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Introduction

Formal mathematics involves definitions and deductions in a manner which is quite
different from the mental processes of school mathematics. Formal definitions of
function, limit, continuity, differentiation and integration (both Riemann and Lebesgue)
involve possibilities that often conflict with the students’ previous experience, leading to
confusion and alienation. Examples given to “motivate” definitions invariably have
specific properties that do not follow logically from the definition itself. For instance,
examples of sequences are usually given by formulae so that that the sequence “gets
closer and closer” to the limit, without actually reaching it. Consequently, many students
believe that this is an essential property of the limit concept. Functions are nearly always
given by formulae whose graphs look “smooth” so that students have difficulty imagining
anything different. When discontinuities are exemplified by drawing a graph, the picture
is often represented as a number of curved pieces with a “jump” at the point under
consideration. The result is a widespread belief that a typical function is given by a
formula and is continuous except at occasional isolated points. In this way the student
builds up a personal concept image of the concepts at variance with the theory.

The formal theory starts from formal definitions and builds up relationships and new
concepts through various linear chains of deduction. These are phrased in a combination
of words and symbols which can involve far too great a processing strain on the short-
term memory of a naive learner. For instance, the ε–N definition of limit and the ε–δ
definition of continuity prove initially difficult to commit to memory for meaningful use.
After a short time with the general theory, the course usually resorts to specifics such as
various tests for the convergence of series which no longer refer back to the definitions
and the students cease to worry about them and concentrate on what they need to survive
their current problems. In the words of Smith & Moore (1991), students develop coping
skills to get through the course in a manner which appears on the surface to be successful
but may fail to address the subtleties of mathematical reasoning.

The teacher introducing students to formal mathematics may consider a number of
possible alternatives to minimise these difficulties. One might be to attempt to avoid all
reference to imagery that conflicts with the formal notions. Some very great
mathematicians have succeeded in this way. According to Poincaré, Hermite “never
evoked a sensuous image”, yet he reached a point where “the most abstract entitities were
for him like living beings” with “some principle of internal unity” (Poincaré, 1913, p.
220). The mind of a student is not a tabla rasa – it already has conceptual imagery which
eventually needs to be reconciled with the formal theory. An alternative approach
therefore is to provide the student with imagery that challenges their limited conceptions
and lays intuitive foundations for the ideas that develop within the formalism.

A computer can provide a rich interactive source of possible imagery, both visual and
computational. However, it is essentially a finite machine which cannot encompass
concepts such as the actual infinity of the real line. There is therefore a genuine conflict in
attempting to model formal analysis with pictures drawn on a finite screen using finite
processes. Paradoxically, this apparent difficulty can be turned to good effect because the
student may be made explicitly aware of the finite limitations and use the imagery and its
flaws to stimulate the imagination and conceive of mental concepts that stretch beyond
the limitations of finite experience.
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My own quest in recent years has been to use the computer to visualise mathematical
concepts in helpful ways in calculus and analysis. Imaginative use of graph-plotters and
graphic calculators has enabled students to cope more meaningfully with concepts such as
differentiation through the notion of “local straightness”, integration through area
summation, and solving (first order) differential equations by visually building up
solution curves with given gradient. During this time I became increasingly aware of the
limited concept imagery afforded by graph-plotters that only draw reasonably smooth
graphs given by formulae. Some allow functions given by different formulae on different
domains such as:

f(x)= x (x ≤ 0)
1 − x (x > 0).{

I wanted to be able to draw more subtle graphs, such as

h(x)=
x if x is rational

1− x if x is irrational




to use these to motivate deeper thoughts about continuity and more sophisticated ideas of
integration, such as the Lebesgue “area” under this curve.

Of course, I was bound to fail. With only rational computer numbers, it is clearly
impossible to draw such curves. Or is it? To give up attempting something just because it
is theoretically impossible ignores the capacity of the human mind to imagine concepts
unachievable in finite time and space.

Instead I set about a more humble task – to use a computer to simulate the idea of rational
and irrational numbers so that pictures can be drawn to stimulate the visual imagination.
To do so requires some kind of distinction between rational and irrational that can be
modelled in a computer algorithm. It is the development of such a model, and its use in
visualising concepts in analysis that forms the basis of the remainder of this article.

Distinguishing rationals from irrationals

The Ancient Greeks used an algorithm to represent any (real) number x in terms of
rational approximations. It begins by finding the integer part n, and decimal part d:

x = n + d  (where 0 ≤ d < 1).

