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Introduction

The major focus of theliscussion of the PMBNorking Group will be on
theories of cognitive development approprifde undergraduate learning of
advanced mathematical concepts. Two of the papers (DubinSiard)
concentrate on the encapsulation/reification of process as object to give an
operational approach to mathematics. A third (Artigue) considers the need to
introduce a concept as a tool to solve a problem before making it the object of
reflection at a higher level. The purpose of this paper is to remind ourselves
that the formal presentation @dvanced mathematics @urrently through
definition and proof. After all, if one cannot define what a “group” or “vector
space”is, how can one begin to make general statements about it? It is by no
means my contention that a formal approach is the best way toddaamced
mathematics, but we, as educators, must reconcile any cognitive approach with
that development pursued by the wider community of mathematicians of
which we are part. This must be done either by meeting the community beliefs
part way, or offering a viable alternative.
The fundamental question | pose is this:
* How can studentsequiring insight into formaimathematics be
helped to make the difficult transition to @efinition-proof

construction of knowledge? (This in itsequires a theory of
how such knowledge construction works).

This is not to say thall studentgequire such a transition, indeed there may
be a whole spectrum of approaches appropriatethe needs of individual
students and only a small minority may need to address this problem.

Operational Mathematics prior to Formalism

In preparing studentsfor formal mathematics, | agree with Sfard that
“operational mathematics should precetieicturalmathematics” but | would
add the qualificationn the earlystages When a formal approachas been
used several times, such an approach to mathematics can hesmifne



operational and so — foadvanced mathematical thinkers — the compression
and power of the formal approach can become a natural mode of operation.

It should also be emphasised that tirewth of human thought in the
individual builds on what that individual already knows. In early encounters
with the process of encapsulation — counting becommogber, addition
through counting-on becoming sum, repeated addition becoming
multiplication — it is quite clear that children need to go through the process
first to be able taconceive of the object at a later stage. Children who can
carry out the procedure of counting but have not encapsulated it as the concept
of sum find multiplication very difficult, even impossible.

But the process of encapsulatitiself can be encapsulated. Theore
advancedhinker can realise that a new construction will lead to a kind of
object whoseproperties can be investigatbdforeor at the samé¢ime asthe
individual is becoming familiar with the process required to construct it. By
using alternative representations (often visual), meaning can be given to
objects produced by processes before those processes are studied in detail. For
instance, the notion of a solution to a differential equation can be given
geometrical meaning as an object — a solution path in the plane having
prescribed gradient — before the methods of soluhemselvesre studied. |
would therefore contend that much more flexibfedes of learning are
available to advanced mathematical thinkers than just the need to first routinise
a repeatable action as a process and then to encapsulate it.

More generally, mathematical objects become easier to undenstzad
they can be fitted into a meaningful cognitive context which may not be
through “encapsulation of a process as an object”. Tase of complex
numbers — where the process of taking the square root of a negatnkser
wascarried out without giving a meaning b1 for a century and a half —
was given meaning through representation as points in the plane. In the 1830s,
when a complex integral could Iseen interms of properties of visiblpaths
in the plane, all discussions of the “meaning” of complex numbers evaporated.

The roles of symbols and other representations are also vital in
understanding the process of encapsulation of a process as an\Glgdang
with Eddie Gray with young children, we now see a wide chasm betinese
who flexibly manipulate number symbols, deriving new fdoten old, and
those who always need to carry out a counting procedure. It is the flexible use
of a symbol to evoke either a process of computation or the product of the
process that proves to be central. In defining@eptto be a combination of
three things — a process, an object produced by that process, and a symbolism



to denote either of these — we are only giving a name to an established concept
in the minds of children. Dubinsky is right say that it is nanore than the
encapsulation of a process as an object. However, it hmsra profound
function. Giving the name “procept” to this concept essentailyapsulates the
process of encapsulation itsedfllowing it to be manipulated on a higher level.

An old colleague of mineBernard Scott, saidBy giving a name to
something, you acquire power over it". lessence byusing the name
“procept” we can begin to formulate the concepen€apsulation agart of a

wider theory.

