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Computer software for the learning of mathematics, as distinct from software for

doing mathematics, needs to be designed to take account of the cognitive growth of

the learner which may differ significantly from the logical structure of the formal

subject. It is therefore of value to begin by considering cognitive aspects relevant to

the use of computer technology before the main task of focusing on computer

environments and their role in the learning of mathematics.

The growth of (mathematical) knowledge

The human brain is remarkable in its ability to store and retrieve complex

information, but it is correspondingly limited in the quantity of independent pieces of

data that may be manipulated in conscious short-term memory. To minimise the

effects of these limitations, one method is to ‘chunk’ the data by using an appropriate

representation which is more easily manipulable. For instance, standard decimal

notation is a compact method of representing numerical quantities of any size, with

corresponding routines for manipulation; algebraic notation can be used to formulate

and manipulate certain types of data for problem-solving; graphical representations

are appropriate for other tasks, such as representation of complex data in a single

gestalt.

Traditional mathematics often consists in performing algorithms using these

representations, minimising the cognitive strain by routinising the procedures so that

they become automatic and require less conscious memory to perform. A more subtle

transformation also occurs in which the symbols used to evoke a mathematical

process begin to take on a life of their own as mental objects, so that processes

become encapsulated as objects. Thus counting using the number words gives the

numeric symbols a related meaning as numbers, the process of addition becomes the

concept of sum, repeated addition becomes product, and so on. This long-term

cognitive process in which procedures are routinised to become more compressed and
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then encapsulated as mathematical objects in their own right is referred to by Piaget

and subsequent authors as vertical growth, in contrast to the horizontal growth of

relationships between different representations.

Both vertical and horizontal growth impose difficulties on the individual. Vertical

growth requires ample time for familiarisation with the given process to enable it to

be interiorised and also for the cognitive re-organisation necessary during

encapsulation of process as object. Horizontal growth requires the simultaneous

grasping of two or more different representations and the links between them, which

is likely to place cognitive strain on short-term memory resources.

These difficulties may be alleviated in various ways by using a computer environment

to provide support. Software may be designed to carry out some of the processes,

leaving the learner to concentrate on others chosen to be the selected focus of

attention. The sequence of learning in vertical growth may be modified by providing

environments which allow the study of higher level concepts in an intuitive form

before or at the same time as they are constructed through encapsulation. Horizontal

linkages between different representations may be programmed so that the individual

operates on one representation and can see the consequences of this act in other

linked representations. Moreover, because the computer can be programmed to

respond in a pre-ordained manner, it can provide an environment in which the learner

can explore the consequences of selected actions to predict and test theories under

construction.

The computer tas a predictable environment for learning

Skemp (1979, page 163) makes a valuable distinction between different modes of

building and testing conceptual structures (table 1).
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Reality Construction
Mode Reality Building Reality testing

1
from our encounters

with actuality:
experience

against experience
of events in actuality:

experiment

2
from the reality

of others:
communication

comparison with the reality
of others:

discussion

3

from within, by formation
of higher order concepts,

by extrapolation,
imagination, intuition:

creativity

comparison with one’s own
existing knowledge and

beliefs:

internal consitencey

Table 1 : Modes of building and testing personal constructions

The introduction of computer technology brings a new refinement to this theory.

Whereas mode 1 is seen as the individual acting on and experimenting with materials

that are largely passive, a computer environment can be designed to re-act to the

actions of the individual in a predictable way. This new form of interaction extends

Skemp’s theory to four modes (Tall 1989) where building and testing environments

are :

• Inanimate : the stimuli come from objects in actuality which the
individual may also be able to manipulate,

• Cybernetic : the stimuli come from systems which are set up to react
according to pre-ordained rules,

• Interpersonal : the stimuli come from other people,

• Personal : the stimuli are from the individual’s own cognitive
structure.

The new cybernetic mode of building and testing concepts affords rich possibilities

for the learning of mathematics.

Microworlds

The term microworld was originally used by Papert to describe ‘a computer-based

interactive learning environment where the pre-requisites are built into the system and

where learners can become active, constructing architects of their own learning’

(Papert, 1980, p.117) Initially the term ‘microworld’ was used specifically for

programming environments (often in the computer language Logo). For instance, the

program Newton (Pratt, 1988) is a microworld designed so that turtles move

according to Newton’s laws, allowing investigations of a variety of topics including
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motion under a central force. In figure 1 the student has designed an experiment to

model an object being projected from a point above a plane to investigate the angle

that gives the maximum range; it turns out differently from the expected 45˚.

Does an angle
of 45˚ give the 

maximum range?

