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In this paper we consider the duality between process and 
concept in mathematics, in particular using the same 
symbolism to represent both a process (such as the addition of 
two numbers 3+2) and the product of that process (the sum 
3+2). The ambiguity of notation allows the successful thinker 
the flexibility in thought to move between the process to carry 
out a mathematical task and the concept to be mentally 
manipulated as part of a wider mental schema. We hypothesise 
that the successful mathematical thinker uses a mental 
structure which is an amalgam of process and concept which 
we call a procept. We give empirical evidence from simple 
arithmetic to show that this leads to a qualitatively different 
kind of mathematical thought between the more able and the 
less able, in which the less able are actually doing a more 
difficult form of mathematics, causing a divergence in 
performance between success and failure. 

Introduction 
I remember as a child, in fifth grade, coming to the amazing (to me) realization 
that the answer to 134 divided by 29 is 13429  (and so forth). What a tremendous 
labor-saving device! To me, ‘134 divided by 29’ meant a certain tedious chore, 
while 13429  was an object with no implicit work. I went excitedly to my father to 
explain my major discovery. He told me that of course this is so, a/b and a 
divided by b are just synonyms. To him it was just a small variation in notation.  
 William P. Thurston, Fields Medallist, 1990. 

Mathematics has been notorious over the centuries for the fact that so 
many of the population fail to understand what a small minority regard as 
being almost trivially simple. In this article we look at the way in which 
mathematical ideas are developed by learners and come to the conclusion 
that the reason why some succeed and a great many fail lies in the fact 
that the more able are doing qualitatively different mathematics from the 
less able. The mathematics of the more able is conceived in such a way 
as to be, for them, relatively simple, whilst the less able are doing a 
different kind of mathematics which is often intolerably hard. “A small 
variation in notation” will be seen to hide a huge gulf in thinking between 
those who succeed and those who eventually fail. 

Process and Procedure 
It will prove fruitful in our discussion to distinguish between our use of 
the terms “process” and “procedure”. The term “process” will be used in 
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a general sense, as in the “process of addition”, the “process of 
multiplication”, the “process of solving an equation”, to mean a cognitive 
or mathematical process (or both). A “procedure” will be used in the 
sense of Davis (1983, p.257) to refer to a specific algorithm for 
implementing a process, for instance the “count-all” or “count-on” 
procedures to carry out the process of addition, or an individual’s 
idiosyncratic procedure using mental or physical props, such as counters 
or imagined fingers to carry out a computation. 

The Perceived Dichotomy between Procedure and Concept 
Hardly a decade passes without concern being expressed over the general 
level of children’s attainment in mathematics, the nature of the 
mathematics curriculum or the quality of children's learning of the 
subject. In the USA the NCTM Standards reflect the perceived need to 
improve children’s performance. Within the United Kingdom the 
imposition of a National Curriculum (1989) is aimed at “raising 
standards” of performance in all subjects, including mathematics. The 
requirements of this curriculum distinguish between the skills or 
procedures that an individual needs to have acquired in order that they 
can do things, and the concepts or basic facts which they are expected to 
know on which they operate with their skills. This suggests a 
fundamental dichotomy between procedures and concepts, between 
things to do and things to know. However, in mathematics, we shall see 
that the truth is somewhat different.  

Procedural aspects of mathematics focus on routine manipulation of 
objects which are represented either by concrete material, spoken words, 
written symbols, or mental images. It is relatively easy to see if such 
procedures are carried out adequately, and performance in similar tasks is 
often taken as a measure of attainment in these skills. 

Conceptual knowledge on the other hand is harder to assess. It is 
knowledge that is rich in relationships. Hiebert & Lefevre (1986) 
describe conceptual knowledge as: 

a connected web … a network in which the linking relationships are as prominent 
as the discrete pieces of information … a unit of conceptual knowledge cannot be 
an isolated piece of information; by definition it is part of conceptual knowledge 
only if the holder recognises its relationship to other pieces of information.  
 (Hiebert and Lefevre 1986, pp. 3–4) 

Flexible thinking using conceptual knowledge is likely to be very 
different from thinking based on inflexible procedures. Yet procedures 
still form a basic part of mathematical development. Indeed, there is 
distinct evidence that such procedures can play a subtle role in concept 
formation in that the learner’s interiorization of procedures can lead to 
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their crystallization as mental objects that can form the focus of higher 
conceptual thought. 

Process becoming conceived as Concept 
Piaget speaks of the encapsulation of a process as a mental object when 

... a physical or mental action is reconstructed and reorganized on a higher plane 
of thought and so comes to be understood by the knower.  
 (Beth & Piaget 1966, p. 247). 

Dienes uses a grammatical metaphor to describe how a predicate (or 
action) becomes the subject of a further predicate, which may in turn 
becomes the subject of another. He claims that 

People who are good at taming predicates and reducing them to a state of 
subjection are good mathematicians. (Dienes, 1960, p.21) 

In an analogous way, Greeno (1983) defines a “conceptual entity” as a 
cognitive object which can be manipulated as the input to a mental 
procedure. The cognitive process of forming a (static) conceptual entity 
from a (dynamic) process has variously been called “encapsulation” 
(after Piaget), “entification” (Kaput, 1982), and “reification” (Sfard, 
1989). We shall use these three terms interchangeably in the remainder of 
the article, favouring the original word “encapsulation”. 

