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Introduction

Algebra is oftenseen as “generalisedrithmetic” and approached
through number patterns. The EnglandWales Mathematics National
Curriculum implicitly supports this belief by making the initial algebra
attainment targets a searfdr pattern before letters are introduced to
stand for numbers. Informationtechnology offers an alternative
strategy — giving meaning to letters through programming.

In comparing the two approaches we wish to focus onptssible
cognitive difficulties involved in each, and the nature of the thinking
that the child may bring to algebra from arithmetic. amalysis of
arithmetical thinking (Gray & Tall, 1991; Gray & Tall, in prestjows
a spectrum of interpretations of arithmetic symbols. A synsbich as
3+2 can represent both a process “add three and two” and also the
concept produced by that process “the sum of three and two”. The
manner in which the notation functions dually as processcandept
leads us tdormulate the notion of @rocept— the ambiguous use of
notation to stand eithefior a process or thebject produced by that
process. We shall see that those who are sumstessful witharithmetic
treat the notation in a manner whitdkes advantage of this ambiguous
flexibility, but the less successfidre more likely toseearithmetic in
terms of procedures.

Children with different attitudes to notation are likely to approach
algebra in radically different ways. Algebraic notation such ax ais?
has the ability torepresent both process (“add 3 to 2 tinx€s and
concept (the expressidB+2x”, which is the result of the operations of
combination). The child who tends towards procedural thinking will be
faced with a dilemma. The process “add 3 to 2 tixiesan only be
carried out if x is known, and if itis known, why not just use
arithmetic, why complicate things with letterd?r the proceptual
thinker for whom notation is more flexible, the notation can represent a
potential process, which could be carried out wheis known, but is
also more likely to beonceived as an object that can be manipulated
mentally.

It may be hypothesised that thosleildren who can confesuch a
flexible meaning on the notation are more likely to daecessful in
algebra. However, the flexible meaning, whilst being a nathicle

Published irNew Directions in Algebra Educatidt992), Queensland University of
Technology, Brisbane, 213-231.



of thought for some, can prove to be highly complex for others who are
confused by the multiple meanings of the symbolism. To simplify the
initial teaching we decided to have activities which focusddferent
aspects at different times.

To assist in conferring a flexible meaning, a curriculpmgramme
was devised which uses the computer for programming exercises to give
the symbolism meaning and a corresponding practical activityhioh
the children act out the internal process represented bgythbolism
(Tall & Thomas 1991). The programming activity instructs the
computer to carry out the process. This enables the child to focus on the
results of the procegstherthan the internal procedure. Forstance,
2*a+b will give the sameesult ash+2*a, regardless of the values of
a,b. The programmingallows the expressions to be given a meaning
and for equivalent expressions to be studied which hdiféerent
internal processes, yedlways give the sameesults. It eventually
concentrates more on thencept than the process. The practical
activity meanwhile focuses more on th@cess The combination of the
two activities is designed to give meaning to algebraic notation both as
process and concept, and to give a more flexible foundation for algebra.

Experiences prior to algebra

To gain a better idea of why children have difficulty with algebra, we
should begin by looking at their experiengasor to the stage when
algebra is introduced. This experience concerns several years of
arithmetic building on counting and the number concepit.

When we consider the meaning of the symbol “4+5”, a child at
different stages of development might respond in a numbdiffeient
ways, including:

1) “count-all” where two numbers, say 4 and 5 are added by
counting 4 objects, then 5 objects, putting all dhgects
together and counting all them to find the sum,

2) “count-on” where the first number 4 is treated as an entity
and the child counts on 5 more in theumber
sequence,and the variaftount-on-from-largest” where
the largest number, 5, in thetsse igaken first to reduce
the work in counting on the smaller number 4,

3) “known fact” where the sum 4+5 is remembered as 9,

4) “derived fact”, where the sum 4+5 is not known, but 4+4
is known to be 8, and so 4+5 is “one more”, i.e. 9.

