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Students encounter many cognitive difficulties with lidégas: sequences
neverend; functions do noattain their limits; series do not produce a final
answer.Limit is further both a procesand anobject and students usually
focus on the process. Studies investigating tddfeulties are notedbefore
presenting some results from a new study that examindsnibheconceptions
of students learning calculus conceptgh the aid of acomputeralgebra
system. Differences with traditionapproachesemerge inthat process
problems aresuppressed anthe limit as an objecappearsclearer but this
brings its own problems. Limit is a deep notamd each approachighlights
and suppresses different facets of the concepit.

Conceptual difficulties with limits

The limit concept is known t@ausedifficulty in learning. A number of research
studies reveal that students often conceive of the notiolngf. 5 f(X) or limn_ «a,

not as a static concept but as a dynamic process of ‘getting close to’ a fixed value, oftel
with the implication of ‘never reaching’ the limit (see summaries in Cornu (1991) and
Tall (1992)).

Gray & Tall (1993) considered a wide variety wmistanceswhere a symbol can
ambiguously represent either a process or a concept. They call grscept For
instance 3+2 might evoke a process of addition, perhaps by counting on two, or the
concept of sum. The symbolsmy_, f(X) and limn_ &, both represent either the
process of getting close to a specific value, or the value of the limit itself. The limit is
therefore an example of a procept. But unlike the procepts of elementary mathematics
which have a built-in algorithm to calculate the specific value of the concepimihe
value does not have a specific universal algorithm that works raséisand, insome
cases, such asm, ., » ._,1/k*, there may be no simple algorithm. (In timstance,

the theory of residues in complex integration orsexjuence of keytrokes on a
computer algebraystem shows thiemit to be 12/6.) The circuitous routes by which
limits are calculated in the early stages of the theory exacerbate the diffistitiesits

have with the concept. As Cornu (1981) observed: “mathematitsnger reduces to
calculations and simple algebrgicoperties; infinity intervenes and it is shrouded in
mystery.”

Monaghan (1986) studied tlygowth of 16/17 year oldtudents’ conceptualisations of
real number, limit and infinity over one year as the experimental gsiugied
traditional calculus and a matchedntrol group studied other subjects. T$tadents’
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fundamental concepts of infinity and limiteardly changed in the period concerned.
Their notion of real numbeshowed them happy to manipulate whalambers,
fractions and such numbers a8 andm, but they becamkesssecure when attempting

to deal with infinite decimals. The latter were regarded as being ‘improper and
described as ‘infinite numbers’. An expression like=1.414... does not say that/2

can be computed exactly as (the limit of) a decimal expangiatiier that 42 can be
described to any required accuracy by approximating speaific number oflecimal
places”. Thus the number line is viewed as consisting of positive and negame
numbers and fractions and combinations of other expressions includingr, etc.,
together with a more peculiar set of ‘improper numbers’. In practice, computations can
be carried out with finite decimal approximations but this gives a perceptiosuitiat
arithmetic is inherently inaccurate.

To build a precise theory of limits on such a foundation is bound to contased¢ds of
cognitive conflict and sow confusion in te&udents’minds. A traditional approach to
the limit in such circumstances fgught with difficulty, so much so thdbavis &
Vinner (1986)suggested thahere areunavoidableobstacles which the student must
confront when beginning to study the topic.

Approaching the limit by functional programming

Prior to thearrival of the computer the introduction of the limit concepquired the
student to have considerable experience of the limit as process, so that the latter i
unavoidably embedded deeply in the student’s psyCloenputer software can now
evaluate many limits, so the possibility arises that it may allow the curriculum to give a
more balanced view of limit as concept and process by early focus on the limit as
concept with the computer carrying out the process internally.