This encapsulation is seen as operating on successively higher levels 
so that: 

... the whole of mathematics may therefore be thought of in terms of the 
construction of structures,... mathematical entities move from one level to 
another; an operation on such ‘entities’ becomes in its turn an object of the 
theory, and this process is repeated until we reach structures that are alternately 
structuring or being structured by ‘stronger’ structures. (Piaget 1972, p. 70) 

From the viewpoint of a professional mathematician: 
Mathematics is amazingly compressible: you may struggle a long time, step by 
step, to work through some process or idea from several approaches. But once 
you really understand it and have the mental perspective to see it as a whole, there 
is often a tremendous mental compression. You can file it away, recall it quickly 
and completely when you need it, and use it as just one step in some other mental 
process. The insight that goes with this compression is one of the real joys of 
mathematics. (Thurston 1990, p. 847) 

Sfard (1989) expresses the way in which the stratification occurs by 
talking about operational mathematics, in which the operations at one 
level become reified as objects to become basic units of a higher level 
theory. 

At the foundation of arithmetic is the concept of number. This has its 
origins in the process of counting. The sequence of number words 
become part of a procedure to point at successive elements calling out 
each number word in turn until the last word is identified as the number 
of elements in the collection. The process of counting is encapsulated in 
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the concept of number. (The relation between process and object in the 
growth of number knowledge in the domain of counting is a focus of 
attention of Gelman & Meck (1986)). 

There is thus widespread evidence for the encapsulation of processes 
into objects in mathematics. The apparent dichotomy between procedural 
and conceptual knowledge needs closer analysis to see how this 
encapsulation features in the divergence between inflexible procedures 
and flexible concepts. 

The Role of Symbols 
We believe that the role of the symbols is of paramount importance. 
Cockcroft (1982) noted that mathematical symbolism is both the strength 
and weakness of mathematical communication. We would like to take 
this fundamental paradox a stage further; mathematical symbolism is a 
major source of both success and distress in mathematics learning. But 
what is it about mathematical symbols that can be so problematic? 

It is interesting to note that Sinclair & Sinclair (1986) sense that with 
pre-school children – for whom written symbolism is absent – the 
distinction between procedural and conceptual knowledge seems far less 
appropriate. Following Piaget, their discussion focuses once more on the 
theme of action (process) becoming the object of thinking, the process 
becoming the concept. 

Sfard (1989) comments that the ability to conceive mathematical 
notions as processes and objects at the same time, although ostensibly 
incompatible, is in fact complementary. Yet she asks “How can anything 
be a process and an object at the same time?”. We suggest that the answer 
lies in the way that professional mathematicians cope with this problem. 

The ambiguity of symbolism for process and concept 
A clue to the manner in which process and concept are combined in a 
single notion can be found in the working practices of professional 
mathematicians and all those who are successful in mathematics. They 
employ the simple device of using the same notation to represent both a 
process and the product of that process. As Thurston’s father noted in the 
initial quotation, a/b and a divided by b are just synonyms … a small 
variation in notation. In practice there is rarely a variation – the same 
notation is used for either process or product. 

Examples pervade the whole of mathematics: 

• The symbol 5+4 represents both the process of adding 
through counting all or counting on and the concept of sum 
(5+4 is 9), 
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• The symbol 4x3 stands for the process of repeated addition 
“four multiplied by three” which must be carried out to 
produce the product of four and three which is the number 
12. 

• The symbol 3/4 stands for both the process of division and 
the concept of fraction, 

 • The symbol +4 stands for both the process of “add four” or 
shift four units along the number line, and the concept of the 
positive number +4, 

• The symbol –7 stands for both the process of “subtract 
seven”, or shift seven units in the opposite direction along 
the number line, and the concept of the negative number –7, 

• The algebraic symbol 3x+2 stands both for the process “add 
three times x and two” and for the product of that process, 
the expression “3x+2”, 

• The trigonometric ratio sine = 
opposite

hypotenuse  represents both 
the process for calculating the sine of an angle and its value, 

• The function notation f(x)=x2–3 simultaneously tells both 
how to calculate the value of the function for a particular 
value of x and encapsulates the complete concept of the 
function for a general value of x, 

• An “infinite” decimal representation π=3.14159… is both a 
process of approximating π by calculating ever more 
decimal places and the specific numerical limit of that 
process, 

• The notation limx∅a  f(x) represents both the process of tending to 
a limit and the concept of the value of the limit, as does limn∅∞  sn, 

limn∅∞ ∑
k=1

n
 ak , and lim

δx∅0
 ∑
x=a

b
 f(x) δx . 

Mathematicians abhor ambiguity and so they rarely speak of such a 
device, yet it is widely used throughout mathematics. By using the 
notation ambiguously to represent either process or product, whichever is 
convenient at the time, the mathematician manages to encompass both – 
neatly side-stepping a possible object/process dichotomy. We believe that 
the ambiguity in interpreting symbolism in this flexible way is at the root 
of successful mathematical thinking. We further hypothesise that its 
absence leads to stultifying uses of procedures that need to be 
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remembered as separate devices in their own context (“do multiplication 
before addition”, “turn upside down and multiply”, “two negatives make 
a positive”, “add the same thing to both sides”, “change sides, change 
signs”, “cross-multiply” etc.). 