Of these, (1) and (2) evoke differgambcesses(3) evokes aonceptand
(4) uses ahigher orderprocess to decompose and recompose type (3)
concepts (perhaps with some counting as well).



The symbol “4+5” can mean either the process “fmd and five
together” (which can beerformed by various procedures) or the
concept “the sum of four and five”.

This dualism of meaninfpr symbolism evoking either process or
concept is a widelyoccurring phenomenon in mathematics. also
involves an ambiguity, in that a given symbol can either evoke a process
or a concept depending on how it is interpreted. The process of addition
gives a method of computation to get an answer, but the concept of sum
can be manipulated at a higher level to solve even nummplex
problems, as 4+4 is used in (4) and replaced by 8 to give the solution of
the related problem 4+5.

A good mathematician (of any age) uses this duality and ambiguity in
a flexible way almost intuitively, often switchirfpom one to theother
without realising it. But the child at a givestage of development may
only be able to cope with some, or even none, of this flexibility.

If we look at the methods (1), (2) and (3), seethat the individual
symbols are treatedather differently. Using a circle to contain a
symbol conceived as an object, and a square or rectéorgke symbol
conceived as a process, the three methods may be written thus:

» count-all as a process of counting 4, then counting 5 then
counting all:

4 | +| 5 || (count four, count five, count-all)

e count-on, starting from 4, to count-on 5:
(@)[* 5] (number 4, count-on 5)

e know that 4+5is 9:

(number 4, number 5, result 9).

We now begin toseemore clearly what this previous experience is
telling children: that notation representpm@cessto do, which can be
progressively compressed to be manipulated as a nuodéat

This duality, even ambiguity, of seeing 5 either as a counting
process) or as a number concept is something which good
mathematicians do almost automatically, often without bemmscious
of it. Once they have compressed the notation to a reopdisticated
meaning, it may become very difficuior the adult without reflection
to be aware of the difficulties facing the child. | would hypothesise that
children with this flexibility have the mental tools which aneore
attuned to what is needed in algebra. As they develop them intuitively,
and the teacher has them intuitively, suadtildren are seen to be
successful atlgebra, although the underlying reason $oiccess may
not be explicitly understood by either teacher or child.
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The cognitive difficulty of approaching algebra through
number patterns

Algebra is usually conceived as “generalised arithmetic”.aAgmetic
Is intuitively seen to be “easier” thalgebra, it mayseemnatural to
introduce algebraic ideas by using gneralised arithmetic itheasgh
number pattern. A typical problem might be:

continue the following sequence: 1, 4, 7, 11, ...

The human animal is a great pattern detector. A child may Sese
the rhythm ofsuch a sequence to see it is “add 3 dank” and can
readily continue to compute successive terms:

1,4,7,11, 14, 17, ...
“What is the next number?” “Add 3 to get 20.”

But if algebra is introduced as generalised arithmetic, is this the way to
proceed? The subtle fact is that the pattern that the bhsdspotted is
“add 3”. It is arecursive pattern, not one given by an algebraic
formula!

Recursion is something that is not part of the traditi@oaticulum,
although the new technology may make them a more natural focus of
mathematical activity. Spreadsheets are able to representduoftsion
(by replicating an appropriate formula betwesmccessiveentries),
algebraic formulae, and other methosisch as iterationHealey &
Sutherland, 1991).

Many natural pattern-spotting activities note thHgythm of the
relationship between one number and the nether than aformula
for the nth number. One investigation thads become &avourite in
British secondaryschools is to give a child a layout of consecutive
numbers, say 8, 9, 10, 11, ... and ask the following question:

Square one othe numbers, say 1@mes 10 is100. Multiply the

number before by the numbafter, say 9times 11, and see what

happens. The answer is 99. Try this with other numbers. Can you see a

pattern? Can you predict if this will always happen?
The child mayseethe pattern that the second product is one less than the
square. But to realise that this pattern has an implicit reason requires an
argument equivalent to splitting up the produdtl9as

(10-1x(10+1)
and multiplying it out. Is this really the way to move into algebra? Is

this the way to develop a version of the forméitat the difference
between two squares?

