
Cognitive Difficulties in Learning Analysis

David Tall

Mathematics Education Research Centre
Warwick University

COVENTRY CV4 7AL, UK
e-mail: D.O.Tall@csv.warwick.ac.uk

Introduction

Although mathematicians have hunches as to why students cannot understand analysis, it
is not part of their task as professional researchers to study the cognitive development of
how the subject is learned. Instead the general method of trying to improve student
success is to reorganise the manner in which the subject is presented. Sometimes this
gives a perceived measure of success, but overall there is as yet no agreed consensus as
to what must be done to improve the situation. One of the serious reasons for this is that
the search for clues is being performed in the wrong area. To understand why students
can’t do analysis clearly requires a study of the students as well as the subject matter. In
this article I attempt briefly to summarise some of the research into student conceptions
of mathematics which may be of assistance. Much of this has been done in the last years
of school and the transition to university and is not always directed at the type of student
who will be faced with mathematical analysis at its most abstract. Students across a
spectrum of ability and experience differ greatly in the vision they bring to the subject
and the problems that they face. Nevertheless, the results are clear enough to focus on
difficulties which students experience in learning analysis. Hopefully this will lead to
further serious empirical studies of student difficulties in analysis. A pilot study carried
out recently at Warwick suggests that there is much of value to be learned.

The student conceptions
on which the theory of analysis is built

We all have experiences which build up our own personal imagery of mathematical
ideas. Conceptions of such things as real number, l imi t, function, continuity,
completeness, and so on in every individual are built on previous experiences which are
present in the mind at the same time as the formal definitions. It is important therefore to
be aware of these other conceptions that coerce our thinking and often produce confusion
and conflict in our students (and also in ourselves). The term concept image1 has been
used by mathematics educators in a technical sense to describe the total cognitive
structure, including all mental pictures and imagery related to the concept, in the mind of
an individual. The concept image is likely to include factors which conflict with the
formal definition and cause serious cognitive conflict for the learner. Some student
concept images are discussed in the book Advanced Mathematical Thinking2 (a
compilation written by sixteen international maths educators) and in The Transition to



Advanced Mathematical Thinking chapter of the recent Handbook on the Teaching and
Learning of Mathematics3 published in the USA by the National Council of Teachers in
Mathematics.

The real number system itself is by no means clearly formulated in most students’
minds. Young children learn about the accurate arithmetic of whole numbers and later of
negative numbers and fractions. Their arithmetic is precise and gives exact answers.
Later, students add other numbers to their repertoire, such as √2 and π. As soon as
computations are performed with these, they become approximate, accurate to a
specified number of decimal places. Although these numbers may be visualised as points
on a number line, this does not mean that the number line itself is understood in a
coherent way. In particular, ‘infinite decimals” are often regarded by sixth-formers as
being improper in the sense that they “go on forever” and do not exactly specify the limit
value4. Instead the notation √2=1.414… says “the square root of two can be computed to
any desired number of decimal places and is 1.414 to three places”. It does not mean that
the infinite decimal is the limit of the sequence of decimal approximations. Students’
whole experience of numbers in upper secondary school is in terms of adequately
accurate approximations rather than accurate precision. The conflict between the abstract
desire for precision and the practicalities of arithmetic lead to subtle conflicts in the
mind.

The notion of limit is not clearly conceived by most students arriving at university. It
is considered as a process of getting closer rather than the concept of limiting value5. If it
is thought of as an actually quantity, the process of getting smaller is usually
encapsulated as an arbitrarily small variable quantity, in a manner which fits more with
Cauchy’s idea of the continuum than our own6. Students have intuitive conceptions of
infinitesimals. That is not to say that they are ready for non-standard analysis, for their
conceptions conflict with this theory also. For instance “nought point nine recurring”
may be the “nearest number to 1 without being 1”, whilst the non-standard number
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can be made closer to one by making n larger. Beliefs that may surprise mathematicians
are possible, including the notion found amongst a sizeable minority of undergraduates
at an English university that there is no “smallest positive real number” yet there can be a
“first positive real” (in the form “nought point infinite noughts, one”).

Dynamic views of limit and consequent misconceptions are commonplace amongst
undergraduates. The change from limit as a variable process to limit as a fixed value is a
significant conceptual change which is a worthy focus of attention.

Other concept images cause conflict for students. For instance, earlier experiences
suggest that a function is given by a formula7, so the “funny functions” mathematicians
may try to draw as piece-wise connected graphs to ‘motivate’ analysis theorems are
received by some students with incredulity. A continuous function8 is conceived as one
given by “drawing without taking the pencil off the paper”, and is often further



motivated in this way in analysis, but it leads to more grief than insight, as we shall see
later in this article.

Other concepts of analysis, such as sequences and series give cause for confusion.
Essentially students see the words as being interchangeable at school and continue to
confuse them even when clearly told the definitions. As definitions come thick and fast,
from convergence of a sequence, to convergence of a series, to cauchy convergence of
sequence and series, and then on to specific tests of convergence, the development may
be clear to the lecturer, but not to the student who must first construct the meaning of
these concepts and is often not able to cope with them in the given time. Instead a
serendipity focus on isolated pieces of information that happen to appeal to the
individual occurs during the lectures. Thus a student may remember an individual test of
convergence of series that happens to work for him or her, yet may have no recall of the
fundamental definition of sequence, series or convergence on which the test is based.