We conjecture that the dual use of notation as process and concept 
enables the more able to tame the processes of mathematics into a state of 
subjection; instead of having to cope consciously with the duality of 
concept and process, the good mathematician thinks ambiguously about 
the symbolism for product and process. We contend that the 
mathematician simplifies matters by replacing the complexity of process-
concept duality by the convenience of process-product ambiguity. 

The Notion of Procept  
We do not consider that the ambiguity of a symbolism expressing the 
flexible duality of process and concept can be fully utilised if the 
distinction between process and concept are maintained at all times. It is 
essential that we furnish the cognitive combination of process and 
concept with its own terminology. We therefore use the portmanteau 
word “procept” to refer to this amalgam of concept and process 
represented by the same symbol. However, we wish to do this in a way 
which reflects the cognitive reality. So, in the first place we say that: 

An elementary procept is the amalgam of three components: a process 
which produces a mathematical object, and a symbol which is used to 
represent either process or object. 

This preliminary definition allows the symbolism to evoke either 
process or concept, so that a symbol such as 2+3 can be seen to evoke 
either the process of addition of the two numbers or the concept of sum. 

The definition caused us a great deal of heart-searching because we 
wanted it to reflect the observed cognitive reality. In particular we 
wanted to encompass the growing compressibility of knowledge 
characteristic of successful mathematicians. Here, not only is a single 
symbol viewed in a flexible way, but when the same object can be 
represented symbolically in different ways, these different ways are often 
seen as different names for the same object. Thus a young child might see 
4+5 as “one more than 8, which is 9”, because the 5 is seen as 4+1 and 
the other 4 plus this 4 makes 8, so 1 more makes 9. 

In order to reflect this growing flexibility of the notion and the 
versatility of the thinking processes we extend the definition as follows: 

A procept consists of a collection of elementary procepts which have 
the same object. 

In this sense we can talk about the procept 6. It includes the process of 
counting 6, and a collection of other representations such as 3+3, 4+2, 
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2+4,  2x3, 8–2, etc. All of these symbols are considered by the child to 
represent the same object, though obtained through different processes. 
But it can be decomposed and recomposed in a flexible manner. 

We are well aware that mathematically we could put an equivalence 
relation on elementary procepts, to say that two are equivalent if they 
have the same object and then define a procept to be an equivalence class 
of elementary procepts. However we feel that this kind of mathematical 
precision overcomplicates the cognitive reality. The nature of the procept 
is dependent on the cognitive growth of the child. It starts out with a 
simple structure and grows in interiority in the sense of Skemp (1979). 
Indeed, we simply see an elementary procept as the first stage of a 
procept, rather than an element in an equivalence class, which would 
grossly overcomplicate matters. 

We characterize proceptual thinking as the ability to manipulate the 
symbolism flexibly as process or concept, freely interchanging different 
symbolisms for the same object. It is proceptual thinking that gives great 
power through the flexible, ambiguous use of symbolism that represents 
the duality of process and concept using the same notation. 

We see number as an elementary procept. A symbol such as “3” 
evokes both the counting process “one, two, three” and the number itself. 
The word “three” and its accompanying symbol “3” can be spoken, it can 
be heard, it can be written, and it can be read. These forms of 
communication allow the symbol to be shared in such a way that it has, 
or seem to have, its own shared reality. “Three” is an abstract concept, 
but through using it in communication and acting upon it with the 
operations of arithmetic, it takes on a role as real as any physical object. 

It is the construction of meaning for such symbols, the processes 
required to compute them, and the higher mental processes required to 
manipulate them, that constitute the abstraction of mathematics. Indeed 
the ambiguity of notation to describe either process or product, 
whichever is more convenient at the time, proves to be a valuable 
thinking device for the professional mathematician. It is therefore 
opportune to use this notion to see how it features in the development of 
successful mathematical thinking. As an example we consider the 
development of the notion of addition and the related (inverse) operation 
of subtraction. 

Number awareness involves both the process of counting and the 
product of the process. Underscoring the counting process, which 
exploits and generates one-to-one correspondence, is a series of co-
ordinated actions and ideas, which leads eventually to number invariance 
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which might be termed the “threeness” of three. The symbol “3” 
inextricably links both procedural and conceptual understanding. But 
conceptual understanding implies that the relationships inherent in all of 
the different components that form 3 are also available (1 and 1 and 1; 2 
and 1; 1 and 2; one less than 4 etc). The symbols 1+1+1, 2+1, 1+2, 4–1 
all have output 3 and together form part of the procept 3. All these 
different proceptual structures allow the number 3 to be decomposed and 
recomposed in a variety of ways either as process or object. In this way 
the various different forms combine to give a rich conceptual structure in 
which the symbol 3 expresses all these links, the conceptual ones and the 
procedural ones, the processes and the product of those processes. This 
combination of conceptual and procedural thinking is what we term 
proceptual thinking. 

The flexibility of the procept of number is fundamental to the 
development of arithmetic. The procedural and conceptual approaches 
that children use to form the sum of two or more amounts introduced 
through word problems have been well documented (for example Fuson, 
1982; Carpenter et al, 1981, 1982; Baroody & Ginsburg, 1986). 
Translating some or all of these approaches into a conceptual hierarchy 
for addition formed part of the focus of these and other studies 
(Herscovics and Bergeron, 1983; Secada, Fuson and Hall, 1983; Gray, 
1991; Fuson & Fuson, 1992).  