(n—1)x(n+1) =nxn +nx1 - Ixn — Ix1 =n2-1



This is sometimes done visually by laying out a rectangular wrihws
each with 11 objects, and moving the last object in eaahto leave 9
rows with 10 objects and 9 over which can be put in a rew one
short of a 10 by 10 arrayThis gives a geometric representation of
(10-1%(10+1)=1Q10-1.
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000O00OO0O0OO

=
o

move last column
to bottom row.
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minus 1

Figure 1 : A geometric interpretation of a general numerical relationship

The geometrical pattern spotting is again an interesting exercise, but is
not obvious to carry out without appropriate guidance.

The final example of pattern spotting is the idea of paving round a
rectangular pondsay 2 feet by 3 feet with 1 foot square pavshabs.
How many slabsire needed? Clearly 2 along easiort side making 4,
3 along each long side making 6, and 4 indbmers. By varying the
length and width of the pool, one may hopesezthe pattern that the
number ofslabs is twice the width plus twice thength, plus 4 in the
corners, then move from this verbal description to an algebraic one.

2w + Xl + 4.

<—E—>

<_| —_—
Figure 2 : An algebraic solution of a practical problem

Suddenly, withless able pupilparticularly, thislast stage introduces a
discontinuity thatseems impossible tbridge. Why is it written like
this? If we knoww and| (say 2 and 3), why don’t we write it as
2x2+23+4, which wemay be able to work out (though even this is
difficult for many children to scan).

Then again, what exactly i8? What isl? Are theylengthsor the
number ofslabsor do they standior the slabs themselves? Children’s
previous experience of letters after numbers might be in terms of units,



say 1% for 15 pence. Here the does not stanfbr a number in the
same way as it does ialgebra. Forinstance a sentencEom the
National Curriculum (D.E.S., 1991) states:

Write the total cost; pence, ofi cakes as = 15x n (or 151) where the
cost of one cake is p5

Note the different meanings here ofnl&dnd 1%H. What arechildren
to make of them? And how are they to cope with, 151, 1% ?

Children who have so faseenarithmetic symbolism arepresenting
a process that can warried out by an arithmetic procedusaddenly
find this “universal law” is violated. The expression with letters cannot
be worked out unless the values are known and if the valgeknown,
why use algebra?

There is an impasse.

It is a chasm whichmore able children — with an intuitive flexible
use of notation as process gmubduct — are able to span. A relatively
small number of children are therefore privileged to enterdthreain
of algebra. But it closes the door for many more \wbealgebra as an
unnecessary and difficult irrelevance.

In a professional course for student teachers, | posed the problem of
introducing algebraic notation to children. A student responded “I
always do it the way | was taught by telling tbleildren about two
apples and three banana®ther students immediatelgoncurred with
this suggestion of giving meaning to 2a+3b in this way.hélps
manipulation. 2+3b+3a is 2 apples plus 3 bananas plus 3 apples which
Is 5 apples plus 3 bananas, @+3b. But this meaning is inflexible and
fails when this interpretatiodoes not apply. What isa23b—3a? Can it
be —B+3b? Can you have “~1 apples”? And what if the child thinks of
2a+3b as “2 apples and 3 bananas”, then conceives it as “5 apples and
bananas” and writesa3 ?

Approaching algebra as “generalised arithmetic” through patterns
has anumber of difficulties, and the degeneration of algebra into
“apples and bananas” symbolism to get over the irst@des iseverely
flawed. Using a computer offers a more promising approach.

Meaning of algebraic symbolism through programming
In BASIC (or any other suitable language), the command
a=3
followed by
PRINT a+1

gives a predictable response. If a child does not predict the answer “4”,
then the command can bearried out tosee what happens, and
consideration of similar commands such as



PRINT a-1

will begin to see what will happen.