If d=0, then x is a (rational) integer. If not, the subtle part is to note that its reciprocal 1/d
is greater than 1, so we can take the integer part again and write

1/d = n2 + d2 (where 0 ≤ d2 < 1).

By continuing this process, the equations can be unravelled to give closer and closer
rational approximations to any number x. For instance,

π = 3 + d (where d = 0.14159...)

1/d = 7.0626...

and so a good approximation to π is

π = 31
7  = 22

7  .
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If the process is applied to a rational number such as 22
7 , then the remainder eventually

becomes zero:

22
7  = 3 + 1

7

1/( 1
7 ) = 7+0

and the process terminates.

The process gives a sequence of fractions, r1, r2, ... which tend to the real number x. If x is
rational, the sequence is eventually constant, equalling x expressed in lowest terms. If x is
irrational, it is easy to see that the numerators and denominators of rn must grow without
limit. (For if the denominators were all less than an integer N, then the sequence N!rn
would be a sequence of integers tending to N!x, so the terms must eventually be a fixed
integer, implying N!x is an integer, contradicting the fact that x is irrational.)

This gives a method of distinguishing between rationals and irrationals:

Compute the continued fraction expansion of a number x, and if the rational
approximations have denominators which grow without limit, then x is
irrational, otherwise it is rational.

Working in the practical world of computers there are technical difficulties. Since the
process involves taking reciprocals, if d is small, then 1/d is huge. If d should be zero, but
errors make it tiny, then taking the reciprocal causes the method to blow up. The practical
way out is to cease when the process gives a decimal part smaller than a specified error e,
and check if the size of the denominator of the approximating fraction is bigger than a
specified (large) number K.

We will therefore make the following technical definition to simulate the notions of
rational and irrational in a finite computer world:

Definition : A real number x is said to be (e,K)-rational if, on computing the continued
fraction approximation to x, the first rational approximation within e of x has denominator
less than K, otherwise x is said to be (e,K)-irrational.

It is relatively straightforward to define a function rat(x,e,K) to return the value TRUE if
x is (e,K)-rational and FALSE if it is (e,K)-irrational. (See Mills & Tall, 1992 for details).
When specific values of e, K, are used (say e=10–9, K=10 000), one can define

rat(x) = rational(x,10–9,10 000).

This partitions numbers into two disjoint subsets. Different values of e and K will, of
course, give different partitions, but we will work with specific values of e and K and use
the terms pseudo-rational and pseudo-irrational numbers in this implicit context.

In practice it is important to choose e and K judiciously to make best use of the model.
Many computers store numbers to around 8 digit accuracy, so e=10–9 is a suitable size.
By experiment, K=10 000 proves to be a suitable “large” number. With these values we
find that π, √2, √3+1 are all pseudo-irrational and –1.5, 2/3, 22/7 are all pseudo-rational.

On the other hand, working with (approximately) 8 digit arithmetic, clearly 108π is
(almost) a whole number, and registers as a pseudo-rational. For PI=3.14159265, it
happens that the number 1000*PI is also pseudo-rational. By the opposite token, 1/20 000
turns out to be pseudo-irrational (because its denominator exceeds K=10 000).

Even though the partition fails to correspond to the theoretical partition into rationals and
irrationals, the partition into two disjoint sets – pseudo-rationals and pseudo-irrationals –



– 4 –

still has useful properties. First the two disjoint sets are intimately intermixed. Then there
are many more pseudo-irrationals than pseudo-rationals. Generating random computer
numbers and counting those which are pseudo-irrational for e=10–9 and K=10 000 gives
around 94% pseudo-irrational. In any given system it is best to choose e and K to
maximise this percentage, providing a good model for the idea that the irrationals are far
more numerous than the rationals (in fact of probability measure 100%).

Plotting highly discontinuous graphs

We now come to the nub of the problem. The following function

f(x) = if(rat(x), x, 1–x)

represents the statement “if rat(x) is true, then the value is x, else it is 1–x”. How can the
graph be drawn on a computer screen in a way which truly represents the function?
Traditionally the graph is sometimes conceived to look like figure 1.

f(x) = if(rat(x), x, 1–x)

x
3

4 √2

Figure 1 : plotting (3 4 , f( 3
4 )) and (√2, f(√2)) on the graph of a function

defined differently on rationals and irrationals

There seem to be two distinct lines, one with points where x is rational, the other
irrational. Perhaps the irrational part looks denser than the rational. But it seems a crazy
thing to try to draw in any practical sense. Every point on the x-axis has a unique point on
the graph, so every vertical line meets only one of the two lines. For instance, the points
x= 3

4  and x=√2 have corresponding points on the graph on different parts, as caricatured
in the figure.