Those for addition involve a number of different procedures, including 
“count-all” (count each set separately then count the two together), 
“count-on from first” (count on the number of elements in the second set, 
starting from the number in the first set), “count on from largest” (put the 
largest set first and count on the smaller number of elements in the 
second set), together with higher order strategies, such as “knowing the 
fact” or “deriving new facts from known facts”. There are corresponding 
procedures for subtraction “take away” (count the big set, count the 
subset to be taken away then count the set which remains), “count-back” 
(start from the larger number and count back down the number sequence 
to find the number remaining) “count-up” (start from the number to be 
taken away and count-up to the number given), together with higher 
order strategies, either “knowing the facts” or deriving the facts from 
other known facts. 

Even finer gradations of these categories have been proposed and can 
be helpful in distinguishing children’s thinking processes. Here we wish 
to use the notion of procept to analyse the procedures in a more 
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integrated manner, referring only to the growing facility for compression 
of ideas from the processes of counting to the procept of number. 

The procedure of count-all consists of three separate sub-procedures: 
count the first set, count the second set, then combine the sets as a single 
set and count all the objects (figure 1). 

one    two   threethree plus two is:

Count-all

PROCEDURE  plus   PROCEDURE 

one    two

gives

one    two   three         four    five

PROCEDURE 

 
Figure 1 : count-all as a combination of procedures 

The child records the process of counting-all as the product of that 
procedure, the number five. As the procedure occurs in time, the link 
between input (3 plus 2) and output (5) is more likely to be viewed as a 
counting procedure rather than to be encapsulated and remembered as a 
known fact (3+2=5). Count-all is a procedure extending the counting 
process rather than an encapsulated procept. 

The count-on procedure is a more sophisticated strategy than count-all 
(see, for example, Secada et al, 1983; Carpenter 1986; Baroody and 
Ginsburg, 1986; Gray 1991). The first number is considered as a whole 
and the second number is interpreted as a counting procedure. (It is 
actually a sophisticated double-counting procedure where 3+2 involves 
saying “four, five”, whilst simultaneously keeping track that “two” extra 
numbers are being counted.) We therefore see count-on as “procept plus 
procedure”; the first number is a procept and the second number a 
procedure (figure 2). 

Count-on

(three)         four    fivethree plus two is:

PROCEPT    plus  PROCEDURE  
Figure 2 : counting-on as procept plus procedure 

We believe that “count-on” as a procedure can have two qualitatively 
different outcomes, as a (counting) procedure of addition or as the 
procept of sum. 

i. Count-on as procedure is essentially a compression of 
count-all into a shorter procedure. It remains a procedure 
that takes place in time so that the child is able to compute 
the result without necessarily linking input and output in a 
form that will be remembered as a new fact. Some children 
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– often with a limited array of known facts – may become so 
efficient in counting, that they use it as a universal method 
that does not rely on the vagaries of remembered facts. 

ii.  Count-on as procept produces a result that is seen both as a 
counting process and a number concept. The notation 3+2 is 
seen to represent both the process of addition and the 
product of that process, the sum. 

When input numbers and their sum can be held in the mind 
simultaneously then the result is a meaningful known fact which may be 
envisioned as a flexible combination of procept and procept to give a 
procept (figure 3). 

three plus two is:

PROCEPT    plus    PROCEPT

Known Fact

3          +             2          =         5

 
Figure 3 : (Meaningful) known fact as procept plus procept 

It is important here to distinguish between a meaningful “known fact” 
that is generated by this flexible form of thinking and a fact that is 
remembered by rote. In any isolated incident such a distinction may be 
hard to make. The difference is more apparent in a wider context when it 
can be seen to be linked to other known facts in a flexible manner. 

The manipulation of meaningful known facts leads to “derived facts”. 
For instance, faced with “four and five”, one may know that “four and 
four makes eight”, so the response is that it is “one more”, which is 
“nine”. The language used by children in such situations shows that they 
freely decompose and recompose the component parts in a proceptual 
way. We shall see later that merely “knowing facts” does not necessarily 
lead to “deriving facts”. The derivation depends on the flexibility of the 
known facts. Indeed, some facts, such as those for, say “16+3 is 19” 
based on 6+3 is 9 can be so fast as to be virtually instantaneous. Thus it is 
not always possible to distinguish between a “known fact” and a quickly 
constructed “derived fact”. 

Furthermore, the existence of flexible proceptual knowledge means 
that the number 5 can be seen as 3+2 or 2+3 and if 3 and something 
makes 5, the “something” must be 2. A proceptual view of addition is so 
intertwined with subtraction that subtraction facts are easily related to 
those for addition. 

The need for flexibility in arithmetic is a regular feature in the 
literature. For instance, Steffe, Richards & von Glaserfeld (1981) and 
Fuson, Richards & Briars (1982) both suggest that the use of the 
sequence of number words for the solution of addition and subtraction 
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leads to the understanding that addition and subtraction are inverse 
operations, and this contributes to the flexibility of solving addition and 
subtraction problems. However, proceptual flexibility gives new insight. 
At the derived fact level, addition and subtraction are so closely linked 
that subtraction is simply a flexible reorganisation of addition facts. At 
the procedural level, addition as “count-on” is considered to have 
subtraction as inverse through “count-back” or “count-up”. We shall see 
that less successful children often favour “count-back” as the natural 
reverse process. The cognitive complexity of counting back is enormous. 
The child must count the number sequence in reverse starting from the 
larger number and keep track simultaneously of how many numbers have 
been counted. A sum such as 16–13 by count-back requires the recitation 
of 13 numbers in reverse order from 16 down. Such procedures, 
especially when carried out by less successful children, are highly prone 
to error. The more able proceptual thinker has a simpler task than the less 
able procedural thinker, so that the likely divergence between success 
and failure is widened. 