A few examples of thisort will allow children of a wide range of
ability, even some of the very slowest learngyde able to predict that
PRINT a-1 for a=3 will give2.

By this method the child will learn to appreciate that, if the variable
standsfor a specific number, then an algebraic expression will give a
recognisable product. In this way it is behaving like arithmetic notation
— it is something that can be calculated.

Tall & Thomas (1991)eport a research projesthich used this
approach to teach algebra to mixed ability groups of childreshdived
significant improvements in the experimental children’s understanding
of the notation.

We will return tothis experiment shortly. However, before we do
so, the theory that we have begun to unfold about the wayhildten
grow in sophistication in appreciating arithmetic notation as process and
concept now allows us timterpret thewhole experiment in a new and
illuminating way. So before proceeding to discuss algebra, let us look at
a development of the theory that gives insight into the thinking
processes of the child.

The dual meaning of symbolism as process and concept

The meaning of symbolism as process and concept in arithmetic is but
one of a few instances of this phenometimmughout much (but not
all') of mathematics.

Examples pervade arithmetic, algebr&jgonometry, calculus,
analysis, and abstract algebra, including the following (mainly quoted
from Gray & Tall, to appear),

 The symbol 4+5 represents both the process of adding
through counting allor counting onand the concept of
sum(4+5 is 9),

» The symbol 43 standsfor the process of repeated
addition “four multiplied by three” which must loarried
out to produce the product of four and three which is the
number 12.

 The symbol 3/4 standfor both the process aflivision
and the concept of fraction,

 The symbol +4 standsr both the process ¢add four”
or shift four units along the number line, and toacept
of the positive number +4,



* The symbol -7 stand®r both the process of “subtract
seven”, or shift seven units in the opposite direction along
the number line, and the concept of the negativember
_7’

* The algebraic symbolx32 stands botHor the process
“add three timex and two” and for the product dhat
process, the expressionx”,

: : L opposite
* The trigonometric ratio sine ﬂ?ggteTuse represents

both the process focalculating the sine of an angle and
its value,

* Speedmay be calculated as ratio (distance divided by
time) or arate (speed, say in miles per hour),

* The function notation ¥)=x2—3 simultaneously tells both
how to calculate the value of the functifor a particular
value ofx and encapsulates the complete concept of the
function for ageneralvalue ofX,

* An “infinite” decimal representatiom=3.14159... is both
a process of approximating by calculating evemmore
decimal places and the specificimerical limit of that
process,

« The notation lim f(x) represents both the process of
tending to alimit and the concept of thealue of thdimit,

b
n
as does lims,, lim 3 a, and6)(Ier()1 Z f(x) 8x .

k=1 ea
Given such an all-pervading phenomenon, it is quite amazing to

realise that this has not beblessed with a name. My colleagkeldie

Gray and | realised that if we gave the phenomenon a name then we

could begin to talk about it.

The idea of a procept

In Gray & Tall (1991) we formulated the following definition:

We define groceptto be the amalgam qifrocess andoncept in which
process and product is represented by the same symbolism.(Gray & Tall, 1991)

Later in Gray & Tall (to appear) we refined this definition to allow the

notion of procept to operate flexibly in the way it is observed operating
in successful mathematicians (of all ages). Here we defined:
An elementanyproceptis the amalgam of threeomponents: grocess

which produces anathematicabbject and asymbolwhich is used to
represent either process or object.



we then extended the definition as follows:

A proceptconsists of a collection of elementary procepts which have the
same object.

In this sense we caalk about theprocept6. It includes therocess of

counting 6 as well as the number concept 6; it also includeiegtion

of other representatiorsich as 3+3, 4+2, 2+4x3, 8-2, etc All of

these symbolgare considered by the child to represent the salject,

though obtained through differeptocessesBut it can be decomposed

and recomposed in a flexible manner. (Gray & Tall, to appear)

The procept of number for successful mathematictdinker allows a
number like 12 to represent a whole variety of different forms: 10+2,
two sixes,four threes, and so on. It is this flexibility whigies the
child a generative system not only for giving mutual support for already
known facts, but also to derive new faétem old with very little
effort.

