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Introduction

Algebra is often seen as “generalised arithmetic” and approached
through number patterns. The England & Wales Mathematics National
Curriculum implicitly supports this belief by making the initial algebra
attainment targets a search for pattern before letters are introduced to
stand for numbers. Information technology offers an alternative
strategy – giving meaning to letters through programming.

In comparing the two approaches we wish to focus on the possible
cognitive difficulties involved in each, and the nature of the thinking
that the child may bring to algebra from arithmetic. An analysis of
arithmetical thinking (Gray & Tall, 1991; Gray & Tall, in press) shows
a spectrum of interpretations of arithmetic symbols. A symbol such as
3+2 can represent both a process “add three and two” and also the
concept produced by that process “the sum of three and two”. The
manner in which the notation functions dually as process and concept
leads us to formulate the notion of a procept – the ambiguous use of
notation to stand either for a process or the object produced by that
process. We shall see that those who are most successful with arithmetic
treat the notation in a manner which takes advantage of this ambiguous
flexibility, but the less successful are more likely to see arithmetic in
terms of procedures.

Children with different attitudes to notation are likely to approach
algebra in radically different ways. Algebraic notation such as 3+2x also
has the ability to represent both process (“add 3 to 2 times x”) and
concept (the expression “3+2x”, which is the result of the operations of
combination). The child who tends towards procedural thinking will be
faced with a dilemma. The process “add 3 to 2 times x” can only be
carried out if x is known, and if it is known, why not just use
arithmetic, why complicate things with letters? For the proceptual
thinker for whom notation is more flexible, the notation can represent a
potential process, which could be carried out when x is known, but is
also more likely to be conceived as an object that can be manipulated
mentally.

It may be hypothesised that those children who can confer such a
flexible meaning on the notation are more likely to be successful in
algebra. However, the flexible meaning, whilst being a natural vehicle
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of thought for some, can prove to be highly complex for others who are
confused by the multiple meanings of the symbolism. To simplify the
initial teaching we decided to have activities which focus on different
aspects at different times.

To assist in conferring a flexible meaning, a curriculum programme
was devised which uses the computer for programming exercises to give
the symbolism meaning and a corresponding practical activity in which
the children act out the internal process represented by the symbolism
(Tall & Thomas 1991). The programming activity instructs the
computer to carry out the process. This enables the child to focus on the
results of the process rather than the internal procedure. For instance,
2*a+b will give the same result as b+2*a, regardless of the values of
a,b. The programming allows the expressions to be given a meaning
and for equivalent expressions to be studied which have different
internal processes, yet always give the same results. It eventually
concentrates more on the concept  than the process. The practical
activity meanwhile focuses more on the process. The combination of the
two activities is designed to give meaning to algebraic notation both as
process and concept, and to give a more flexible foundation for algebra.

Experiences prior to algebra

To gain a better idea of why children have difficulty with algebra, we
should begin by looking at their experiences prior to the stage when
algebra is introduced. This experience concerns several years of
arithmetic building on counting and the number concept.

When we consider the meaning of the symbol “4+5”, a child at
different stages of development might respond in a number of different
ways, including:

1) “count-all” where two numbers, say 4 and 5 are added by
counting 4 objects, then 5 objects, putting all the objects
together and counting all them to find the sum,

2) “count-on” where the first number 4 is treated as an entity
and the child counts on 5 more in the number
sequence,and the variant “count-on-from-largest” where
the largest number, 5, in this case is taken first to reduce
the work in counting on the smaller number 4,

3) “known fact” where the sum 4+5 is remembered as 9,

4) “derived fact”, where the sum 4+5 is not known, but 4+4
is known to be 8, and so 4+5 is “one more”, i.e. 9.

Of these, (1) and (2) evoke different processes, (3) evokes a concept and
(4) uses a higher order process to decompose and recompose type (3)
concepts (perhaps with some counting as well).
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The symbol “4+5” can mean either the process “add four and five
together” (which can be performed by various procedures) or the
concept “the sum of four and five”.

This dualism of meaning for symbolism evoking either process or
concept is a widely occurring phenomenon in mathematics. It also
involves an ambiguity, in that a given symbol can either evoke a process
or a concept depending on how it is interpreted. The process of addition
gives a method of computation to get an answer, but the concept of sum
can be manipulated at a higher level to solve even more complex
problems, as 4+4 is used in (4) and replaced by 8 to give the solution of
the related problem 4+5.