Li & Tall (1993) investigated an approach usipgpgramming in structure@®ASIC

which allows definitions of named functions. This allowed a function to be considered
either as a procedure of computation, or as an oljbose name could be used in
building other functions. The course was largely successful in giving a proceptual view
of function as process or object and, in defining a series as a function adding up the
terms of a sequence, Was able to help students discriminate betwsequences and
series. But itwas not successful in movirfgom a view of limit (of asequence) as a
process to a limit as an object. This failure elecapsulate limit as an object in the
majority of students was predictable in hindsight. The numebiasis on which it was

built was computer arithmetic with numbers stored to approximately 8 significant
figures. The experiencevas therefore built on a foundation of limited numerical
accuracy. Thiswas built in to the experience by computingmerical values of
sequences(n) for largevalues ofn and looking for thevalues stabilising to a given
accuracy. The overt message was that, to this given accuracy, from sons¢Ngrom,

the terms stabilised to a fixed value, thir n=N, the terms s(n) became
indistinguishable. This was used in class to ‘motivate’ the idea thajréager accuracy
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required, the greater the valuedtbeyond which stabilisation would occur, leading to
the e-N definition of limit. This approach should lead to the notion of (Cauchy)
convergence, but after two weeks the students had forgotten mostai$dhssion and
mainly conceived of the limit notion in a dynamic sense.

We conjecture that any computing experience intended to ‘motivate’ the limit notion by
computing limits using approximate arithmetic may be fraught with this underlying
problem. As the limit is found by processof computing values a$(n) for larger and
larger n, it will implicitly confirm the students’belief that the limit is grocessnot a
concept. Dubinsky (1991, 1993) proposes a theory of encapsulation of process as obje
and uses the languatfeETL for programming functions as procedures which can then
be conceived as objects and used as inputs to other procedures. This ctengusaye

is better structured fomathematical purposes th&ASIC and is a good environment

for conceptualising mathematical thinking in a wide variety of ways. Although it
includes rational arithmetic, its fundamental numerical mode appropfaatethe
calculus is floating poinarithmetic. It has no facilityfor computing the limit as a
precise value, so it too is flawed as an environment for a proceptual view of the limit
concept.

Using a computer algebra system

Given the student’s perception of ‘proper’ numbers, an environment which prigin
suitablefor exploring the limitconcept is a computer algebsgstem such aMaple,
Mathematicaor Derive These allow manipulation of ‘proper’ numbers suchaa®nal
numbers and rational expressions/, i, €, etc. and do not simplify these expressions
to approximate answers unless explicitly instructed to do so. All allow programming to
a greater or lesser degree.

Tall (1993) suggests that the computer relieves the learner of the tyranny of having tc
encapsulate the procebsfore obtaining @aense ofthe properties of the object. By
using software which carries out the process internalljpedomes possibléor the
learner to explore the properties of the object produced by the process before, at th
same time, orafter studying the process itself. This new flexibility @ourriculum
development which gives new possibilities in tbeder in which the concepts are
constructed is callethe principle of selective construction

Sun (1993) and Monaghan researched the effects on the limit concept of using the
softwareDerive freely in the early stages. This computer algedysiem was selected
because it is available on a hand-hetstmputer and the facilities are easdyailable
through the use of simple menus. For instance, the sequence of actions to find

. 2X+5
[im
X0 3X+4

Is shown below. By a routinsequence of kegtrokes the student can mofrem the
original expression to obtain the value of the limit in the fégrm
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This is analogous to a child carrying out an arithmetic operation d®gaence of key-
strokes. It is therefore behaves in a manner familiar to the student and, in one sense,
less“shrouded in mystery” than the traditional dynamic approach to limitardather
sensehowever, the internal process by which the computer carries out the process
remains mysterious. But, just as someone who knows what a sequudres, but not
how to calculate one, may be satisfied that the squaoe key gives a satisfactory
approximation to. 2, so the student may give some meaning to the resulbthogr
means. For instance, by computvaues of the expressidior large values ofx, or
dividing numerator and denominator kyand noting that, as gets large, so %/gets
small.

Selectively,therefore, the student may focus on the production of the limit object
(using the computer) or on the limit process (by a paper and penabroputer
calculation). Thereforghe student caseethe two complementary facets of thmit
procept as concept and process, in whichever order is desired.