Children who aresuccessful develop a flexible way of thinking in
arithmetic which allows them to decompose and recompose procepts in
a way which gives them great power. Those who are mlash
successful searithmetic more as counting procedures. Subtraction for
the more able is no more complex than addition, if 4+2 equals 6,
then 6 take away 4 must be 2. The additive triple 4,2,6 gives a
proceptual structure which allows 6 to be composed and recomposed so
that subtraction is just a different way of viewing addition.

The less successful child tends to be more procedural. The reverse of
the processof addition is theprocessof subtraction. If addition is
“count-on” then subtraction is “count-back”, so 19-16pe&formed by
counting 16 numbers down starting one below 19! This is da&ader
task than the use of derived factssliows why “slowlearners” are so
likely to fail. They are performing significantly harder mathematics

Children are faced with the transition to algebra must builtheir
previous experiences, particularly in arithmetic. They brivgry
different views of symbolism and are likely toterpret algebraic
symbolism very differently!

Procepts with built-in procedures for computation

Arithmetic procepts such as 5+3 have a built pnocedure for
computation: for instance, “count-on 3” as “6,87, Algebraic procepts

only have apotential procedure for computation. To successful
mathematician the expression Z+H3eans both the process “add 2 to 3
timesx’ and also the concept, the expression “2HBat can bereated

as a procept and be decomposed and recomposed or manipulated as an
object in part of a larger expression. Tpr@cess within the expression

can only be carried out when the valuexa$ known. Thus it represents

a conflict with all previous experienc&ome children, alreadymore



flexible with arithmetic, may be able to cope with “add twothoee
timesx, whatever x i§ and even think of the result as an object. But
those children who see symbolism more as a procedure to be carried out
have no hope of making amsgnsenvhatsoever of algebraic notation. It
represents a process that cannopédormed, acomplication that they

don’'t understand. If we don’t know we can’'t do the sum, if we do
know x, why complicate matters using letters, why not a@alinary
arithmetic?

A cybernetic approach using a computer

The programming and evaluation of expressions can be of great value in
giving meaning to algebraic symbolism. Communicatibatween
individuals involves all sorts of non-verbal meanings ahddes of
willingness to communicate, or misconceptions about whabther is
saying. If one “talks” to aomputer, by typing in commands, and the
computer responds in a predictable way, then this very predictability
can give meaning. i has the value 3, then one soon gets to the position
that the comman®RINT x+2 will give 5. And it will happenevery
time.

In Tall & Thomas (1991), we extend&kemp’snotion of building
and testing concepts, to alldar interaction with the computeWVhilst
interaction with concrete objectequired the individual tdnterpret
what was going on, interaction with a computer programmed to respond
in a predictable way offered@berneticsystem in which the individual
could build and test concegdisst by observing whahappens and then
predicting and testing what happens. This offers a more secure method
of building and testing.

Programming to focus on the concept of expression
By typing in the expressions:

x=3

PRINT x+2

the computeris carrying out the process. The chaleeghe result of the
process. At this stage the child may thittkrough the process to
confirm what the computer is doing.

If the child considers the meaning of

PRINT 2%(x+1)

then the meaning of the brackets can be built and teBStedx=3, the
result 8 can only be got by adding the valua td 1 before multiplying
by 2. “Do operations in brackets first”.

If two different-looking, yet equivalent expressions are evaluated,
such as
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x=1
PRINT 2*(x+3)
PRINT 2*x+2*3

the child can note that the two different methods give the same result.
The program

10 INPUT x
20 PRINT 2*(x+3)
30 PRINT 2*x+2*3

will give the same resulteshatever the value of x that isput Now

each time it igun, the child willseethe samenumbers. Checking the
computation recedes from thahild’s focus of attention. Instead it is
possible to focus on the fact that the two expressions always give the
same output. In this way, equivalence of expressions can become the
focus of attention instead of thkfferent procedures which aresed to

carry out the computations.