This graph is clearly impossible to represent in its full subtlety on the computer screen,
yet by dynamically building up the graph from individual points – some (pseudo-)
rational x, some (pseudo-) irrational – a sense of the nature of the graph can be suggested.

Binary Plot

One interesting plotting method is to make successive passes each of which doubles the
number of new points – the first pass plots the mid-point, the second the quarters, the
third the eighths, and so on, in such a way that points plotted on previous passes are not
duplicated on successive passes. This can be done by the following general code.

s=(b–a) : x=a+s/2
 repeat
 repeat : plot (x, f(x)) : x=x+s : until x > b

s=s/2 : x= a+s/2
until satisfied



– 5 –

It starts with a step s equal to the interval width w=b–a and a point x in the centre of the
interval, plots the point (x, f(x)), then successively adds the step s to x and repeats the plot
until the point x moves beyond the end of the interval. The process is repeated, with a
new step s=s/2, starting at x=a+s/2. On the second pass, this starts at point a+w/4, step
s=w/2 and plots the remaining quarter points a+w/4, a+3w/4. The next pass starts at
a+w/8, step s=w/4 and plots the remaining eighth points a+w/8, a+3w/8, a+5w/8, a+7w/8,
and so on.

The process is repeated until a pre-determined condition is satisfied (say a specified
number of passes, or a specified time, or until a pre-determined key on the keyboard is
pressed). Each pass doubles the density of the plot. Note, however, that the points plotted
are all of the form a+mw/2n where m and n are positive integers with m<2n. In particular,
when a and b are rational, the points plotted are all rational (figure 2).

In practice, if a computer plot is carried out with a rational x-range, say from x=–2 to 2,
then the first dozen or so passes give all rational points. If the plotting mechanism is left
to run for a long time, numerical  errors eventually produce pseudo-irrationals.

Figure 2 : a binary plot, initially producing only (pseudo-)rational points

Random Plot

Another method is to calculate (pseudo-)random numbers in the interval [a,b] and plot the
point (x, f(x)), until a pre-determined condition is satisfied (a certain number of points is
plotted, a certain time has passed, or a selected key has been pressed).

repeat
x=a+random* (b–a)
plot(x,f(x))

until satisfied

This method simply sprays points on the graph where the x-value is calculated as
a+random*(b–a) where random is a random number between 0 and 1. In theory, such
points have a high probability of having irrational values of x, based on the fact that a
randomly chosen number has a low probability of having a repeating block of digits
repeating in its decimal expansion.
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In the context described, about 94% of the points plotted have pseudo-irrational x–values
(figure 3).

Figure 3 : a random plot producing mainly (pseudo-)irrational points

To get only pseudo-irrationals, the code could be modified to

repeat
x=a+random* (b–a)
if rat(x)=false then plot(x,f(x))

until satisfied

to exclude pseudo-rationals. However, in using the program to stimulate the imagination,
it is important that the student sees that the model is only an approximate one. The
existence of rogue values helps to focus on the difference between theory and practice.

Mixing plot routines

If the plotting program is set up with an easy switch between the two plot mechanisms
then it is possible to draw points with both pseudo-rational and pseudo-irrational x. If the
program includes a routine to specify x and plot (x,f(x)), then this shows that for each
value of x there is just one and only one corresponding value on the graph. For instance, if
x=3/2, then y=0.75, but if x=√2, then y=-0.4142135 (figure 4).
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Figure 4 : plotting (x,f(x)) for x=3/4 and x=√2

Visual links between continuity, differentiability and integrability

There is much reference in the literature to the use of magnification to motivate the idea
of gradient of a function through “local straightness”. An overview is given in the MAA
Notes on Visualization in Mathematics (denoted later as [VM]). What is less well
understood is an appropriate intuitive notion of continuity (which tends to be linked with
the connectedness of the graph with subtle inferences from the completeness of the reals).
In the following sections I shall briefly recapitulate some of the central intuitive ideas
from [VM] and extend them to deal with the wider visualisations possible using the
plotting routines discussed in this article.

