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In translating problems from a verbal description to algebraic notation, we
consider what children will do with statements that do not have the syntactic
constructions that may provoke the reversal errors of the “students–professors
problem.” MacGregor & Stacey (1993) show that children do not follow a
simple word-matching order and postulate the existence of mental models that
can be accessed in any order. We hypothesise that the children’s responses are
a natural consequence of their previous development and show that, as the
verbal problems become more complex, children are more likely to revert to a
process-orientation with the arithmetic operation on the left, rather than an
assignment order with the variable on the left. We place this in a theory of
cognitive compression as the children grow in mathematical sophistication.

Introduction

The “students and professors” problem of Clement, Lochhead and Monk (1981) has
unleashed a profusion of articles formulating and testing theories about conceptualisation
of symbols in algebra (see Laborde 1990 for a summary). Given the problem of
translating “There are six times as many students as professors” into symbols using S for
the number of students and P for the number of professors, 37% of college students
sampled were in error and two thirds of these wrote 6S = P, rather than S = 6P. This
reversal error, has been identified by some as occurring because the letters are thought
to stand for the objects (students, professors) rather than the number of objects and
Kaput (1987) suggested that this was strongly influenced by the underlying language
syntax where the “6S” suggested an adjective-noun structure meaning “six students”.
This leads to a word order matching error (or syntactic translation) which essentially
follows the word order of the original problem (e.g. Schoenfeld, 1985; Mestre, 1988).
Herscovics (1989) contrasted syntactic translation with semantic translation, which
attempts to interpret the underlying meaning.

MacGregor & Stacey (1993) asked students to translate more simple statements into
algebra and reported that there were responses, including errors which could not be
adequately described by syntactic translation. They concluded that the students must
have “cognitive models” including some easily described in natural language (such as “I
have $6 more than you”) but less amenable to translation into mathematical code:

The variety and form of students’ responses leads us to infer some properties of their
cognitive models and to postulate that information from these cognitive models can be
retrieved in any order. Such a retrieval process would explain the apparently random choice
of responses that match or do not match the word order. (MacGregor & Stacey, 1993, p. 228.)



Lillie Crowley, Michael Thomas, & David Tall

– 2 –

The evidence that we have partly supports this view. However, we do not consider that
all children have cognitive models which can be retrieved in any order. Instead we
suggest that the models developed by children are a result of their previous experience
which requires several reconstructions to allow them to develop models with a flexible
use of order of access. This relates to their learning experiences in mathematics, their use
of symbols, and the natural process of compression of knowledge with growing maturity.

A theory of learning in arithmetic and algebra

We begin with the simple observation that the human brain has a huge long-term
memory, but a limited short-term working store. It can therefore store vast quantities of
information, but can only manipulate a small number of items consciously at any time.
To cope with this limitation in mathematics, two strategies are adopted, one to routinise
procedures so that they can be performed using little conscious memory, and a more
powerful one using symbols to label complex information allowing a small number of
symbols to be the focus of attention at any one time. These symbols are used by experts
in a particularly flexible way in arithmetic and algebra by labelling a process with a
symbol which then is also used for the concept produced by that process.

Perceiving a symbol as either process or concept gives great power to the individual, for
the process enables him or her to do mathematics, but the concept allows him or her to
think about it and manipulate it mentally. A symbol standing for both process and the
output of that process is called a procept, with the additional factor that two different
symbols which represent the same object can be regarded as the same procept (Gray &
Tall, 1994). Mental manipulation of procepts gives the thinker great power. The
flexibility in thought grows over time as the individual compresses the process to allow it
to be thought of as an object. The proceptual child grows to regard different symbols for
the same thing as being essentially the same object, whilst the procedural child persists
longer in regarding them as different processes (Gray 1993).

Early arithmetic involves the process of counting which becomes compressed into the
concept of number with number symbols fulfilling the pivotal role. The expression “5+4”
can mean different things to different children at different stages, including:

(a) count-all (count 5 objects, then 4, then count them all),
(b)count-on (count on four starting after 5: “six, seven, eight, nine”),
(c) known fact (the answer is 9),
(d)derived fact (e.g. “I know 5 and 5 is 10, so 5 and 4 is one less”).