 Figure 1 : Investigating the range of a projectile for different angles of projection

Such an environment provides facilities to construct ways of formulating and testing

conjectures. In the early stages Papert considered such environments to encourage

what he termed ‘Piagetian learning’, or ‘learning without a curriculum’, or ‘learning

without being taught’ (Papert, 1980, p. 7). Children are often highly creative within

such environments, but ‘powerful ideas’, particularly vertical growth of concepts, do

not readily occur spontaneously and long-term curriculum objectives require external

guidance and support.

Environments for enactive and visual manipulation

More sophisticated computer environments have been designed in recent years which

take advantage of flexible computer interfaces. Geometric software such as Cabri

Geometre or The Geometer’s Sketchpad allows figures to be drawn with specific

relationships defined, such as a given point must always lie at the midpoint of a given

line-segment, or be constrained to lie on a given circle. Then the figure may be pulled

around enactively retaining all the defined constrains to investigate possible

consequent relationships. Figure 2 shows a model of a bucket on a ladder set against a

vertical wall and sketches the path taken by the bucket as the ladder slides.
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Figure 2 : The locus of a point on a line of fixed length
constrained with its endpoints on two perpendicular lines

Such software may be used to gain enactive visual support in conjecturing and testing

geometric theorems, enabling students to take an active part in the construction of

their own knowledge, though once again, the formal proof structure of geometry will

need separate consideration.

Multiple linked representations

Computer environments can be set up to link different representations of the same

concept. The Blocks Microworld of Thompson (1992) is designed to link screen

representations of Dienes’ multibase blocks to numerical representations (figure 3).

In the top right of the window are representations of different units in base ten,

comprising a single, long (10 singles in a line), flat (10 longs in a square),  and block

(10 flats to make a larger cube). As the user selects one of these and pulls a copy to

the lower part of the screen to build up collections of blocks, the corresponding

numerical display is simultaneously updated. If the blocks in the figure representing

78 and 45 are combined by removing the vertical separator between them, the

resulting collection of 11 longs and 13 singles can be re-organised by the learner to

give 1 flat, 2 longs and 3 singles (123).
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Figure 3 : Manipulating Dienes’ blocks on-screen, with the corresponding linked numerical representation

This environment may be used to give a direct link between physical experience and

the formal symbolic notation, allowing children to explore their own algorithms for as

well as giving meaning to the formal routines for addition and subtraction.

The principle of selective construction

What has been exemplified in all the environments so far described is the way in

which the software can be programmed to carry out internal algorithms, leaving the

learner free to explore other aspects. This can occur in horizontal growth of

knowledge where the learner builds links between different representations, but it is

even more powerful in vertical growth. Whereas a traditional development would

almost always require the learner to become familiar with a given process and

routinise it before beginning to consider the consequences, computer environments

may carry out the processes and allow the user to explore the resultant concepts either

before, after, or at the same time as, the processes. This ability to reorganise the

curriculum to allow the learner to focus on one aspect of cognitive growth whilst the

computer carries out others, I term the principle of selective construction.

In carrying out such a principle, it is important to consider the concept imagery that it

may generate in the learner and the type of insight that such interaction may bring.

Tall & Winkelmann (1988) described three different kinds of insight:

external, analogue, specific.

External insight occurs when the user has no idea what is going on inside the

software, but has knowledge which allows him or her to check that the results are

sensible, analogue insight occurs when the user has an idea of type of algorithm in
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use, and specific insight is when the user is fully aware of how the software is

programmed.

Specific insight into computer software is rarely possible or even desirable for the

majority of computer users, but it is helpful for the student to have at least external

insight or, preferably, analogue insight. The concept image of a cybernetic system

constructed in the mind of the user is likely to be idiosyncratic and a teacher has a

fundamental role to play through guidance and discussion. Tall (1989) describes the

combination of a human teacher as guide and mentor using a computer environment

for teaching, pupil exploration, and discussion as the Enhanced Socratic Mode of

teaching and learning. It combines the interpersonal interactions between student and

teacher, the cybernetic interactions with the computer environment to give an

independent source of consistent evidence, and the personal constructions of the

learner in building and relating together the different parts of the knowledge structure.

Generic Organisers

Ausubel et al (1968) defined an advance organiser, as

‘Introductory material presented in advance of, and at a higher level of generality,
inclusiveness, and abstraction than the learning task itself, and explicitly related both
to existing ideas in cognitive structure and to the learning task itself ... i.e. bridging
the gap between what the learner already knows and what he need to know to learn
the material more expeditiously.’