The Experiment

The students in the study were able 16/17 year olds at the ¢hdiofirst year of a

two yearFurther Mathematics Advanced leveburse. Advanced level mathematics is
open to the highest attaining quartile of 16 year olds and covers most of the differential
and integral calculus of a single variablurther Mathematics is taken by able and
motivated students within this population.

The experiment was motivated by the access of the first two authors to a gnoue of
students in a college who had made extensive use otdhmputer algebrasystem
Derive throughout their studies: 50% of lessons in rooms where Derive was ‘on call’ at
desktop machines arfdr two months they were given palmtop computers fitted with
Derive which they could use at any time. We shall call thesBe¢hee group. The two
authors were intrigued as to the possible effects of this exposustudants’limit
conceptions and a comparisgnoup was found. Threeschoolsprovided 19students

with similar backgrounds who were following an identical curriculum but who had not
met a computer algebra system. One of these schools, which wee$balto asschool
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A and which accountefbr seven students in the compariggmoup, hadstudents who
were very closely matched to the students in the Derive group.

A gquestionnaire was designed to elicit students’ conceptions of the limit of a sequence,
function (graphically and algebraically) and of a numeric series. In addition
discontinuity was incorporated into one question and the definition of a derivative was
examined. The questions drew upon the work of Li (1992)Moaghan (1986). The
students in the Derive group were free to use Derive on their palmtop computers in the
guestionnaire. Within twaveeks of students completing the questionnaire theye
interviewed. 25 of the 28 students were interviewed including all those iDdhge

group and school A. Interviews lasted for about 20 minutes and were desigmexb¢o
reasons behind specific responses.

The Results
We report on responses to three of the questions.

Q1 Please find the following limits if they exist. If there is no limit, then write ‘no’.
Please explain your results.

lim ZXX++23 im f (x) where f()=02 _q f
X 00 X~ B—i x#1
x—1

Eight of the nine Derive students used Derive to findfitst limit and claimedthey

did not know any other method. The exceptwas the one student who ‘did nide’

the computer system. Of the 19 non-Derive students 12 divided and then used th
concept that ¥ approaches 0 asapproacheso. Three substituted numbers afodir

left the question blank.

The second limit with the discontinuity is comparatively difficult avas novel to all
students. There was greater diversity in responses. Nevertheless six of tbenmnee
students simply used Derive to find the limit of timajor part of the function and
ignored the discontinuity. Of the 19 non-Derive students, 11 gave diverse answers tha
considered the discontinuity, six left it blank and only two ignored the discontinuity.
Lack of space prevents a full analysis but the point we focus on here is using Derive a
a button-pushing process that can obscure deeper consideration of the function.

Q2 a) Canyou add 0.1 + 0.01 + 0.001 + ..... and get an answer? Why?

b) Can you add 0.9 + 0.09 + 0.009 + ..... and get an answer? Why?

Although these may appear to many as innocuous questionseastranswers, they
cause great conceptual problems to students who have not pursued pure mathematics
any depth. The reason, as documented at length in Monaghan (1986), is theséey

end and so you never get an answer — they are always in a state of becoming.
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Only two of the 28 students distinguished between the cases, both Statibg the
first and ‘yes’ to the second because@rounds up to 1. We shall thus illustrate
differences between the groups by using the first question. 7/9 of the Reou@
indicated that there is an answer, three using the forfouldhe sum of a geometric
progression and 4 stating it ad.0The general view in the non-Derive growpsthere
may be an answer but there were problems. &ample school A students gave
similar responses to the Derive group with 2/7 using the fornmdathe sum of a
geometric progression and 5/7 stating it wasbiut all with qualifications that this was
only an approximation or that the answer tended to this. Interviews, however, revealec
some similar thought behind the Derive grouplgect’ answers. “First | thoughmo’
because it just goes dorever and ever. Then thecked it onDerive. | did get an
answer.”

f(x+h)-f(x)
-0 h '

It was clear from the questionnaire results that only school A and the Derive group had
properly considerethis notation in theimathematics lessons. We thus comphese

two groups. All thestudents in school A gave satisfactory theoretical explanations of
the expression but none gave any examples. However, none of the Deriveggweup
theoretical explanations and only two students mentioned the words ‘gradient’ or
‘differentiate’. Four of the Derive grougave examples. They replacét) with a
polynomial and performed or described seguence of kegtrokes to calculate the
limit.