A child may have one or more of these interpretations at a given time. Those who only
count-all may know a few facts, but are unlikely to derive facts (Gray & Tall, 1994).
Some children remain procedural and prefer the security of counting-on to solve
numerical problems. More successful children leave count-all behind and compress
knowledge with great flexibility and fluency using a combination of (b), (c) and (d).
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Depending on the development of the child in this sequence of learning, the following
equations may have very different meanings:

(i) 5 + 4 =  , (ii) 5 +  = 9, (iii)  + 4 = 9, (iv)  = 5 + 4.

The first of these can be answered by any of the four named processes of addition, the
second is difficult with count-all, but straightforward with the other techniques (for
instance, count-on from 5, and count how many are required to reach 9.) The third is
difficult with count-on because the child does not know where to start the count (Foster
in prep.). The fourth may make little sense to any child who reads an equation as a left-
to-right process to given an answer (Kieran, 1981). For such children there is a
preference to express the equation 9=5+4 as an addition process 5+4=9 (5 and 4 makes
9). In practice, the difference between (ii) and (iii) is ephemeral, and children soon see it
to be equivalent to a subtraction, but (iv) continues to surface strongly later in algebra.

Many children have difficulty with a symbol such as “x+3” which they will not accept as
an answer because they expect a number (Kuchemann, 1981). From our viewpoint, such
children see the symbol x+3 as a process and not a mental object – a process they cannot
carry out because they do not know what x is. To be able to cope with such a symbol
requires not only that it be given a meaning, but that the meaning should cope with it
both as a process (of evaluation when x is known) and also as an object which can be
manipulated as it stands. It requires the flexibility which views the symbol as a procept.

Such a view is not available to a child who regards number operations only as counting
procedures. Regrettably, in traditional teaching, faced with children in difficulty and
lacking in comprehension, the way out is often “fruit salad” algebra. The symbol
“3a+4b” is explained to stand for “three apples and four bananas”. Some children who
play along with this delusion are able to sort out “3a+4b+2a” as “three apples and four
bananas and two apples”, which is “five apples and four bananas”, or “5a+4b”. So they
appear to be able to simplify expressions. But they now have an image of a letter as
representing an object, set up ready to fall foul of the student-professor problem. Other
children might simply conclude that “3a+4b+2a” is “nine apples and bananas” and –
since they have no mathematical symbol for “and” – they may write the letters one after
another, conjoining them as “9 a b”. (see, for example, Booth, 1984).

Algebra teaching further exacerbates the differences between proceptual thinkers with
their flexible use of symbolism and procedural thinkers who try to give it a temporal,
process meaning. The equation symbolism is reversed to express y as a function of x in
the form y=x+4. This assignment order causes no problems to the proceptual thinker but
violates the meaning of the “equals” sign for the procedural child who may prefer the
process-oriented order x+4=y. Aesthetic preferences are introduced – for instance, it is
“usual” to write y=3x+4 rather than y=4+3x, although it is preferable to write y=4–3x
rather than y=–3x+4, to avoid starting an expression with a minus sign. Flexible thinkers
are more likely to take such things in their stride, coping with both the flexibility of
meaning of the symbols and arbitrary matters of taste.
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We hypothesise that proceptual thinkers will have cognitive models that show flexibility
in meaningful re-ordering of algebraic symbols, coloured by personal preferences based
on aesthetics and personal experiences. But procedural thinkers are more likely to prefer
a process-oriented order which we hypothesise will become more dominant as the
complexity of problems increases.

Empirical Data

The first problem of MacGregor and Stacey (1993) is:

z is equal to the sum of 3 and y. Write this information in mathematical symbols.

The responses from 255 Year 9 students (aged 13 to 14) of mixed ability in Australia and
their interpretation of the responses as (possibly) syntactic or not are as follows.

Response (possibly syntactic) Frequency Response (not syntactic) Frequency
(a) z = 3 + y 70 (b) 3 + y = z 66
(c) z = y + 3 0 (d) y + 3 = z 9
(e) z = 3 y 37 (f) 3 y = z 36
(g) [unclassified] 27 (h) [no attempt] 10

Table 1 : Data from MacGregor & Stacey

Given that the problem is phrased in the same word order as a possible algebraic
solution, our viewpoint would interpret that response (a) is a natural direct translation but
(b) and (d) correspond either to flexible proceptual equivalents or to process orientation.
Given the total lack of responses in (c), which represents the aesthetic order of linear
equations, we infer that (b) and (d) are more likely process orientation rather than
random proceptual flexibility. We would conclude that items (e) and (f) are more likely
to involve primitive conjoining rather than mistaken multiplication. The number of
responses in the last four (43%) show a horrendously large number of children who seem
be seriously handicapped in learning algebra.