A good mathematician (of any age) uses this duality and ambiguity in
a flexible way almost intuitively, often switching from one to the other
without realising it. But the child at a given stage of development may
only be able to cope with some, or even none, of this flexibility.

If we look at the methods (1), (2) and (3), we see that the individual
symbols are treated rather differently. Using a circle to contain a
symbol conceived as an object, and a square or rectangle for a symbol
conceived as a process, the three methods may be written thus:

• count-all as a process of counting 4, then counting 5 then
counting all:

4 + 5  (count four, count five, count-all)

• count-on, starting from 4, to count-on 5:
4 + 5  (number 4, count-on 5)

• know that 4+5 is 9:

4 + 5  (number 4, number 5, result 9).

We now begin to see more clearly what this previous experience is
telling children: that notation represents a process to do, which can be
progressively compressed to be manipulated as a mental object.

This duality, even ambiguity, of seeing 5 either as a counting
process) or as a number concept is something which good
mathematicians do almost automatically, often without being conscious
of it. Once they have compressed the notation to a more sophisticated
meaning, it may become very difficult for the adult without reflection
to be aware of the difficulties facing the child. I would hypothesise that
children with this flexibility have the mental tools which are more
attuned to what is needed in algebra. As they develop them intuitively,
and the teacher has them intuitively, such children are seen to be
successful at algebra, although the underlying reason for success may
not be explicitly understood by either teacher or child.
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The cognitive difficulty of approaching algebra through
number patterns

Algebra is usually conceived as “generalised arithmetic”. As arithmetic
is intuitively seen to be “easier” than algebra, it may seem natural to
introduce algebraic ideas by using gneralised arithmetic ideas through
number pattern. A typical problem might be:

continue the following sequence: 1, 4, 7, 11, ...

The human animal is a great pattern detector. A child may soon sense
the rhythm of such a sequence to see it is “add 3 each time” and can
readily continue to compute successive terms:

1, 4, 7, 11, 14, 17, ...
“What is the next number?” “Add 3 to get 20.”

But if algebra is introduced as generalised arithmetic, is this the way to
proceed? The subtle fact is that the pattern that the child has spotted is
“add 3”. It is a recursive pattern, not one given by an algebraic
formula!

Recursion is something that is not part of the traditional curriculum,
although the new technology may make them a more natural focus of
mathematical activity. Spreadsheets are able to represent both recursion
(by replicating an appropriate formula between successive entries),
algebraic formulae, and other methods such as iteration (Healey &
Sutherland, 1991).

Many natural pattern-spotting activities note the rhythm of the
relationship between one number and the next, rather than a formula
for the nth number. One investigation that has become a favourite in
British secondary schools is to give a child a layout of consecutive
numbers, say 8, 9, 10, 11, ... and ask the following question:

Square one of the numbers, say 10 times 10 is 100. Multiply the
number before by the number after, say 9 times 11, and see what
happens. The answer is 99. Try this with other numbers. Can you see a
pattern? Can you predict if this will always happen?

The child may see the pattern that the second product is one less than the
square. But to realise that this pattern has an implicit reason requires an
argument equivalent to splitting up the product 9x11 as

(10–1)x(10+1)

and multiplying it out. Is this really the way to move into algebra? Is
this the way to develop a version of the formula for the difference
between two squares?

(n–1)x(n+1) = nxn + nx1 - 1xn – 1x1 = n2–1
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This is sometimes done visually by laying out a rectangular with 9 rows
each with 11 objects, and moving the last object in each row to leave 9
rows with 10 objects and 9 over which can be put in a new row, one
short of a 10 by 10 array. This gives a geometric representation of
(10–1)x(10+1)=10x10–1.

 10 + 1 

10–1
10

 10 

minus 1

move last column
to bottom row.

Figure 1 : A geometric interpretation of a general numerical relationship

The geometrical pattern spotting is again an interesting exercise, but is
not obvious to carry out without appropriate guidance.

The final example of pattern spotting is the idea of paving round a
rectangular pond, say 2 feet by 3 feet with 1 foot square paving slabs.
How many slabs are needed? Clearly 2 along each short side making 4,
3 along each long side making 6, and 4 in the corners. By varying the
length and width of the pool, one may hope to see the pattern that the
number of slabs is twice the width plus twice the length, plus 4 in the
corners, then move from this verbal description to an algebraic one.