Q3 Please explain the meaningkl"

Discussion

Different proceptualdeas permeate ahree questions. The ‘find the limiuestions
reveal that Derive generates a specific process for computing limits:

» select [Author] and type in the expression,

» select [Calculus], then [Limit],

» specify the variable (e.q),

» specify the limiting value of the variable (eigf),

» [Simplify] the result.

As mentioned, this is analogous to the processes younger chilsieeim carrying out
arithmetic operations on a calculator. This has the advantage that it allostsdkats
to focus on the limit object by suppressing problematic notions of infinity getting
closer’. The other side of the coin is that we do not want studermgsdoe ‘closeness’
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ideas and the fact that seven of the nine Derive group students ignored the discontinuit
in the second part of the question suggests that this is happening.

The series questions indicate that some students are beginning to see the limit sum as
object. A possible explanation for this is that when summing the series using pencil anc
paper or, indeed, programming BASIC such as Liand Tall (1993) did, the mind
concentrates on the process of summing, this takes time and time bectsoes an
students’ conceptions. However, when a student uses Derperfiarm the summation,

the mind is freed to concentrate on the outcome, the object.

The question concerning the definition of the derivative reveals an ‘astlmata’ in
some of the Derive group: to define the derivative from first principles is to produce a
sequence of kegtrokes as outlined above. Why are spea@fiamples used? Is this a
case of students seeing generalities only via specific examples? We belichait that

it is only in the context of a specific example that the key strokes serise for
otherwise the key strokes would merely replicate the notation in the quesgaim

there are dually positive and negative aspects of this approach in that while an object |
produced many of the finer points (discontinuities, stabilization, etc.) are ignored.

Comparing theséocuses with thosproduced in a programming environment reveals
some marked differences. The focus oseguence of kegtrokes was noapparent in
the work of Li and Tall (1993). The object of the process is stronger incimputer
algebra environment. In Li and Talkgork the stabilization of aequence was a focus
of student thought but this was not the case in the computer algebra environment.

It appears that the programming approach, witheitgphasis on the value diite

terms andcloseness, isnore like the paper and pencil approach thandbmputer
algebra approach. This implies that the reality of approaches is muchcomomex

than simply computer approaches vs non-computer approaches. Li and Tall (1993
posited three limit paradigms: a dynamic limit paradigm; a functional/numeric
computer paradigm; the formalN paradigm. To this we add a fourth: the key stroke
computer algebra paradigm.

The differentfocuses ofdifferent paradigmshas similarities to Schwarzenberger’'s
(1980) claim that calculus cannot be magksy because theeal number line is
simultaneously complete, andered field, a metrispace and aormed metricspace.

“A certain viewpoint may make certain calculatieesy but inother directions it may
make things more difficult.” Limit is a related deep notion. It is not possible to make it
‘easy’ but, by using the processsalective constructigrnowever, it should bpossible

to design curriculum materials that exploits the potential of all of these approaches an
so gives an improved cognitivmasefor a flexible proceptual understanding lohit.

The curriculum designer, or the student exploring the new ideasetast whichpart

of the new notion is to be constructed at a given time — the processes, or the resultin
concepts and relationships between them.
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For instance, a calculator allows the childogrform arithmeticwithout the process of
counting or the use of the standagjorithms. It is thereforg@ossiblefor the child to
concentrate more on the properties of arithmetic than on the procedure of counting in
the early years (Doig, 1993). Likewise it may be posdilmethe student to develop a
more balanced view of the limit dually as process and concept by uscamputer
algebra system which produces a symbolic limit as a ‘proper’ numerical expression.
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