The Cardboard Maths Machine to focus on the process

In a separate activity the children took part in a game which involved
playing the part of the computer in performitige calculations, so that,
at a different time, they could concentrate on (a model of)irther
workings of the computer. Whilst the programming activityolved
the child focusing on the expression itself and the values it gave, the
game focused primarily on tipFocessof evaluation.
The activity involved acardboard maths machin&vhich consists of

just two largesheets ofcardboard and some smaller cards marked with
letters and numbers. One piece of cardboard acted as a screen and
programming instructions werglaced on the screen and thesrried
out by members of a group of pupils. The other piece of cardboard —
placed a short distance away — had a number of rectangles marked on it
which represented computer stores. Each could be labelledidiyen
placed above the store and each labelled store could hauenber
placed. Thus to carry out the instructions

A=1

B=A+3

PRINT B+2

involves marking a store with the label A and placing the number 1
inside, then labelling another store B, looking inside the store fikdo

the value 1, adding 3 to get 4 and placing it in the store B, and finally
looking in the store B, noting the number 4 inside, adding 2 and placing
the number 6 back on trgheet ofcardboard representing the screen
(figure 3).
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A=1 [:] Ji——- Eg§i]
B=A+3 !

PRINT B+2

=l 8

figure 3: The cardboard maths machine

The Computer Maths Machine to focus on standard notation

A further activity involved the use of a piece of software which allowed
the use of standard algebraic notation (including implicit multiplication)
to compute the values of one, or two, expressions for given wglues
of letter variables.

Here the software simply carried out the computation ofvéhae of
the expression, allowing the child to focus mainly on the output, and
whether two expressions gave the same, or different ougpués for
different values of the variables (figure 4).

UARIABLES

x y z
COHSTARHTS
FUHCTIOHS

2x+2i 2(x+i)

Choose from:

M:Make Maths. Machine
U:Change wvariables
I:Inpu variable values E:End

figure 4 : The Algebraic Maths Machine

Working with the algebraic maths machine cleafbcuses on the
productof computing the numerical values of algebraic expressions, just
as the cardboard maths machine involves the children acting out the
process

Thus, at different stages, different aspects of process and olgeet
selectively given amppropriate focus irorder to produce amore
versatile form of learning.
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Empirical evidence for success

The results of empirical studieshows significant improvement
overcoming cognitive difficulties and in acquiring a more versatile
insight into the meaning of the algebraic symbolism (Tall & Thomas
1991). Whatwasparticularly clearwas that those whaere successful
with the computer activities had a different image of the meaning of the
symbolism from those with a traditional approach.

In interview, children who hadsed the computer showednaore
meaningful use of expressions which enabled them to be composed and
decomposed in a flexible way-or instance, when faced with the
problem of solving the equation:

2p—1=5,

a proceptual approach might be to note thap#1l2was 5, then®@had
got to be 6, sp must be 3, whereas a procedural approach would be to
“add 1 to both sides, to gep26” then “divide both sides by 2 to get
p=3".

One of the most striking differences occurred when children who
had solved this problem were faced with

2s-1=5.

Typically in interview (Tall & Thomas 1991), control childremere
either unsure of the relationship between the two equations:

Pupil C1 :scould be 3 as well
Pupil C4 : They could both equal 4

or they would need to go through the process of solution yet again to
find thatsis also 3.

Pupil C2 : Well what | have put ip2quals 6 ands2equals 6,

Pupil C5 :2s...addthe 1 and 5, 6 er 2 and 2, 6ti@es, sosis 3 as
well.

They may be aware that the solutions assentially the same, but they
feel that solving an equation involves going through a procedavhieh

Is essential to do to getiight, even though in thisasethe procedure
was easy because it had beenessencedone before. Typically the
experimental children were more likely say that it is “thesame
equation”:

Pupil E1 : Icansaythatp ands have the samgalue...itsthe same
sum.