The fundamentally different ways of thinking exhibited by children 
performing arithmetic usually represented by the terms procedural and 
conceptual, may be described more incisively as procedural and 
proceptual. Proceptual thinking includes the use of procedures. However, 
it also includes the flexible facility to view symbolism either as a trigger 
for carrying out a procedure or as a mental object to be decomposed, 
recomposed and manipulated at a higher level. This ambiguous use of 
symbolism is at the root of powerful mathematical thinking to overcome 
the limited capacity of short-term memory. It enables a symbol to be 
maintained in short-term memory in a compact form for mental 
manipulation or to trigger a sequence of actions in time to carry out a 
mathematical process. It includes both concepts to know and processes to 
do. 

Qualitatively Different Approaches to Simple Arithmetic 
Gray (1991) interviewed a cross-section of children aged 7 to 12 from 
two mixed ability English schools to discern their methods of carrying 
out simple arithmetic exercises. Towards the end of the school year, 
when the teachers had intimate knowledge of the children for over six 
months, he asked the teacher of each class to divide their children into 
three groups – “above average”, “average” and “below average” 
according to their performance of arithmetic – and to select two children 
from each group who were “representative” of that group. The two 
schools each provided 6 children from each of 6 year groups, making 72 
children in all, 12 from each year divided into 3 groups of 4 children 
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according to their teachers’ perceptions of their performance on 
arithmetic. In what follows we shall refer to the year groups by age, so 
that, for instance, 9+ refers to children who would be nine during the 
school year. They were interviewed over a two month period starting six 
months after the beginning of the year, so at the time of interview a child 
designated as 9+ would be in the range 8 years 6 months to 9 years 8 
months. 

Figures 4 and 5 consider the types of response made by the above 
average and the below average children to a range of addition and 
subtraction problems subdivided into three levels. 

The three categories of addition problems considered: 
A single digit addition with a sum of ten or less (e.g. 6+3, 3+5) 
B  addition of a single digit number to a teen number the sum 

being twenty or less than twenty (e.g. 18+2, 13+5)  
C  addition of two single digit number with a sum between 11 

and 20 (e.g. 4+7, 9+8)  
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Figure 4 : Strategies used to obtain solutions to simple addition combinations by 
groups of below average and above average children of different ages. 

The striking difference between the two groups is seen by comparison in 
the use of procedural methods (counting) and the use of derived facts. In 
most cases the 7+ below average children were unable use an appropriate 
method to obtain correct solutions for the category B and C problems. In 
contrast to the above average ability children, the below average ability 
children, apart from one exception, do not provide any evidence of the 
use of derived facts to obtain solutions to the number combinations in 
category A.  

Even though the number combinations used in category B used units 
combinations previously met in category A, the contrast between the two 
ability groups, particularly those aged 9+ and below, could hardly be 
more evident.  

The above average ability children either: 
(i) made use of their known category A combinations to to obtain a 

solution to the units component of the category B combinations 
and then adding on ten, or 

(ii) derived the solution to the units component of category B and 
then added on ten. 

Thus for one above average ability child 15+4 may be solved through 
knowing 5+4 is 9 and then adding on 10, whilst for another 5x2 is ten so 
5+4 is 9, add 10 is 19. Even though they may have known the relevant 
category A solution the equivalent aged below average ability children 
used a procedural method to obtain the solution to category B 
combinations. 

The category C combinations proved to be more difficult for the below 
average children to remember. although those within the 11+ and 12+ age 
groups extensively solved 9+8 as a result of knowing 9+9. 

Figure 5 (adapted from Gray & Tall, 1991) concentrates on three 
categories of subtraction: 

A single digit subtraction (e.g. 8–2),  
B subtraction of a single digit number from one between 10 & 

20 (e.g. 16–3, 15–9), 
C subtraction of a two digit number between 10 and 20 from 

another two digit number. (e.g. 16–10, 19–17).  
Note the low incidence of known facts in the 8+ below average children 
and the related absence of derived facts; meanwhile the 8+ above average 
children have over 50% known facts in category A (up to 10) and a high 
incidence of derived facts in all three categories. With a good knowledge 
of subtraction facts to 10, these more successful children are able to 
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derive almost everything they do not know, and only then resort to 
counting. 

If this 8+ above average group is compared with the 10+ below 
average group with a similar profile of known facts, it can be seen that 
the 10+ below average do not use their known facts to derive any new 
facts in category C, and only occasional facts in category A and B. Even 
though these two groups have similar attainments in known facts, they 
have radically different methods of obtaining what is not immediately 
known. 
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Figure 5: Strategies used to obtain solutions to simple subtraction combinations by 

groups of below average and above average children of different ages. 

Throughout the age range there is a striking difference in what children 
do if they do not know the facts. The above average show a high 
incidence of derived facts and only in a small number of cases resort to 
counting. The below average rarely use derived facts, instead they almost 
always count. 