We designed an investigation in which three addition and three multiplication questions
increased in difficulty, with the first two in each case having syntax coinciding with
algebraic assignment order and the third was more complex so that the syntax did not
easily suggest a specific order. The problems were given to two groups whom we hoped
would be less likely to produce conjoining and non-responses. One was a group of 75
Year 9 students (age 13 to 14) in a highly selected school in Britain representing roughly
the top 35% of the total population. The other was a group of 128 second year university
students training to be teachers of children aged 4 to 12, representing the top 20% of the
population overall. (These teachers are not mathematics specialists and the vast majority
will not have studied mathematics for over three years.) The responses of three questions
similar to those of McGregor and Stacey are given in Table 2, the codes s, a, p, r , ✔, ✘,
standing for syntactic, assignment-oriented, process-oriented, reversal, correct and
incorrect, respectively.
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Item Response School University
(1) y is equal to x plus four. y =x + 4 [y=(x+4)] as✓ 65 107

y = 4+x a✓ 0 0
x + 4 = y p✓ 9 15
4 + x =y p✓ 0 2
y =x + 4 or x + 4 = y a✓ 1 3
other ✘ 0 0
no response ✘ 0 1

(2) w is equal to the sum w = 3 + n [w =(3 + n)] as✓ 52 91
of 3 and n w = n + 3 a✓ 4 2

3 + n = w [(3 + n) = w] p✓ 10 30
n + 3 = w p✓ 2 2
w = 3+n or 3+n = w a✓ 0 1
other [e.g. 3n=w, w=3] ✘ 7 2
no response ✘ 0 0

(3) A school has v girls and v = t+10 [v=10+t, t=10–v] a✓ 41 33
t boys. There are ten more t+10 = v [10+t=v, v–10 = t] p✓ 24 44
girls than boys. Write an v+10 = t [10+t=v] pr✘ 7 24
equation relating v and t. t = v+10 [v=t–10] ar✘ 1 4

other [e.g. 10 t=v, t=10 v] ✘ 2 20
no response ✘ 0 3

Table 2 : Translations of verbal addition problems into algebra

Note that, in the first two questions the vast majority follow the given word order y=x+4
and w=3+n. None reverse the right hand side of (1) as y=4+x, but a small number reverse
the word order in (2) to give w=n+3 (the aesthetic order). There are also no reversals of
the roles of the variables (the syntax does not encourage reversal). The majority of the
remainder in both questions keep the word order (x+4 or 3+n) of the sum, but follow the
procedural order. None of the students fail to answer question (1) correctly (it uses the
familiar x and y in the correct order) but a small minority produce incorrect solutions to
question (2) including conjoining. Notice too that the number reverting to the procedural
solution increases as the problem becomes less familiar. The verbal problem (3) is more
complex. There is no clear equation syntax and the solver must relate several different
pieces of information in the mind at once – the number of girls (v), the number of boys
(t) and deduce that the second sentence means t is 10+v. This will place stress on short-
term working memory and there are more errors.

Tables 3 and 4 show the diminution in algebraic assignment and the increase in process-
orientation as the complexity increases. Using a χ2 test with continuity correction, the
change in total process-oriented from (1) to (2) is statistically significant (p<0.05)
amongst the university students and from (2) to (3) is highly significant (p<0.01) in both
groups. When the first errors occur in (3), the process reversals exceed the assignment
reversals. The difference is significant (p<0.05) calculated as a subset of the total school
population, highly significant (p<0.01) of the corresponding university population. In
addition, the proportion of those using the algebraic assignment making an error is
smaller than the proportion of those using the process orientation. This difference is
highly significant in the school students and significant in the university students.
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Assignment School (N=75) University (N=128)
oriented All (as+a+ar) as✓+a✓ ar✘ All (as+a+ar) as✓+a✓ ar✘

(1) 65 (87%) 65 0 107 (84%) 65 0
(2) 56 (75%) 56 0 94 (73%) 94 0
(3) 42 (56%) 41 1 37 (29%) 33 4

Table 3 : assignment oriented notation and reversals in (1), (2), (3)

Process School (N=75) University (N=128)
oriented All (p+pr) p✓ pr✘ All (p+pr) p✓ pr✘

(1) 9 (12%) 9 0 17 (13%) 17 0
(2) 12 (16%) 12 0 32 (25%) 32 0
(3) 31 (41%) 24 7 68 (53%) 44 24

Table 4 :process oriented notation and reversals in (1), (2), (3)

Table 5 has three multiplicative questions increasing in order of difficulty. The simple
multiplication problem (4) induces more errors than the addition problems (1) and (2) the
majority are process-oriented in the form 5m=n which multiplies the first two items in
the sentence (m and 5), but turns them into the accepted ordering 5m. Question (5),
though complex uses pop groups familiar to students and has the word order in the same
order as a possible syntactic solution. Question (6) does not have a simple syntactic
translation into algebra and causes even more errors.