Such a principle requires that the learner already has the appropriate higher level

cognitive structure available to him or her. In situations where this may be missing, in

particular when moving on to more abstract ideas in a topic for the first time, a

different kind of organising principle will be necessary. To complement the notion of

an advanced organiser, a generic organiser is defined to be an environment (or

microworld) which enables the learner to manipulate examples and (if possible) non-

examples of a specific mathematical concept or a related system of concepts. (Tall,

1989). The intention is to help the learner gain experiences which will provide a

cognitive structure on which the learner may reflect to build the more abstract

concepts. I believe the availability of non-examples to be of great importance,

particularly with higher order concepts such as convergence, continuity or

differentiability, where the concept definition is so intricate that students often have

difficulty dealing with when it fails to hold.

A simple instance of a generic organiser embodying both examples and non-examples

is the Magnify program from Graphic Calculus (Tall et al, 1990) designed to allow

the user to magnify any part of the graph of a specified function (figure 4).
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Figure 4 : A ‘locally straight’ graph

Tiny parts of certain graphs under high magnification eventually look virtually

straight and this provides an anchoring concept for the notion of differentiability.

Non-examples in the program are furnished by graphs which have corners, or are very

wrinkled that they never look straight, providing anchoring concepts for non-

differentiability.

Figure 5 : A highly wrinkled graph

The gradient of a ‘locally straight’ graph may now be seen graphically by following

the eye along the curve, or a piece of software may be designed which traces the

gradient as a line through two close points on the graph moves along in steps (figure

6).
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Dots represent the value of 
the gradient of a secant line 
through two close points.

Figure 6 : Drawing the gradient (dotted) of sinx

In this way, a student with some experience of the shape of trigonometric curves will

be able to conjecture that the derivative (gradient) of sinx is cosx from the shape of

the dotted gradient, even though the manipulation of trigonometric formulae and the

formal notion of limit is at present beyond his or her capacity.

Generic difficulties

Given the human capacity for patterning, and the fact that the computer model of a

mathematical concept is bound to differ from the concept in some respects, we should

be on the lookout for abstraction of inappropriate parts of the model. Visual illusions

in interpreting graphs have been documented by Goldenberg (1988) and by Linn &

Nachmias, (1987). In the latter case, one third of the pupils observing a cooling curve

of a liquid on a computer VDU interpreted the pixellated image of the graph as truly

representing what happened to the liquid – constant for a time, then suddenly

dropping a little (to the next pixel level down).

Working with older students, the inadequacy of the representation may prove to be an

advantage. It can be source of discussion that the jagged pixellated imagery does not

represent the true conceptualisation in the mind, encouraging the student to make

personal mental constructs of a more platonic form of the theory. For isnatnce, free

play with a gradient-drawing program may lead the student to think that all

reasonable looking graphs are differentiable, but this view may be challenged by

being confronted by figure 7. This graph looks very similar to that in figure 4, but

under high magnification, the wrinkles produced by the tiny added blancmange

become apparent. Simple visualisation at a fixed scale is therefore inadequate: two

graphs may seem to be similar at one level, yet at a deeper level, one is differentiable
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everywhere and the other nowhere. In this way the generic organiser reveals itself as

only a step along the path of cognitive growth. The student progressing to more

formal study has the opportunity to develop flexible concept imagery showing the

necessity for more subtle symbolic representation of the mathematics, whilst the

student who is only using the calculus in its applications has at least an intuitive

appreciation of the possible theoretical difficulties.

Figure 7 : A graph with a difference

Reflections

In considering the way in which computer environments can be used in the learning

of mathematics, we see the possibility of providing cybernetic environments which

react in a predictable manner to help the learner build and test their own mental

constructions. The computer can carry out internal procedures, allowing the learner to

focus on other facets of importance in the cognitive growth of mathematical

knowledge. This can help develop a concept image of higher order concepts in a

different sequence from the traditional method of routinisation and encapsulation. It

must be noted that the mental objects may not have the same structure as is given by

traditional learning sequence and that such exploration may give gestalts which do

not link directly to the sequence of definitions and logical deductions in the formal

theory. However, insights are possible for students who might not attain such a level

in a traditional approach while those who are able to move to higher levels may have

more appropriate concept imagery available to give a more rounded mental picture of

the theory. The software described in this chapter invariably needs to be embedded in

a wider conceptual context where the powerful ideas are made the explicit focus of

attention. This is usually provided by prepared materials or by the teacher as mentor,

although a solution has long been sought in which the computer itself can play the

guiding role in a more intelligent manner. Meanwhile, nteractive video is beginning
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to provide flexible environments in which the study guide offers the student deeper

levels of information as required, with interactive animated graphics and flexible

computer environments of the type described in this chapter. As technology grows

more sophisticated, such developments are likely to play an increasing role in the

learning of mathematics.
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