A careful reconsideration of the individual data shows that there is 
even a difference in how they count. The below average nearly always 
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select count-back as the natural process to take away, so that 16–13 is 
likely to be calculated by laboriously counting back 13 from 16. The 
above average are more likely to select the shorter counting strategy, so 
that 19–17 would more likely be a count-up, whilst 13–2 would be a 
count-back. 

An apparently strange phenomenon occurs in the relative number of 
known facts in categories B and C. For below average children, at almost 
every stage fewer facts are known in category C than B, whilst the 
position is reversed in five out of six for the above average children. 

The difference between these categories is that all the problems in 
category C are of the same kind: they involve the difference between two 
numbers between 10 and 20 which the more able can carry out by noting 
that the tens cancel, leaving a related subtraction problem with numbers 
between 0 and 9. Meanwhile category B has two distinct kinds of 
problem: those like 15–4 (which the more able can do by subtracting the 
units) and those like 12–8 which require an exchange. Thus, for students 
using derived facts, category C is easier than category B. But the less 
able, performing more often by count-back, find category B problems 
like 15–4 easier than category C problems like 17–13. 

This phenomenon will have a consequent effect on the known facts. 
As the more able used derived facts to generate new known facts they are 
likely to know more facts where the derivations are easier. In practice 
easy derivations may be almost instantaneous and so appear to be 
“known”. Thus the more able are likely to know more facts in category C 
than category B because of the greater difficulty of those in the latter 
category involving exchange. Meanwhile, the relative length of the 
count-back processes are likely to have the reverse effect on the fewer 
facts which become “known” to the less able. 

We thus see that the more able tend to develop more flexible 
proceptual techniques whilst the less able rely on procedural methods of 
counting. 

Individual examples make this more apparent. Michael (9+) is 
categorised as “below average” by his teacher, He chose to write 18–9 in 
the standard vertical layout as 

 18 _ 
  9 

and, as is usual in the decomposition process, put a ‘little one’ by the 
eight. 

“This is the easy way of working it out. I can’t take nine from eight but 
if I put a little one it makes it easier because now its nine from eighteen”. 

He failed to realise that this is the same sum he started with and after a 
considerable time trying to cope with this problem he resorted to his 
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more usual procedure for subtraction by placing eighteen marks from left 
to right on his paper, then starting from the left and counting from one to 
nine as he crossed out nine marks. He recounted the remaining marks 
from left to right to complete the correct solution by “take away”. 

The less able children are often placed in difficulties as they grow 
older because they feel a pressure to conform and not use “baby 
methods” of counting. 

Jay (10+) solved the problem 5–4 by casually displaying five fingers 
on the edge of the desk and counted back, “five, … four, three, two, one 
”. At each count apart from the five he put slight pressure on each finger 
in sequence. The solution was provided by last count in the sequence. 
When attempting 15–4 he wanted to use a similar method but had a 
problem, declaring “I’m too old for counters!”, but neither did he want to 
be seen using his fingers because “My class don’t use counters or 
fingers.” He felt he should operate in the same way as other children in 
his class (most of whom appeared to recall the basic facts from memory) 
yet he did not know the solutions and knew that he required a counting 
support. His use of fingers for obtaining solution for number 
combinations was almost always covert. When dealing with 
combinations to twenty he combined a casual display of ten splayed 
fingers on the edge of his desk with an imagined repetition of his fingers 
just off the desk. He spent a considerable time obtaining individual 
solutions and had a tendency to be very cautious in giving responses. He 
used his imaginary fingers to attempt to find a solution to 15–9 by 
counting back. Eventually he became confused and couldn’t complete the 
problem. 

Some of those deemed “below average” used some derived facts. 
However, the methods used differed from the “above average”. The latter 
invariably performed all the calculations in their head. Some of the older 
below average children seemed to have a good knowledge of known facts 
yet seemed to need to display them on their fingers for visual support. 
This was categorised as “derived fact” because there was no visible 
evidence of actual counting. The counting process has been compressed 
to the stage where only the fingers need to be held up and the number 
facts recalled from the finger layout. 

For instance, Karen (11+), the most successful of the “below average”, 
made considerable use of her fingers in an idiosyncratic inventive 
manner. To perform the calculation 15–9, she held out five fingers on her 
left hand and closed it completely; she then held up four fingers on her 
right hand closed them and opened the right thumb, then redisplayed the 
five fingers of her left hand at the same time and responded “six”. The 
whole procedure took about three seconds. 
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Her explanation showed a subtle understanding of number 
relationships (figure 6). 

Nevertheless, the tortuous route that she followed showed that her 
inventiveness tended to relate to individual calculations and applied only 
to small numbers she could represent using her hands. 

Other below average children who attempted to derive facts often had 
to do this based on a limited number of known facts that might not 
furnish the most efficient way to perform the calculation. 

Left Hand Right Hand Child’s Explanation Interviewer’s Comment

Fifteen is ten and 
five.
Forget the ten.

STAGE 2

STAGE 3

Four from one of 
the fives making 
ten leaves one.

One and the 
other five from 
the ten make six.

Remaining five in mind now 
displayed, giving a total of 5 
and 1, which is 6.

The remaining four is taken 
from one of the fives held 
in the mind.

Five fingers shown on left hand, 
(Other ten presumably held in 
mind.) Right hand closed.

The child displays the nine to 
be taken away as a five and 
four. 

DISPLAY EXPLANATION TO CALCULATE 15 –9

STAGE 1

STAGE 4

STAGE 5

The left hand is closed, to cancel 
the displayed five leaving the 
previously displayed four.