Item Response School University
(4) m is 5 times n. m =5n [m=nx5] as✓ 49 89

5n = m [nx3=m] p✓ 19 26
5m = n [mx3=n] pr✘ 5 13
n = 5m ar✘ 1 0
other ✘ 1 0
no response ✘ 0 0

(5) A record by Take That is h minutes h = 3g [h=3xg, h=gx3] as✓ 33 45
long. A record by Kriss Kross is g 3g = h [3xg=h] p✓ 31 50
minutes long. The Take That record is 3h = g [3xh=g, hx3=g] pr✘ 9 25
three times as long as the Kriss Kross. g = 3h [g=hx3] ar✘ 1 5
Write an equation relating h and g. other ✘ 1 3

no response ✘ 0 0
(6) A Band makes four times z = 4q [z=qx4, z=q4] a✓ 20 13
as many singles as albums. 4q = z [4xq=z, qx4=z] p✓ 23 59
It makes q albums and z singles 4z = q [4xz=q, zx4=q] pr✘ 20 38
Write an equation relating q and z. q =4z [q=4xz] ar✘ 12 13

other ✘ 0 2
no response ✘ 0 3

Table 5 : Translations of verbal multiplication problems into algebra

Tables 6 and 7 show the decrease in algebraic assignment and the increase in process-
orientation as the problems become more complex. Once again, as difficulty increases,
the numbers in all of these categories increase. The change in total process-oriented from
(3) to (4) is highly significant (p<0.01) in both groups and from (5) to (6) is highly
significant amongst the university students. The changes in the process-reversal numbers
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is significant from (4) to (5) in the university students and from (5) to (6) in both. The
number of assignment reversals is always smaller than the number of process reversals,
at a level which is significant in school in (4) and highly significant in all other cases. As
proportions of those using the assignment order or process order, the errors on the latter
are highly significant in (4), significant in school in (5), highly significant in university
in (5), but not significant in either in (6). The last statistic simply states that, although the
figures look different, this difference could have occurred by chance in more than one
trial in twenty.

Discussion

As problem statements move from being syntactically equivalent to the algebraic
assignment formulation to more complex statements, the student responses increase in
their use of process-oriented statements with the operation on the left and the answer on
the right. In cases where the syntax becomes too complicated to support a straight
translation and the words are used in a way which does not encourage the use of letters
as objects, errors which reverse the roles of letters still occur. Such errors may occur
because of the cognitive complexity rather than a specific syntactic misconception.

A more detailed case analysis will be required to distinguish between those who think in
a flexible proceptual manner and those who are more procedural. Flexible thinkers may
respond in either the assignment form or a process-oriented equivalent, whilst the
procedural child is likely to learn the algebraic assignment mode as a given procedure
However, the regression to process-oriented representation with its higher level of failure
is consistent with the fact that the method corresponding to earlier experiences in
arithmetic is evoked in times of stress and proves to be more prone to failure. We see
children responding to the translation process not only in purely syntactic word order,
but also by attempting to make sense of the data using arithmetic and algebraic
constructs related to their stage of development in algebraic sophistication.

Assignment School (N=75) University (N=128)
oriented All (as+a+ar) as✓+a✓ ar✘ All (as+a+ar) as✓+a✓ ar✘

(4) 50 (7%) 49 1 89 (70%) 89 0
(5) 34 (45%) 33 1 50 (39%) 45 5
(6) 25 (33%) 20 5 26 (20%) 13 13

Table 6 : Assignment oriented notation and reversals in (1), (2), (3)

Process School (N=75) University (N=128)
oriented All (p+pr) p✓ pr✘ All (p+pr) p✓ pr✘

(4) 24 (32%) 19   5 39 (30%) 26 13
(5) 40 (53%) 31   9 75 (59%) 50 25
(6) 43 (57%) 23 20 97 (76%) 59 38

Table 7 : Process oriented notation and reversals in (1), (2), (3)
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