Pupil E5 : The same. Just using a different letter.

Reviewing the data in the light of the new theory of proceptseems
that the moresuccessfuchildren were more likely to have a flexible
proceptual view of the symbolism that they could manipulatee
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successfully with meaning, whilst the control children were more likely
to feel the need to use approved procedures to solve the equations.

In practice, theprocedurefor solving equations was emphasised in
the teaching of all childrenrather than the proceptual nature of the
equation, that it was the same concept represented by different algebraic
processes. As a result most children were more likely to give a
procedural response, although the experimental childfewedtheir
more flexible knowledge in other waydpr instance, through
recognising the fact that the actual letiesed in the equation was
irrelevant. Proceptuaknowledge could surface in the middle of
procedural activities. For instance, one child began solving

X-5=X%x+1
by rearranging to get
3X = X+6

and then suddenly saw that the extian the left must balance tlextra
number on the right, sa is 6. By using flexible cues again the
proceptual thinker carseethrough a problem where procedural
thinker might need to follow through a formal procedure.

Data which we do not have, which would be interestingetek in a
future experiment is the relationship between fttiald’'s earlier
proceptual/procedural view of arithmetic and thesubsequent
proceptual/procedural view of solving equations. It is natural to
hypothesise that those with a flexible proceptual view of arithmetic are
more likely to have a flexible proceptual view of algebra, and ttiat
would be improved significantly by the use of the computer approach.

The role of procepts in arithmetic, algebra and calculus

We have seen iarithmetic the great difference between the proceptual
approach of the morsuccessful and thprocedural approach dhose
who are less likely to be successful. We hypothesise that this will have a
significant effect on the pupil'ssuccess inalgebra. Indeed we
hypothesise that children who have a procedural view of symbolism are
likely to have limitedsuccess of g@rocedural kind in algebra, and are
more likely to fail in the long-term in algebra. Wwgpothesise that
those children who are already treating arithmetic symbolism in a
flexible proceptual way are more likely to be able to cope with the
duality of the symbolism in algebra.

The one piece of evidence qur earlier research is one that we did
not fully understand when it first surfaced. Children were asked:

Is% the same as 6+7?

— 14—



76% of the experimental group respondgds” but only 44% of the
control group. Using our current theoretical perspective wesaggest
that this essentially concerns the procepnatiure of the fractions.
Commentdrom the control groupndicated that the two were not the
same because

% is a fraction, 67 is a sum ".

This reveals the perception of 6+7 aspeocessinvolving value-
operation-value rathethan as a single entity produced by this process.
This was not such aroblem for the computer group. This may be
interpreted asuggesting that the experimenggbup were more likely

to have developed a proceptual view of arithmetic notation as a result of
the computer treatment than those following the traditional approach.

What we now see ithe fundamental role of th&tudent’sperception
of notation. In arithmetic there is a spectrum of interpretation from the
successfulflexibility of the proceptual thinker to the more limited
success of thprocedural thinker. But in arithmetic the procepts have a
related internal procedure (e.g. counting) which allows the value of an
arithmetic expression to be calcutlated.

In algebra the notation again functions dually as process and concept,
but here the process is onbptentially successful. It is not possible to
evaluate an expression numerically without knowing the numerical
values of the variables. This is likely to produce an obstadieatming
which has been called “the expected answer obstacle”, or the “lack of
closure” obstacle. It has long been known that mahydren are
uncomfortable with algebraic symbols which cannot be computed.

It may be hypothesised that this obstacle will here serious to
procedural thinkers in arithmetic than to proceptual thinkers, although
even the latter may find it difficult when it is first met.

| propose that a procept which has a builtynocedure for
computation is called amperationalprocept, following Sfard (1990). A
procept as met in algebra, which onbecomes operationalvhen
appropriate values are substitutedfor variables will be termed a
template procept. The template terminology is becoming popular in
computer science where a template contains place-hdlolersariables.
Other template procepts include

J':f (x) dx

which can only be computed when specific valases substitutedor a,
b and a specific function is substituted fox).