Defining concepts

The idea of defining a concept is new to most students. In a platonic sense a concept
either exists or it doesn’t. Given a concept that is already familiar, one might describe it
(a square is a polygon with four equal sides and one internal angle is a right angle). One
might attempt to be more prescriptive (“if we meet a polygon with four equal sides and
one internal angle a right angle then it is a square”). But the idea of defining a concept
and then asserting that because it is defined it exists causes severe cognitive problems.
The difficulties are greater in mathematical analysis where definitions are often
formulated as ‘if-then’ processes – “given an ε we need to find an N such that …” –

rather than in terms of an object (a triangle is a figure with three straight sides). The
processes are so long that they exceed short-term memory processing capacity.
Beginners forget the start of the definition before they reach the end. (In an experiment
with non-maths majors studying analysis, none could remember the definition of
convergence of a sequence after two weeks of hearing lectures on the subject.) For all
but the most able students (and even these struggle), when definitions are first
encountered, they are not compressed into a form that they can readily be manipulated
and so cannot be comprehended.

Mathematical proof

It is useful to distinguish three types of proof: mathematical proof based on formal
definitions, euclidean proof based on definitions which are actually descriptions of
concrete objects having associated visual mental images and thought experiments where
the givens are imagined true and then one sees if this leads to the proof of the theorem.
Many theorems in analysis are trivially true by thought experiment. For instance, if a
continuous function is negative somewhere and positive somewhere else, it is clearly
zero somewhere in between – just imagine a picture of a graph drawn from negative to
positive without taking the pencil off the paper and see! If an tends to a and bn to b, then
clearly an+bn tends to a+b – how could it be otherwise? Euclidean type proofs of these



theorems – where the mathematical objects are pictured and described – have visual or
dynamical elements which may lead to oversimplified beliefs characteristic of thought
experiments.

Visualisations are important in conceptualising a wide range of mathematical ideas.
The psychologist Paivio9 (1986) proposed a dual-coding theory in which visual and
verbal/symbolic representations are linked in the brain for mutual support. Pictures prove
to give enhanced memories of linked verbal data and vice versa. In my work I have tried
to provide students with suitably complex computer generated pictures10 (e.g. everywhere
continuous, nowhere differentiable functions whose area functions are locally straight, or
functions with differing values on rationals and irrationals to motivate Lebesgue
theory11). These enable students to see why theorems need to be proved and how things
might go wrong but the visual elements rarely have the same sequential/deductive links
characteristic of words and symbols. There remains the need to translate the visual
insight from a thought experiment into a sequential proof, and this is non-trivial.

The problem of using definitions in mathematical proofs

We have already noted that mathematical definitions are often inordinately long and
often formulated in the form of a process rather than a direct description of the
constituent parts – for instance, the definition of convergence of a sequence (given ε,

there exists N such that …). They are better handled in written form where the whole
sentence can be scanned and any part focused on at will, than in spoken form. Hence
lectures on the subject are an unnatural method of communication! If the communication
is spoken, the language tends to revert to imagery which is more appropriate for thought
experiment than formal proof. Because the thought experiments are “known” to be true
by the students, the theorems are seen to be unnecessarily complicated.

Theorems using definitions require a process of translation from words in the theorem,
(such as limit, continuous function, least upper bound) and their attendant imagery, to
their formal definitions. The game is to translate all the given assumptions in this form,
to manipulate the resultant data and to deduce the definitions required to return to the
conclusion of the theorem. Regrettably even this does not follow by a simple sequential
computations met in school mathematics. Consider the proof of the sum of the limits is
the limits of the sum, with its half epsilons and choice of the maximum of the two
consequent Ns to give the final N.

The growing difficulty of learning analysis

In a recent research project at Warwick University five selected students were
interviewed at three week intervals throughout an analysis course. Certain factors
became clear. At the beginning, when presented with the axioms of real numbers, two
(Mark with two As in A-level mathematics, Linda with an international baccalaureate)
saw the need to specify what was assumed as a vital starting point (definitions) to make
deductions, Three others (Nicholas with a B in maths, Anthony with B/E, Brian with A/F
in maths/further maths) were confused at being given a list of facts about numbers that



they had known since they were children (descriptions!). In the second and third
interviews, students were asked, among other things, to define the least upper bound.
Only Linda could give a fluent formal definition of the notion of least upper bound. She
had learned to visualise the page on which it was written and could look along her
image of the definition to see its constituent parts. So she saw the definition as a spatial
array of grouped symbols rather than a simple logical sequence of words. But she was
currently confused by other concepts, for instance, she did not know the difference
between a sequence and a series which had been the topic of discussion for a couple of
weeks and when asked to give the definition of convergence of a sequence, offered the
cauchy definition of convergence of a series.

