of corporate
mathematical activity to achieve. Yet if we do not encourage them to participate in the
generation of mathematical ideas as well as their routine reproduction, we cannot begin to
show them the full range of advanced mathematical thinking. (Ervynck, 1991, p. 53)

Fortunately, it is possible to encourage students to think in a mathematical way at
university level, as is shown by problem-solving approaches such as Mason et al (1982),
Schoenfeld (1987), Rogers (1988), and the “proof debates” of the Grenoble school
(Alibert, 1988). Following the problem-solving approach of Mason et al, Mohd Yusof
(1995) has shown that such a problem-solving approach changed student attitudes in a
way that university professors desired, whereas the adherence to traditional lecture
methods and the vast quantity of rote-learnt content caused students to change attitude in
the opposite direction. Typical responses from professors and students were as follows:

I see mathematics as something that needs doing rather than learning where I should
participate actively in making conjectures, constructing arguments to convince others,
reflecting on my problem-solving and so on. But I think the maths course at the university
does not encourage this. Student A

We work under pressure and often feel anxious that we can’t do maths. Not because we
can’t do it, because we can’t do it in time. Student B

The experience of making conjectures, generalising and the like I think students can get
themselves on their own, from doing their project work. We do not have the time to teach
them everything. Professor C

To me mathematics is a mental activity, but I should say that at this level I present it more
as a formal system. Because we are confined by the syllabus and also depending on the
students’ background. … I would like to change. How do I do that? I don’t know.

Professor D

Paradoxically, traditional ways of teaching are, for most students, causing precisely the
opposite effect that university mathematicians desire. The sheer difficulty and volume of
material to be covered in a university mathematics degree makes it difficult for students
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to cope with formal mathematical content in a limited time. But does this mean that we
must accept the status quo of a huge formal syllabus with widespread rote learning, or is
it not possible to modify courses to allow students to develop ways of thinking more
mathematically? The acquisition of a wide repertoire of advanced mathematical thinking
is a challenge which now faces university mathematicians. Is it a challenge which will be
accepted?
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