Students have difficulties when they mdehit concepts in the
calculus. These too are often procepts where a notation such asdim
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represents both the processspfapproaching a limiting value aralso

the value of the limit itself. Cornu (198hasremarked on howthis
causeddifficulties with studentsbecause thdimit can no longer be
computed by simple arithmetic, but oftereeds to be attacked by
indirect means using establishéeorems. | ternsuch a phenomenon a
structural procept, againg using an adjective popularised Sfgrd
(1990), although I must take the responsibifity the meaning given
here. Note that a structural procept can also be of the template variety if
it includes variables or place-holders for general inputs.

At this advanced level in calculus and analysis the tempktige of
procepts islesslikely to causedifficulty. But the structuralnature,
which conflicts with previous experience of the student that a procept is
in principle computable by a simple procedure (at least potentaile
variables are substituted in), violates the implicit belief in the implied
operational nature of procepts.

Thus weseethat proceptual nature of mathematical notatioeath
stage implicitly obeys certain rules which may be violatediaher
stages. These implicit beliefs constitute genuine epistemological
obstacles in the cognitive growth of the subject.

The proceptual divide

Eddie Gray and | contend that the spectrum of interpretation of
proceptual symbolism from procedure to be carried out, to flexible
procept dually representing either process or resultant objeeids to

a spectrum ofsuccessand failure in mathematicGray & Tall, to
appear). In analysing the nature of the procedures employed in
arithmetic, we often found that the procedures were far hatdar
flexible proceptual methods. For instance, in computing 16-13,
procedural thinkers would almost always attempt to count tradieen
numbers starting with 15, whilst proceptual thinkers would simply see
the tens cancel and the result as 3. thérefore hypothesise thathose
who find mathematics difficult are often forced into even more difficult
procedures for solving specific problems.

In the developing compression of notation in which symbols initially
representing a process are compressed into objects that can be
manipulated, the successftiiinker reduces stress by manipulating
symbols as objects instead of having to think of symbofg@sedures.
Procedures require more short-term memory store tiampressed
objects and therefore are eventually harder to handle.

This leads to an ever-widening gulf between sheessfuproceptual
thinkers and thdess successfyirocedural thinkers which we call the
proceptual divide
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Summary

Adult mathematicianssee mathematicilom a mature viewpoint in
which the structures have great richness iateriority. Theytherefore
have a perception of simplicity in which this structural richness plays an
implicit fundamental role. Learners do not yieave this conceptual
richness. In achieving steady compression of knowledgeeful
analysis shows the way in which processes of computation and objects of
mental manipulation can be represented by notation 8tahds
ambiguously and duallyor both. A child’s conception ofarithmetic
goesthrough such stages ofompression from procedures obdunting

to concepts ofarithmetic. Children’s differingviews of arithmetical
processes and concepi® likely to give them different perceptions of
algebra and algebraic notation. A procedural view of arithmetic may
lead to the interpretation of an algebraic expression as a proteds
cannot be carried out anchuse aconsiderable conceptual obstacle,
which, even if overcome, may lead to a procedural view of algebra. On
the other hand, a flexible, proceptual, view of arithmetic, manipulating
symbols so that known relationships can be used to deduce d&octsed

IS more appropriate to form a foundation for meaninghanipulation

of algebraic symbolism.

Whilst it is natural toseek number patterns as an extension to
arithmetic, this involves cognitive difficulties which may not give the
best route into algebra. Computer programming and softwarearan
out the actual evaluation of algebraic expressions whilst the child can
concentrate on the meaning of the symbolism. Practical activities can
dually focus on the process of evaluation. Empirical evidence shows that
this offers a way into algebra that enables children to give the symbols a
more powerful meaning.
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