Indeed, we can begin to talk about different kinds of prodeptjnstance,
operationalprocepts, such as 3+2, which have a built in proceduiigpute
the resulttemplateprocepts, like 3+2 which have an implicit process (add 3
to 2 timesx) but can only be computed when a vafoe the symbol x is

n2
not have an obvious procedure of computation (it can be doneoimplex
contour integration!). There is empiricalidence to support theypothesis
that intuitive beliefs in operational procepbom arithmetic can confuse
students when meeting template procepts in algebra, and structural procepts in
analysis causéurther confusion, since each concept fails work in ways
which seem implicit in earlier instances.

Symbolism plays a powerfulrole because it allows compressed
communication to occur between individuals who can give the symbolism a
meaning. A number worduch as “five” can beaid can beheard can be
written, can beread so that thesensesbegin to endow it with a shared
meaning as concrete as a physical object. However, symbolism alone, without
any sense oimeaning can, as Skemp says, lead to “rules without reasons” or,
as Sfard observed at Assisi, “processes without objects”. Meaning which links
the new ideas tother already functioning cognitive structures is clearly a
major advantage.

The cognitive function of “meaning” isstraightforward. Short-term
memory skills are very limited. The need to be able to cope gidat
complexity can only be solved by compression of knowledge, in which
symbolism often plays a centredle. The ability ofsome symbolism tevork
dually, evoking either a known process to compute a result, or an object to be
manipulated at a higher level, is particularly favourable to redwocmitive
stress. Likewise the ability to link new ideas to old representations in the mind

substituted into the template, astfuctural procepts, such ay L which do
n=1



which themselvesre in a form thatan be readily manipulated can only
increase the chances of success.

The transition to formal mathematics

The transition from operational, or representational, or other forms of
intuitive mathematical knowledge to formadathematics stilfequires serious
study. Indeed | commend this study as a central tépicfuture empirical
investigation and theory-building in the Advanced Mathematical Thinking
Working Group. Although conflictdbetween concept images and concept
definitions have often been documented, what papers are available in the
literature that seriously study the process of definition—pmfelopment?
Without understanding this process, how can pvepare studentsfor the
transition to this form of thinking?

In a mathematical treatment a definition is given (perhaps in conjuction
with some examples) and then theorems are proved about any whjeht
satisfies the definition.

Cognitively this involves serious difficultieszor instance if a “group” is
defined as a s&b6 and a binary operation satisfying certain properties, is
there actually a “thing” called “a group”, aspposed to manydifferent
examples which satisfy theropertiesof the group definition. When prove
properties of “a group”, am | thinking of specificinstanceof a groupfrom
those that | know, om prototypeof a group which is “typical” of a range of
examples, or am | to think of an abstract thing called a group?

For, if there is to be &hing called a group”, then this thing musatisfy
all the properties that can be dedudesin the definition andonly those
properties. In practice thereforeayhat a mathematiciasees as‘proving”
theorems about groups can cognitively involve ttenstruction of the
properties of “a thing called a groupFor instance, wean call itG, and it
has a unique identity which we ca&] and every elemerd( ]G has aunique
inverse a1 satisfyingeal=a and powers of elements defined bi~a and
arl=gnega satisfy propertiesuch asamean=amn etc, etc. All thesgroperties
must be provedrom the definitions bystudents who already know that they
are trivially true in all the known examples. As the chain of deducfrows,
the links may seem weaker and the status of resultsatbgbroved anthose
that are known may become confused. (I @nember beingonfusedfor a
time over 2+2=4, which knew but | needed t@rovein a new thing called a
field”. And if | could do this, could provethat 20 wasbigger in anordered
field than 16?)



When writing Foundations of Mathematiagith lan Stewart, we faced this
dilemma by stopping at various points and establishing that céftmts”
could now be assumed in the given context without quotingroef. For
instance, once we had established fiptdperties, we could nowse these
without proof, but concentrate on new properties to do witter, then when
these were established we moved on to a new level where arithmetederd
were assumed without further proof, but completeness properties needed to be
established with painstaking detail. This pragmatism had some measure of
practicalsuccesdut it wasnever empirically tested in any experimeagsiher
than noting that it seemed to work.