Differentiability

The notion of differentiable function can be motivated simply by magnifying its graph,
retaining the same relative scales on the axes.  The graph of such a function magnifies to
look straight and the gradient of this straight line segment is the gradient of the graph.
This visual image proves to be a powerful gestalt for the notion of gradient function,
though care should be taken to link graphical, numerical and symbolic representations. As
a bonus, it stimulates the imagination by allowing the student to conceive of a nowhere
differentiable function, which is one which remains wrinkled, no matter how much it is
magnified. Again this is well-represented in the literature and fractal graphs such as the
blancmange function can be plotted which illustrate this principle (figure 5). (See [VM]
for details.)
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Figure 5: a highly wrinkled function, nowhere locally straight,
magnified at x=1/3 from the main window to the small window

It is also possible to motivate other strange looking graphs. For instance, figure 6 shows a
graph whose derivative is 0 everywhere the derivative is defined except at one point
where the derivative is 1. By magnifying the graph at x=0 it magnifies to look like a line
of gradient 1 (despite the many jump discontinuities arbitrarily close to the origin). The
veracity of this strange property, having been motivated visually, can, and should, be
checked from first principles.

       

Figure 6 : A graph with derivative 1 at the origin, but zero everywhere else it is defined
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Continuity

The intuitive idea (which proves to be flawed) that a continuous function is “one whose
graph can be drawn continuously with a pencil, without taking the pencil off the paper”
can be used to motivate the formal definition. Given a graph drawn “continuously” in this
intuitive sense, simply by stretching it horizontally, keeping the vertical scale constant,
pulls the picture of the graph in a window out flat (figure 7).

 

a b a b

expand horizontal scale

Figure 7 : stretching a graph horizontally

This can be performed on a computer to give a horizontal graph. (figure 8).

Figure 8 : horizontal stretching of the sine graph

The graph is captured in a horizontal line of pixels which can be thought of as being
height f(x0)±ε (figure 9).
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f(x0)–ε
f(x0)+ε

x0+δx0–δ x0

Figure 9 : the concept of continuity through horizontal stretching

So the fact that a small enough x-interval width x0±δ can be found to draw such a picture
is enshrined in the property:

Given ε>0, there exists δ>0 such that x0–δ < x < x0+δ implies f(x0)–ε < x < f(x0)+ε.

The relationship between (visual) continuity and (visual) differentiability is clearly that a
graph which is locally straight can be stretched horizontally to look flat. So continuity
implies differentiability. But the image of wrinkled graphs shows that there are
continuous functions which are not differentiable anywhere.

It is also possible to motivate other seemingly strange ideas. The graph of the function
f(x)=if(rat(x),x,1–x) seems highly discontinuous. Yet on keeping the y-range fixed and
stretching a smaller and smaller x-range either side of x= 1

2  to fit the fixed window
eventually draws the graph flat. The graph is continuous at x= 1

2 , but nowhere else (figure
10)

         

Figure 10 : stretching horizontally to see if(rat(x),x,1-x) is continuous at x= 1
2

Figure 11 shows a graph whose domain is restricted to the pseudo-rationals which
appears to have a discontinuity. But on inputting x=√2, the value is declared not defined
because √2 is not a pseudo-rational. The graph is not defined on the very point where the
jump occurs. On the other hand it is continuous at every point in the domain.
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Figure 11: a graph defined on a (pseudo-) rational domain with an apparent discontinuity

With this latter graph the intuition is stimulated to focus on the notion of continuity as a
pointwise definition on the domain of the function concerned. The pictures are now
stretched to their practical limits and the human mind must take over to contemplate the
underlying formal mathematics.

Integrability

When integration is seen as the reverse of differentiation, the role of continuity becomes
obscured. However, when integration is given an independent meaning through
summation, the role of continuity becomes more focused. Calculating the area A(x) from
a fixed point x0 to a variable point x under a continuous function f(x) may be seen as
giving an area function satisfying A'(x)=f(x). This is because the area from x to x+h is
A(x+h)–A(x) as in figure 12 and, for small h, looking at a stretched picture which pulls

the graph flat gives a visual approximation of A(x+h)–A(x) ≈ f(x)xh. So 
A(x+h)–A(x)

h   
approximates to f(x) and motivates the fundamental theorem A'(x)=f(x) only on the
assumption that f(x) is continuous.

A(x)

A(x+h)–A(x)

a x x+h

Figure 12 : the change in area

This means that if a function f(x) is continuous but not differentiable, then its area
function A(x) is differentiable once (to get f(x)) but not twice. This can be illustrated by
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computing the area under the blancmange function. In figure 13 the increasing function is
the numerical area under the blancmange calculated from the origin (for both positive and
negative steps), using the mid-ordinate rule with steps width 0.1. See [VM] for details.

It is even possible to compute the numerical gradient of the area function. The
blancmange looking function in figure 13 is in fact the graph of this gradient, motivating
the fact that A'(x) is the original function.