2xw + 2xl + 4.

l

w

Figure 2 : An algebraic solution of a practical problem

 Suddenly, with less able pupils particularly, this last stage introduces a
discontinuity that seems impossible to bridge. Why is it written like
this? If we know w and l (say 2 and 3), why don’t we write it as
2x2+2x3+4, which we may be able to work out (though even this is
difficult for many children to scan).

Then again, what exactly is w? What is l? Are they lengths or the
number of slabs or do they stand for the slabs themselves? Children’s
previous experience of letters after numbers might be in terms of units,
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say 15p for 15 pence. Here the p does not stand for a number in the
same way as it does in algebra. For instance a sentence from the
National Curriculum (D.E.S., 1991) states:

Write the total cost, c pence, of n cakes as c = 15 x n (or 15n) where the
cost of one cake is 15p.

Note the different meanings here of 15n and 15p. What are children
to make of them? And how are they to cope with 151

2 , 151, 15x ?
Children who have so far seen arithmetic symbolism as representing

a process that can be carried out by an arithmetic procedure suddenly
find this “universal law” is violated. The expression with letters cannot
be worked out unless the values are known and if the values are known,
why use algebra?

There is an impasse.
It is a chasm which more able children – with an intuitive flexible

use of notation as process and product – are able to span. A relatively
small number of children are therefore privileged to enter the domain
of algebra. But it closes the door for many more who see algebra as an
unnecessary and difficult irrelevance.

In a professional course for student teachers, I posed the problem of
introducing algebraic notation to children. A student responded “I
always do it the way I was taught by telling the children about two
apples and three bananas”. Other students immediately concurred with
this suggestion of giving meaning to 2a+3b in this way. It helps
manipulation. 2a+3b+3a is 2 apples plus 3 bananas plus 3 apples which
is 5 apples plus 3 bananas, or 5a+3b. But this meaning is inflexible and
fails when this interpretation does not apply. What is 2a+3b–3a? Can it
be –1a+3b? Can you have “–1 apples”? And what if the child thinks of
2a+3b as “2 apples and 3 bananas”, then conceives it as “5 apples and
bananas” and writes 5a b ?

Approaching algebra as “generalised arithmetic” through patterns
has a number of difficulties, and the degeneration of algebra into
“apples and bananas” symbolism to get over the initial stages is severely
flawed. Using a computer offers a more promising approach.

Meaning of algebraic symbolism through programming

In BASIC (or any other suitable language), the command

a=3

followed by

PRINT a+1

gives a predictable response. If a child does not predict the answer “4”,
then the command can be carried out to see what happens, and
consideration of similar commands such as
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PRINT a–1

will begin to see what will happen.
A few examples of this sort will allow children of a wide range of

ability, even some of the very slowest learners, to be able to predict that
PRINT a–1 for a=3 will give 2.

By this method the child will learn to appreciate that, if the variable
stands for a specific number, then an algebraic expression will give a
recognisable product. In this way it is behaving like arithmetic notation
– it is something that can be calculated.

Tall & Thomas (1991) report a research project which used this
approach to teach algebra to mixed ability groups of children. It showed
significant improvements in the experimental children’s understanding
of the notation.

We will return to this experiment shortly. However, before we do
so, the theory that we have begun to unfold about the way that children
grow in sophistication in appreciating arithmetic notation as process and
concept now allows us to interpret the whole experiment in a new and
illuminating way. So before proceeding to discuss algebra, let us look at
a development of the theory that gives insight into the thinking
processes of the child.

The dual meaning of symbolism as process and concept

The meaning of symbolism as process and concept in arithmetic is but
one of a few instances of this phenomenon throughout much (but not
all!) of mathematics.

Examples pervade arithmetic, algebra, trigonometry, calculus,
analysis, and abstract algebra, including the following (mainly quoted
from Gray & Tall, to appear),

• The symbol 4+5 represents both the process of adding
through counting all or counting on and the concept of
sum (4+5 is 9),

• The symbol 4x3 stands for the process of repeated
addition “four multiplied by three” which must be carried
out to produce the product of four and three which is the
number 12.