Mark remembered most of the definition, but here and elsewhere often came to a total
stop in the middle of an explanation of a topic when his memory failed, getting back on
the rails when he refreshed himself by looking at the notes.

The other three students struggled desperately to remember the definition, often falling
back on concept imagery of the type “an upper bound is bigger than any element in the
set” with the implication (for them) that the least upper bound was “the largest element
in the set”. Quite simply, they had not compressed the definition into a form where it
could be used fluently and flexibly in their short-term memory store. In the lectures they
usually interpreted the theorems in terms of imagery more suited to ‘thought experiment’
rather than ‘formal proof’. They saw theorems as “obvious” (as thought experiments) but
“could not understand them” (as formal theorems). This was not solely through lack of
memory, as one of the weaker students showed when later committing the definition of
least upper bound to memory. It seemed more due to the conflict of their concept
imagery and what they believed to be true from their previous experience with what
needed to be ‘proved’ through a method which, for them, failed to be accompanied by
any necessity or conviction.

As the lectures continued, the gap between the concepts as meaningfully related to
definitions became wider as the students were faced with the increasing overload of
handling so much information in their short-term working memory store. By the time the
definition of Riemann integral came in the next term, students were floundering with the
notion of partition, with each partition having an upper and lower sum using a theorem
about continuous functions on each closed subinterval, and then the proposition that all
upper sums are greater than all lower sums and hence upper sums have a greatest lower
bound and lower sums a least upper bound and that these can be shown to be equal, and
that this value is called the integral. The enormity of this excessive sequence of complex

statements compared with their earlier algorithmic ideas that the integral of xn is 
xn+1

n +1
(for n≠1) needs little comment.

A strange phenomenon occurred. Brian and Nicholas (who were in serious difficulties)
could give some kind of verbal description of the ideas but only as far as a rough
definition of upper sum and lower sums. The more successful Mark was still attempting
to cope with information overload. He knew the definitions of continuity, that theorems



were involved to show that a continuous function attains its maximum and minimum in a
closed interval, could formulate upper and lower sums, but began to get a stage where
the complexity of his description collapsed from its own excessive internal weight.
Meanwhile Anthony, one of the weaker students who had missed a lot of lectures,
realised that he had twice been asked about the definition of least upper bound in
interview and had committed it to memory. He could repeat the precise definition of
least upper bound, could describe the whole of the process of upper and lower sums, and
their respective greatest lower bound and least upper bound and that when these were
equal then this value was the integral. It all sounded incredibly convincing. But a little
probing revealed that he had no formal concept of continuous function and still
considered that the least upper bound was the biggest element in the set. His description
of Riemann sums was based on intuitive concept images, not formal definitions, where
the least upper bound in each subinterval was visualised as the highest point on an
intuitively ‘continuous’ graph. Although he might obtain high marks on a question about
Riemann sums, his formal conceptualisation was deficient. The joke is that he was only
able to operate because his imagery was deficient. Had he attempted to deal with the
definitions in all their glory he would almost certainly have crashed under the overload
in the same manner as some of his more successful colleagues. At the end of the lectures
he withdrew before the examination and changed subject.

What becomes apparent when we look at students’ difficulties in analysis is that they
are genuine, deep and inadequately researched. There is a broad spectrum of ability and
insight where each individual has personal conflicts to face. The “able mathematician”
amongst them may be able to address some of these problems without explicit
instruction and may succeed despite the many difficulties which litter the way. Others in
the spectrum are faced with difficulties of meaning which simply cannot be addressed by
dedication and hard work. Those who do work hard may learn to recall and repeat
sequences of arguments, but the complexity and lack of compression of the knowledge is
such that it cannot be held in the mind in a compact enough form to allow it to be
mentally manipulated in a manner characteristic of successful mathematicians.

The talented lecturer may receive student approval by giving more inspiring lectures
than the norm, but the problem can only be addressed seriously by finding out the nature
of students’ conceptions and how they grow. This is not something that mathematicians
give kudos for. Recently the London Mathematical Society refused to allow research into
advanced mathematical thinking as a named area of interest for a mathematician
(although ‘history of maths’ and ‘general’ are allowed). The reasoning was that
Advanced Mathematical Thinking is not an accepted category in Mathematical Reviews.
The American Mathematical Society later considered the time was not yet ripe to change
its list of categories.

I predict that a change of heart will occur in the next five years. It will have to. In the
changing society we live in, we cannot go on teaching mathematics to students in ways
that the majority patently fail to understand. It is not that they are poor students, but that
the mathematical community has not grasped the nettle that the cognitive study of



mathematical thinking is as important to mathematics as group theory, topology or
functional analysis. If it were as easy as those subjects, surely somebody would have got
it right! The study of advanced mathematical thinking will one day be regarded as
important to the professional mathematician as one distant branch of mathematics
research is important to another. The study of finite simple groups may not be important
to the chaos theorist, but it is important to the community of mathematicians. In like
manner, the study of how we think in advanced mathematics may not be as important to
mathematicians as what we think, but if mathematicians do not support those doing
research in this area by giving encouragement and the opportunity to earn respect in an
intellectually demanding task, then mathematics itself can only be the poorer.
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