Figure 13 : the area function for the blancmange and its derivative

Integrating discontinuous functions

What happens when we attempt to compute the area under a function which is not
continuous? The numerical calculations to compute the area approximations work in the
usual way, but can produce insightful pictures. A graph with simple discontinuities such
as f(x)=x–INT(x) proves to have an area graph (the dotted curve in figure 14) which is
locally straight, except at the points where f is discontinuous.
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Figure 14 : The area under a curve with isolated jump discontinuities

Many early area plotters simply calculated the area and plotted the cumulative values as a
set of points. In figure 15 the area is calculated as a function area(f,a,b,h) of f from a to b
with step h (using the mid-ordinate rule, here with h=0.05). It is then possible to zoom in
on the graph at an appropriate points to see where it has different left and right gradients.
Note that at x=1, the graph of x–int(x) has left and right limits which are different (one
and zero respectively); these are the gradients of the area graph to the left and right.

Figure 15 : zooming in on the area curve at x=1

What happens when we attempt to compute the integral under a highly discontinuous
graph such as f(x)=if(rat(x),x,1–x) ?

This proves to be highly interesting. Attempting to use a mid-ordinate rule to compute the
area starting at a rational point with a rational step, clearly (mainly) pseudo-rationals will
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be encountered. Thus the area under f(x) from 0 to 5 using this method is an upward
facing parabola, of the approximate form x2/3. The area under y=x from 0 to 5 is 25/3 =
8 1

3 . The difference between this and the result 7.51875 is due to errors in arithmetic
giving a few pseudo-irrational points in the plot.

 

Figure 18 : calculating the area under the graph with rational and random steps

But a calculation with a random step-length, using strips whose height is computed at a
random point in the strip produces a very different picture. The second picture shows the
result after plotting the area from 0 to 5 several times over. There are several distinct but
fairly close curves. A random value is highly likely (probability about 0.94) of being a
pseudo-rational with the specific parameters for computation used in the program. Thus

most of the values lie on f(x)=1–x. Since (1− x) dx
0

t

∫  = t–1
2 t2, the graph will lie roughly

on this curve but may diverge as the occasional pseudo-rational distorts the value. The
actual value of –6.59953 compares approximately with the value of 5–12.5=–7.5. Some
of the other computations were closer.

The interesting stimulus arising from the latter is that, in theory, irrationals are highly
more likely to arise from random partitions than rationals. Using such a partition
therefore may give an area which approximates to x–1

2 x2. This can motivate the possible
development of a more powerful theory of integrations – the theory of Lebesgue in which
domains such as the irrationals inherently contribute more to an integral than the smaller
domain of rationals. The step is, of course, a great one. It involves questions of cardinality
and infinite series, which requires a leap in the imagination of the human mind. But it is
one which is better taken by a mind prepared for the journey.

Classroom experiences

The ideas in this article were piloted in a 60 hour analysis course for mathematics
education students planning to be teachers.  Traditionally such students have struggled
with the subject. For instance, the previous year’s students were asked, after two weeks
instruction in the ε-N definition of the limit of a sequence, to write down the definition.
None of them were able to do so. Discussion on the mathematics was rare and there was
sometimes a sense of alienation from the subject, as if it belonged to a different universe.

The decision was taken to revamp the course, using the ideas outlined here to make it
more visual, and to encourage discussion techniques to build up the concepts. It was not
expected that students would obtain greater facility with the formal aspects, but that they
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were more likely to be able to visualise and verbalise the concepts. This proved to be the
case. Formal definitions (even if remembered!) are long and complex and usually need to
be written down to be able to grasp them as a whole. Visual ideas prove to be easier to
discuss in everyday language. The formal concepts were based on more meaningful
conceptualizations.

The level of discussion was mature and often insightful. For example, on seeing the graph
of the area function of the blancmange, a student observed that the area function must be
“differentiable once but not twice”, before this was formally discussed. Few traditionally
taught students have any idea what such a function might look like.

On another occasion, when the random plot was being used, another student suggested
that random points were far more likely to be irrational,  and so the values of the function
on rational numbers are less important when random methods were used to calculate the
area for the function in question. This led to a reconsideration by the group of cardinal
concepts that had caused them so much trouble two years ago when they had a formal
course on sets and foundational topics.

The discussions indicated a level of visualisation and verbalisation far greater than had
been traditionally expected in earlier courses and they were by no means limited to a
minority of the students.

Dealing with these visual concepts requires careful focusing and guidance to distinguish
between the theoretical mathematics and the finite images on the computer. Given a
supportive environment, students may confront the conflict to produce a more meaningful
foundation for the theory.
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