• The symbol 3/4 stands for both the process of division
and the concept of fraction,

 • The symbol +4 stands for both the process of “add four”
or shift four units along the number line, and the concept
of the positive number +4,
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• The symbol –7 stands for both the process of “subtract
seven”, or shift seven units in the opposite direction along
the number line, and the concept of the negative number
–7,

• The algebraic symbol 3x+2 stands both for the process
“add three times x and two” and for the product of that
process, the expression “3x+2”,

• The trigonometric ratio sine = 
opposite

hypotenuse  represents

both the process for calculating the sine of an angle and
its value,

• Speed may be calculated as a ratio (distance divided by
time) or a rate (speed, say in miles per hour),

• The function notation f(x)=x2–3 simultaneously tells both
how to calculate the value of the function for a particular
value of x and encapsulates the complete concept of the
function for a general value of x,

• An “infinite” decimal representation π=3.14159… is both
a process of approximating π by calculating ever more
decimal places and the specific numerical limit of that
process,

• The notation lim
x→a

  f(x) represents both the process of

tending to a limit and the concept of the value of the limit,

as does lim
n→∞  sn, limn→∞ ∑

k=1

n

 ak , and lim
δx→0

 ∑
x=a

b

 f(x) δx .

Given such an all-pervading phenomenon, it is quite amazing to
realise that this has not been blessed with a name. My colleague Eddie
Gray and I realised that if we gave the phenomenon a name then we
could begin to talk about it.

The idea of a procept

In Gray & Tall (1991) we formulated the following definition:
We define a procept to be the amalgam of process and concept in which
process and product is represented by the same symbolism.(Gray & Tall, 1991)

Later in Gray & Tall (to appear) we refined this definition to allow the
notion of procept to operate flexibly in the way it is observed operating
in successful mathematicians (of all ages). Here we defined:

An elementary procept is the amalgam of three components: a process
which produces a mathematical object, and a symbol which is used to
represent either process or object.
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we then extended the definition as follows:
A procept consists of a collection of elementary procepts which have the
same object.

In this sense we can talk about the procept 6. It includes the process of
counting 6 as well as the number concept 6; it also includes a collection
of other representations such as 3+3, 4+2, 2+4, 2x3, 8–2, etc. All of
these symbols are considered by the child to represent the same object,
though obtained through different processes. But it can be decomposed
and recomposed in a flexible manner. (Gray & Tall, to appear)

 The procept of number for a successful mathematical thinker allows a
number like 12 to represent a whole variety of different forms: 10+2,
two sixes, four threes, and so on. It is this flexibility which gives the
child a generative system not only for giving mutual support for already
known facts, but also to derive new facts from old with very little
effort.

Children who are successful develop a flexible way of thinking in
arithmetic which allows them to decompose and recompose procepts in
a way which gives them great power. Those who are much less
successful see arithmetic more as counting procedures. Subtraction for
the more able is no more complex than addition, for if 4+2 equals 6,
then 6 take away 4 must be 2. The additive triple 4,2,6 gives a
proceptual structure which allows 6 to be composed and recomposed so
that subtraction is just a different way of viewing addition.

The less successful child tends to be more procedural. The reverse of
the process of addition is the process of subtraction. If addition is
“count-on” then subtraction is “count-back”, so 19–16 is performed by
counting 16 numbers down starting one below 19! This is a far harder
task than the use of derived facts. It shows why “slow learners” are so
likely to fail. They are performing significantly harder mathematics.

Children are faced with the transition to algebra must build on their
previous experiences, particularly in arithmetic. They bring very
different views of symbolism and are likely to interpret algebraic
symbolism very differently!

Procepts with built-in procedures for computation

Arithmetic procepts such as 5+3 have a built in procedure for
computation: for instance, “count-on 3” as “6, 7, 8”. Algebraic procepts
only have a potential procedure for computation. To a successful
mathematician the expression 2+3x means both the process “add 2 to 3
times x” and also the concept, the expression “2+3x” that can be treated
as a procept and be decomposed and recomposed or manipulated as an
object in part of a larger expression. The process within the expression
can only be carried out when the value of x is known. Thus it represents
a conflict with all previous experience. Some children, already more
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flexible with arithmetic, may be able to cope with “add two to three
times x, whatever x is”, and even think of the result as an object. But
those children who see symbolism more as a procedure to be carried out
have no hope of making any sense whatsoever of algebraic notation. It
represents a process that cannot be performed, a complication that they
don’t understand. If we don’t know x we can’t do the sum, if we do
know x, why complicate matters using letters, why not do ordinary
arithmetic?