Studentsare quite capable of using definitions in serendipitous ways, for
instance, using different versions appropriate for diffee@mples, as in the
following quote referring to limits of functions:

And | thought about all the definitions that we dedh, and | think they’reall right —

they're all correct in avay andthey’re all incorrect in away because they can only

apply to a certain number @iinctions,while others apply to othdunctions, but it's

like talking about infinity orGod, you know.Our mind isonly so limited that you

don’t know the real answer, but part of it. (Williams, 1991, p. 232)

In other contexts definitions operate descriptions For instance, in a
dictionary, the definition of a word simply evokes a context in whichwtbed
already has a meaning. It evokes an idea which the individual is expected to be
able to put in context. In early school geometry the definitionshapes such

as triangles, squares, rectangles often act more as descriptions than definitions.
Is a square a rectangle? What are the definitions? Caprgee a square is a
rectangle? Ansosceledriangle is a triangle with two equal sides. Can you
prove that anisosceledriangle has equal base angles (avide-versa).Proof

here is often seen as coherent relationships between definitions which function
as much todescribethe objects as tdefinethem. So it is that thetudent's
concept image of definition arroof, based on previous experience, may be

at odds with the notions of definition and proof in advanced mathematics.

The case of vector spaces and groups illustrate some of the prdhkads
by the student. Examples given of these two mathematical olgeeubtly
different. Examples of vector spaces tend to be given geometrically, as vectors
in two or three dimensions, with vector addition and scalar multiplication
having physical meanings. In essence, examples/eator spacesinvolve
familiar describedgeometrical objects.

Examples of groups are different animals. Oftendleenents of examples
of groups are transformations, farstance, permutations of a finite set, or
transformations of a geometric figure with given symmetries. Thleseents



are dually processes(transformations), which arecomposed by being
performed sequentially, andobjects (elements of thegroup). They are
procepts

This ambiguous use of symbol as process or object allows the exgkpt to
between one conception and the other. But itcarsegreat difficulty with a
student in the early stages, which may accdontsome of the difficulties
experienced by students meeting groups in this ¥y the first time.
Certainly the operationadspects ofgroups, with the strangeness of lack of
commutativity, and the dual meaning of elements as process and phjeet,
to be more difficult than the operationakpects ofvector spaces. The
difficulties are then compounded when the transition to a formal approach is
attempted in either case.

Summary

| am sorry not to give a clear answer to the question | have posed — to explain
how students can make the transition taledinition-proof construction of
knowledge. However, it is one role of an initiator irdigcussion meeting to
pose questions for others to discuss. | can see that there is mileage in an initial
operational approach to build up a concept image appropf@telater
formalities, indeed the notion of a tool-object dialectic highlighteichéle
Artigue’s paper is also consonant with thigcause it advocates timaplicit
use of mathematical ideas as tools to solve problems prior to reflectiomto
them into mathematical objects.

| also believe strongly in the neeir versatile knowledge in which
symbolism can act as a pivot between prodessaction and concept for
manipulation, and other representations cansélectedfor use when they
present information in a more appropriate manner. As the individual is
sucessful amore subtle modes of operatiorsdegreater flexibility available
in learning strategies. | find it inappropriate docept “universal rules” that
say that one mode of operatiorust at all timegprecede another.

| seethe notion of encapsulation/reification of process into objechase
clearly defined by the pioneering work of Sfard and Dubinskgch giving
clearer indications how thmechanisms mightvork. But | do notsee this
encapsulation acting in isolation as thely mechanisnfor constructing new
knowledge. In particular, waeed to attend to the methods of knowledge
construction used bguccessful mathematicians. Such methaws also likely
to be appropriate fosome of ourstudents who willgrow into successful
mathematicians. But they may not be appropriate for many sthdents who
will undoubtedly need methods appropriate to their own needs.
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