 
Figure 6 : Subtracting nine from fifteen by an inventive route 

Michelle (aged 10+), faced with “16–3”, said “ten from sixteen leaves six, 
three from ten leaves seven, three and seven makes ten and another three 
is thirteen”. Michelle seeks to find familiar number bonds to solve the 
problem. She sees 16 as 6 and 10, but takes the three from the 10 rather 
than from the 6 and ends up having to do the additional sum “six and 
seven”. 

Flexible strategies used by the more able produce new known facts 
from old, giving a built-in feedback loop which acts as an autonomous 
knowledge generator. Once they realise this, the more able are likely to 
sense that they need to remember less because they can generate more, 
reducing the cognitive strain even further. Meanwhile the less able who 
do attempt to derive facts may end up following an inventive but more 
tortuous route that succeeds only with the greatest effort, whilst the 
majority fall back on longer procedural calculations which cause greater 
cognitive strain or which have personal idiosyncrasies that fail to 
generalise. 

For unto everyone that hath shall be given and he shall have abundance: but from 
him that hath not shall be taken even that which he hath. 
 (St Matthew, chapter 25, v.29) 
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The Proceptual Divide 
We like to think of a procept conjuring up the adjective plastic: it is 
something flexible that can be re-moulded and reconstructed at will. As 
the learner progresses, the number procept grows in internal richness, in 
interiority in the terminology of Skemp (1979). It has more and more 
possibilities for flexible manipulation. 

It is in the use of procepts that we consider lies a major difference 
between the performance of the more able and the less able in 
mathematics. The more able tend to display proceptual thinking whilst 
the less able are more procedural. The characteristics of these two form 
of thinking may be summarised as: 

 i. Procedural thinking is characterised by a focus on the 
procedure and the physical or quasi-physical aids which 
support it. The limiting aspect of such thinking is the more 
blinkered view that the child has of the symbolism: numbers 
are used only as concrete entities to be manipulated through 
a counting process. The emphasis on the procedure reduces 
the focus on the relationship between input and output, often 
leading to idiosyncratic extensions of the counting procedure 
which may not generalise. 

ii. Proceptual thinking is characterised by the ability to 
compress stages in symbol manipulation to the point where 
symbols are viewed as objects which can be decomposed 
and recomposed in flexible ways. 

It is our contention that whilst more able younger children evoke 
proceptual thinking to use the few combinations already known to 
establish more, less able children remain concerned with the procedures 
of counting and apply their efforts to developing competence with them. 
Procedural thinking in the context of developing competency with the 
number combinations can give guaranteed success and efficiency within 
a limited range of problems. But this efficiency with small numbers is 
unlikely to lead to success with more complex problems as the children 
grow older. Their persistence in emphasising procedures leads many 
children inexorably into a cul-de-sac from which there is little hope of 
future development. 

This lack of a developing proceptual structure becomes a major 
tragedy for the less able which we call the proceptual divide. We believe 
it to be a major contributory factor to widespread failure in mathematics. 
It is as though the less able are deceived by a conjuring trick that the 
more able have learned to use. Although all children are initially given 
procedures to carry out mathematical tasks, success eventually only 
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comes not through being good at those procedures, but by moving on to 
the next stage of encapsulating them as part of a procept to solve the 
tasks in a more flexible way. The more able recognise that the process of 
addition first taught is not the main aim of the game and go on to 
succeed. The less able who try to do what they are asked: to master the 
counting procedure, seem cheated because when they finally do so, the 
game has moved on to a more advanced stage and left them behind. 

Figures 7 and 8 illustrate the divergence in strategy use between the 
less able in the study. They pair age groups together so that seven and 
eight year olds, nine and ten year olds, and eleven and twelve year olds 
are paired together in a more detailed analysis of the data in figures 4 and 
5. 
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Figure 7: Diverging approaches to basic addition combinations. Age and ability comparisons 
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DIVERGING APPROACHES TO BASIC NUMBER COMBINATIONS: SUBTRACTION
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Figure 8: Diverging approaches to basic subtraction combinations. Age and ability 
comparisons 

Combinations are arranged in order of difficulty, through establishing the 
overall percentage of children within the sample who responded to 
individual combinations through the use of known facts. The three main 
groupings correspond to the categories previously considered in figures 4 
and 5. 
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The graphs not only starkly illustrate differences between the below 
average and the above average children but also how combinations evoke 
particular responses. Note how combinations involving single digits and 
a sum between 10 and 20 evoke the use of derived facts by the upper age 
group of 11 and 12 year olds. Note also how the extensive use of 
procedural methods amongst the youngest below average group to obtain 
solutions to number combinations to ten does not provide them with a 
means of obtaining solutions to harder problems. 

See how the above average make use of very few known facts to 
establish solutions through the use of derived facts. For instance, “6 – 3 is 
3 because two three’s are six”; “4 + 7 is 11 because 3 and 7 is 10”; “18 – 
9 is 9 because 9 x 2 is 18”; “8 + 6 is 14 because two sevens are 14”. 
Simpler facts become “known facts” (or perhaps instantaneous “derived 
facts”). Harder combinations are less committed to memory, perhaps 
because the more able realise that it is just as efficient to derive them 
when required. 