A cybernetic approach using a computer

The programming and evaluation of expressions can be of great value in
giving meaning to algebraic symbolism. Communication between
individuals involves all sorts of non-verbal meanings and shades of
willingness to communicate, or misconceptions about what the other is
saying. If one “talks” to a computer, by typing in commands, and the
computer responds in a predictable way, then this very predictability
can give meaning. If x has the value 3, then one soon gets to the position
that the command PRINT x+2 will give 5. And it will happen every
time.

In Tall & Thomas (1991), we extended Skemp’s notion of building
and testing concepts, to allow for interaction with the computer. Whilst
interaction with concrete objects required the individual to interpret
what was going on, interaction with a computer programmed to respond
in a predictable way offered a cybernetic system in which the individual
could build and test concepts first by observing what happens and then
predicting and testing what happens. This offers a more secure method
of building and testing.

Programming to focus on the concept of expression

By typing in the expressions:

x=3
PRINT x+2

the computer is carrying out the process. The child sees the result of the
process. At this stage the child may think through the process to
confirm what the computer is doing.

If the child considers the meaning of

PRINT 2*(x+1)

then the meaning of the brackets can be built and tested. For x=3, the
result 8 can only be got by adding the value of x to 1 before multiplying
by 2. “Do operations in brackets first”.

If two different-looking, yet equivalent expressions are evaluated,
such as
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x=1
PRINT 2*(x+3)
PRINT 2*x+2*3

the child can note that the two different methods give the same result.
The program

10 INPUT x
20 PRINT 2*(x+3)
30 PRINT 2*x+2*3

will give the same results whatever the value of x that is input. Now
each time it is run, the child will see the same numbers. Checking the
computation recedes from the child’s focus of attention. Instead it is
possible to focus on the fact that the two expressions always give the
same output. In this way, equivalence of expressions can become the
focus of attention instead of the different procedures which are used to
carry out the computations.

The Cardboard Maths Machine to focus on the process

In a separate activity the children took part in a game which involved
playing the part of the computer in performing the calculations, so that,
at a different time, they could concentrate on (a model of) the inner
workings of the computer. Whilst the programming activity involved
the child focusing on the expression itself and the values it gave, the
game focused primarily on the process of evaluation.

The activity involved a cardboard maths machine, which consists of
just two large sheets of cardboard and some smaller cards marked with
letters and numbers. One piece of cardboard acted as a screen and
programming instructions were placed on the screen and then carried
out by members of a group of pupils. The other piece of cardboard –
placed a short distance away – had a number of rectangles marked on it
which represented computer stores. Each could be labelled by a letter
placed above the store and each labelled store could have a number
placed. Thus to carry out the instructions

A=1
B=A+3
PRINT B+2

involves marking a store with the label A and placing the number 1
inside, then labelling another store B, looking inside the store A to find
the value 1, adding 3 to get 4 and placing it in the store B, and finally
looking in the store B, noting the number 4 inside, adding 2 and placing
the number 6 back on the sheet of cardboard representing the screen
(figure 3).
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A=1

B=A+3

PRINT B+2

B

1 4

A Y X

773
56

figure 3: The cardboard maths machine

The Computer Maths Machine to focus on standard notation

A further activity involved the use of a piece of software which allowed
the use of standard algebraic notation (including implicit multiplication)
to compute the values of one, or two, expressions for given input values
of letter variables.

Here the software simply carried out the computation of the value of
the expression, allowing the child to focus mainly on the output, and
whether two expressions gave the same, or different output values for
different values of the variables (figure 4).

figure 4 : The Algebraic Maths Machine

Working with the algebraic maths machine clearly focuses on the
product of computing the numerical values of algebraic expressions, just
as the cardboard maths machine involves the children acting out the
process.

Thus, at different stages, different aspects of process and object were
selectively given an appropriate focus in order to produce a more
versatile form of learning.
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Empirical evidence for success

 The results of empirical studies shows significant improvement
overcoming cognitive difficulties and in acquiring a more versatile
insight into the meaning of the algebraic symbolism (Tall & Thomas
1991). What was particularly clear was that those who were successful
with the computer activities had a different image of the meaning of the
symbolism from those with a traditional approach.

In interview, children who had used the computer showed a more
meaningful use of expressions which enabled them to be composed and
decomposed in a flexible way. For instance, when faced with the
problem of solving the equation:

2p–1=5,

a proceptual approach might be to note that if 2p–1 was 5, then 2p had
got to be 6, so p must be 3, whereas a procedural approach would be to
“add 1 to both sides, to get 2p=6” then “divide both sides by 2 to get
p=3”.

One of the most striking differences occurred when children who
had solved this problem were faced with

2s–1=5.

Typically in interview (Tall & Thomas 1991), control children were
either unsure of the relationship between the two equations:

Pupil  C1 : s could be 3 as well

Pupil  C4 : They could both equal 4

or they would need to go through the process of solution yet again to
find that s is also 3.

Pupil C2  : Well what I have put is 2p equals 6 and 2s equals 6,

Pupil C5 : 2s...add the 1 and 5, 6 er 2 and 2, 6, 3 times, so s is 3 as
well.

They may be aware that the solutions are essentially the same, but they
feel that solving an equation involves going through a procedure, which
is essential to do to get it right, even though in this case the procedure
was easy because it had been in essence done before. Typically the
experimental children were more likely to say that it is “the same
equation”:

Pupil  E1 : I can say that p and s have the same value...its the same
sum.

Pupil E5 : The same. Just using a different letter.

Reviewing the data in the light of the new theory of procepts, it seems
that the more successful children were more likely to have a flexible
proceptual view of the symbolism that they could manipulate more
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successfully with meaning, whilst the control children were more likely
to feel the need to use approved procedures to solve the equations.

In practice, the procedure for solving equations was emphasised in
the teaching of all children, rather than the proceptual nature of the
equation, that it was the same concept represented by different algebraic
processes. As a result most children were more likely to give a
procedural response, although the experimental children showed their
more flexible knowledge in other ways, for instance, through
recognising the fact that the actual letter used in the equation was
irrelevant. Proceptual knowledge could surface in the middle of
procedural activities. For instance, one child began solving

3x – 5 = 2x + 1

by rearranging to get

3x = 2x+6

and then suddenly saw that the extra x on the left must balance the extra
number on the right, so x is 6. By using flexible cues again the
proceptual thinker can see through a problem where a procedural
thinker might need to follow through a formal procedure.

Data which we do not have, which would be interesting to seek in a
future experiment is the relationship between the child’s earlier
proceptual/procedural view of arithmetic and their subsequent
proceptual/procedural view of solving equations. It is natural to
hypothesise that those with a flexible proceptual view of arithmetic are
more likely to have a flexible proceptual view of algebra, and that this
would be improved significantly by the use of the computer approach.

The role of procepts in arithmetic, algebra and calculus

We have seen in arithmetic the great difference between the proceptual
approach of the more successful and the procedural approach of those
who are less likely to be successful. We hypothesise that this will have a
significant effect on the pupil’s success in algebra. Indeed we
hypothesise that children who have a procedural view of symbolism are
likely to have limited success of a procedural kind in algebra, and are
more likely to fail in the long-term in algebra. We hypothesise that
those children who are already treating arithmetic symbolism in a
flexible proceptual way are more likely to be able to cope with the
duality of the symbolism in algebra.

The one piece of evidence in our earlier research is one that we did
not fully understand when it first surfaced. Children were asked:

Is 
6
7   the same as 6÷7?
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76% of the experimental group responded “yes” but only 44% of the
control group. Using our current theoretical perspective we can suggest
that this essentially concerns the proceptual nature of the fraction 6 7.
Comments from the control group indicated that the two were not the
same because

“ 
6
7  is a fraction, 6÷7 is a sum ”.

This reveals the perception of 6÷7 as a process involving value-
operation-value rather than as a single entity produced by this process.
This was not such a problem for the computer group. This may be
interpreted as suggesting that the experimental group were more likely
to have developed a proceptual view of arithmetic notation as a result of
the computer treatment than those following the traditional approach.

What we now see is the fundamental role of the student’s perception
of notation. In arithmetic there is a spectrum of interpretation from the
successful flexibility of the proceptual thinker to the more limited
success of the procedural thinker. But in arithmetic the procepts have a
related internal procedure (e.g. counting) which allows the value of an
arithmetic expression to be calcutlated.