Note that even when below average ability children know a substantial 
number of facts they make very little use of derived solutions. Contrast 
the efficient solution to 8 + 6 above with a solution derived by a less able 
children. Stuart (aged 10+) responded to this problem by saying “I know 
8 and 2 is ten, but I have a lot of trouble taking 2 from 6. Now 8 is 4 and 
4; 6 and 4 is 10; and another 4 is 14”. We may feel we should 
congratulate Stuart for the breadth of arithmetical manipulation that he 
displays but the truth of the matter is that his particular approach 
indicates not so much what he knows as what he does not know. He 
knows number combinations that make ten but cannot solve 6–2! His 
idiosyncratic methods of solution place a severe burden of inventiveness 
upon him to solve arithmetic problems. It may in the long term prove too 
great a burden to bear. 

 The cumulative effect of the proceptual divide 
Proceptual encapsulation occurs at various stages throughout 
mathematics: repeated counting becoming addition, repeated addition 
becoming multiplication and so on, giving what are usually considered 
by mathematics educators as a complex hierarchy of relationships (figure 
9): 

The less able child who is fixed in process can only solve problems at 
the next level up by coordinating sequential processes. This is, for them, 
an extremely difficult process. If they are faced with a problem two 
levels up, then the structure will almost certainly be too burdensome for 
them to support (see Linchevski & Sfard, 1991). Multiplication facts are 
almost impossible for them to coordinate whilst they are having difficulty 
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with addition. Even the process of reversing addition to give subtraction 
is seen by them as a new process (“count-back” instead of “count-up”). 

process of 

counting

concept of 

number

process of 

counting on

concept of 

sum

concept of 

product
repeated

addition

process of

 
Figure 9 : Higher order encapsulations 

The more able, proceptual thinker is faced with an easier task. The 
symbols for sum and product again represent numbers. Thus counting, 
addition and multiplication are operating on the same procept which can 
be decomposed into process for calculation purposes whenever desired. 
A proceptual view which amalgamates process and concept through the 
use of the same notation therefore collapses the hierarchy into a single 
level in which arithmetic operations (processes) act on numbers 
(procepts) (figure 10). 
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Figure 10: Collapse of hierarchy into operations on numbers 

We hypothesise that this is the development by which the more able 
thinker develops a flexible relational understanding in mathematics, 
which is seen as a meaningful relationship between notions at the same 
level, whilst the less able are faced with a hierarchical ladder which is 
more difficult to climb. It also provides an insight into why the practising 
expert sees mathematics as such a simple subject and may find it difficult 
to appreciate the difficulties faced by the novice. As Thurston indicated 
in our earlier quotation, it is the compression of mathematical ideas that 
makes them so simple. As proceptual thinking grows in conceptual 
richness, procepts can be manipulated as simple symbols at a higher level 
or opened up to perform computations, to be decomposed and 
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recomposed at will. Such forms of thinking become entirely unattainable 
for the procedural thinker who fails to develop a rich proceptual 
structure. 

Examples from other areas of mathematics 
Our empirical evidence in this paper has concentrated on simple 
arithmetic. However other research can also be re-interpreted in 
proceptual terms. We have evidence that the lack of formation of the 
procept for an algebraic expression causes difficulties for pupils who see 
the symbolism representing only a general procedure for computation: an 
expression such as 2+3x may be conceived as a process which cannot be 
carried out because the value of x is not known (Tall & Thomas, 1991). 
We have evidence that the conception of a trigonometric ratio only as a 
process of calculation (opposite over hypotenuse) and not a flexible 
procept causes difficulties in trigonometry (Blackett 1990, Blackett & 
Tall 1991). In both of these cases we have evidence that the use of the 
computer to carry out the process, and so enable the learner to 
concentrate on the product, significantly improves the learning 
experience. The difference between ratio and rate also has an obvious 
interpretation in terms of procept where ratio is a process and rate the 
mathematical object produced by that process. 

The case of the function concept, where f(x) in traditional mathematics 
represents both the process of calculating the value for a specific value of 
x and the concept of function for general x, is another example where the 
modern method of conceiving a function as an encapsulated object causes 
great difficulty (Sfard, 1989). There is evidence (Schwingendorf et al, in 
press) that the programming of the function as a procedure whose name 
may also be used as an object, significantly improves understanding of 
function as a procept. 

The limit concept is also a procept, but of a subtly different kind. The 
symbolism for limit represents both the process of tending to a limit, “as 
n→∞ so sn→s” or “limn∅∞  sn = s”, and the value of the limit “s = limn∅∞  sn”. 
As Cornu (1981, 1983) showed, this causes a problem for students 
because there is no explicit procedure to calculate the limit, instead it has 
to be computed by indirect means using general theorems on limits which 
may not be adequate to compute the precise value. Thus the notion of a 
procept for which the process has no explicit procedure causes 
difficulties for students because it seems to violate their intuitions (which 
have been built up from previous experience, including arithmetic where 
processes do have explicit procedures of calculation). 

We therefore are confident that the notion of procept allows a more 
insightful analysis of the process of learning mathematics, in which the 
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precision of definition of modern mathematics (“a function is a set of 
ordered pairs such that ...”) causes great difficulties for students. The 
ambiguity of process and product represented by the notion of a procept 
provides a more natural cognitive development which gives enormous 
power to the more able. It exhibits the proceptual chasm faced by the less 
able in attempting to grasp what is – for them – the spiralling complexity 
of the subject. 
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