In algebra the notation again functions dually as process and concept,
but here the process is only potentially successful. It is not possible to
evaluate an expression numerically without knowing the numerical
values of the variables. This is likely to produce an obstacle to learning
which has been called “the expected answer obstacle”, or the “lack of
closure” obstacle. It has long been known that many children are
uncomfortable with algebraic symbols which cannot be computed.

It may be hypothesised that this obstacle will be more serious to
procedural thinkers in arithmetic than to proceptual thinkers, although
even the latter may find it difficult when it is first met.

I propose that a procept which has a built-in procedure for
computation is called an operational procept, following Sfard (1990). A
procept as met in algebra, which only becomes operational when
appropriate values are substituted for variables will be termed a
template procept. The template terminology is becoming popular in
computer science where a template contains place-holders for variables.
Other template procepts include

f (x) dx
a

b

∫
which can only be computed when specific values are substituted for a,
b and a specific function is substituted for f(x).

Students have difficulties when they meet limit concepts in the
calculus. These too are often procepts where a notation such as lim

n→∞sn
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represents both the process of sn approaching a limiting value and also
the value of the limit itself. Cornu (1981) has remarked on how this
causes difficulties with students because the limit can no longer be
computed by simple arithmetic, but often needs to be attacked by
indirect means using established theorems. I term such a phenomenon a
structural procept, againg using an adjective popularised by Sfard
(1990), although I must take the responsibility for the meaning given
here. Note that a structural procept can also be of the template variety if
it includes variables or place-holders for general inputs.

At this advanced level in calculus and analysis the template nature of
procepts is less likely to cause difficulty. But the structural nature,
which conflicts with previous experience of the student that a procept is
in principle computable by a simple procedure (at least potentially, once
variables are substituted in), violates the implicit belief in the implied
operational nature of procepts.

Thus we see that proceptual nature of mathematical notation at each
stage implicitly obeys certain rules which may be violated at later
stages. These implicit beliefs constitute genuine epistemological
obstacles in the cognitive growth of the subject.

The proceptual divide

Eddie Gray and I contend that the spectrum of interpretation of
proceptual symbolism – from procedure to be carried out, to flexible
procept dually representing either process or resultant object – leads to
a spectrum of success and failure in mathematics (Gray & Tall, to
appear). In analysing the nature of the procedures employed in
arithmetic, we often found that the procedures were far harder than
flexible proceptual methods. For instance, in computing 16–13,
procedural thinkers would almost always attempt to count back thirteen
numbers starting with 15, whilst proceptual thinkers would simply see
the tens cancel and the result as 3. We therefore hypothesise that those
who find mathematics difficult are often forced into even more difficult
procedures for solving specific problems.

In the developing compression of notation in which symbols initially
representing a process are compressed into objects that can be
manipulated, the successful thinker reduces stress by manipulating
symbols as objects instead of having to think of symbols as procedures.
Procedures require more short-term memory store than compressed
objects and therefore are eventually harder to handle.

This leads to an ever-widening gulf between the sucessful proceptual
thinkers and the less successful procedural thinkers which we call the
proceptual divide.
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Summary

Adult mathematicians see mathematics from a mature viewpoint in
which the structures have great richness and interiority. They therefore
have a perception of simplicity in which this structural richness plays an
implicit fundamental role. Learners do not yet have this conceptual
richness. In achieving steady compression of knowledge, careful
analysis shows the way in which processes of computation and objects of
mental manipulation can be represented by notation that stands
ambiguously and dually for both. A child’s conception of arithmetic
goes through such stages of compression from procedures of counting
to concepts of arithmetic. Children’s differing views of arithmetical
processes and concepts are likely to give them different perceptions of
algebra and algebraic notation. A procedural view of arithmetic may
lead to the interpretation of an algebraic expression as a process which
cannot be carried out and cause a considerable conceptual obstacle,
which, even if overcome, may lead to a procedural view of algebra. On
the other hand, a flexible, proceptual, view of arithmetic, manipulating
symbols so that known relationships can be used to deduce derived facts
is more appropriate to form a foundation for meaningful manipulation
of algebraic symbolism.

Whilst it is natural to seek number patterns as an extension to
arithmetic, this involves cognitive difficulties which may not give the
best route into algebra. Computer programming and software can carry
out the actual evaluation of algebraic expressions whilst the child can
concentrate on the meaning of the symbolism. Practical activities can
dually focus on the process of evaluation. Empirical evidence shows that
this offers a way into algebra that enables children to give the symbols a
more powerful meaning.
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