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Introduction

The major focus of the discussion of the PME Working Group will be on
theories of cognitive development appropriate for undergraduate learning of
advanced mathematical concepts. Two of the papers (Dubinsky, Sfard)
concentrate on the encapsulation/reification of process as object to give an
operational approach to mathematics. A third (Artigue) considers the need to
introduce a concept as a tool to solve a problem before making it the object of
reflection at a higher level. The purpose of this paper is to remind ourselves
that the formal presentation of advanced mathematics is currently through
definition and proof. After all, if one cannot define what a “group” or “vector
space” is, how can one begin to make general statements about it? It is by no
means my contention that a formal approach is the best way to learn advanced
mathematics, but we, as educators, must reconcile any cognitive approach with
that development pursued by the wider community of mathematicians of
which we are part. This must be done either by meeting the community beliefs
part way, or offering a viable alternative.

The fundamental question I pose is this:

• How can students requiring insight into formal mathematics be
helped to make the difficult transition to a definition-proof
construction of knowledge? (This in itself requires a theory of
how such knowledge construction works).

This is not to say that all students require such a transition, indeed there may
be a whole spectrum of approaches appropriate for the needs of individual
students and only a small minority may need to address this problem.

Operational Mathematics prior to Formalism

In preparing students for formal mathematics, I agree with Sfard that
“operational mathematics should precede structural mathematics” but I would
add the qualification in the early stages. When a formal approach has been
used several times, such an approach to mathematics can itself become
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operational and so – for advanced mathematical thinkers – the compression
and power of the formal approach can become a natural mode of operation.

It should also be emphasised that the growth of human thought in the
individual builds on what that individual already knows. In early encounters
with the process of encapsulation – counting becoming number, addition
through counting-on becoming sum, repeated addition becoming
multiplication – it is quite clear that children need to go through the process
first to be able to conceive of the object at a later stage. Children who can
carry out the procedure of counting but have not encapsulated it as the concept
of sum find multiplication very difficult, even impossible.

But the process of encapsulation itself can be encapsulated. The more
advanced thinker can realise that a new construction will lead to a kind of
object whose properties can be investigated before or at the same time as the
individual is becoming familiar with the process required to construct it. By
using alternative representations (often visual), meaning can be given to
objects produced by processes before those processes are studied in detail. For
instance, the notion of a solution to a differential equation can be given
geometrical meaning as an object – a solution path in the plane having
prescribed gradient – before the methods of solution themselves are studied. I
would therefore contend that much more flexible modes of learning are
available to advanced mathematical thinkers than just the need to first routinise
a repeatable action as a process and then to encapsulate it.

More generally, mathematical objects become easier to understand when
they can be fitted into a meaningful cognitive context which may not be
through “encapsulation of a process as an object”. The case of complex
numbers – where the process of taking the square root of a negative number
was carried out without giving a meaning to -1  for a century and a half –
was given meaning through representation as points in the plane. In the 1830s,
when a complex integral could be seen in terms of properties of visible paths
in the plane, all discussions of the “meaning” of complex numbers evaporated.

The roles of symbols and other representations are also vital in
understanding the process of encapsulation of a process as an object. Working
with Eddie Gray with young children, we now see a wide chasm between those
who flexibly manipulate number symbols, deriving new facts from old, and
those who always need to carry out a counting procedure. It is the flexible use
of a symbol to evoke either a process of computation or the product of the
process that proves to be central. In defining a procept to be a combination of
three things – a process, an object produced by that process, and a symbolism
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to denote either of these – we are only giving a name to an established concept
in the minds of children. Dubinsky is right to say that it is no more than the
encapsulation of a process as an object. However, it has a more profound
function. Giving the name “procept” to this concept essentially encapsulates the
process of encapsulation itself, allowing it to be manipulated on a higher level.
An old colleague of mine, Bernard Scott, said “By giving a name to
something, you acquire power over it”. In essence by using the name
“procept” we can begin to formulate the concept of encapsulation as part of a
wider theory.

Indeed, we can begin to talk about different kinds of procept, for instance,
operational procepts, such as 3+2, which have a built in procedure to compute
the result, template procepts, like 3+2x, which have an implicit process (add 3
to 2 times x) but can only be computed when a value for the symbol x is

substituted into the template, and structural procepts, such as 1
n2

n=1

∞

∑ which do

not have an obvious procedure of computation (it can be done by complex
contour integration!). There is empirical evidence to support the hypothesis
that intuitive beliefs in operational procepts from arithmetic can confuse
students when meeting template procepts in algebra, and structural procepts in
analysis cause further confusion, since each concept fails to work in ways
which seem implicit in earlier instances.

Symbolism plays a powerful role because it allows compressed
communication to occur between individuals who can give the symbolism a
meaning. A number word such as “five” can be said, can be heard, can be
written, can be read, so that the senses begin to endow it with a shared
meaning as concrete as a physical object. However, symbolism alone, without
any sense of meaning can, as Skemp says, lead to “rules without reasons” or,
as Sfard observed at Assisi, “processes without objects”. Meaning which links
the new ideas to other already functioning cognitive structures is clearly a
major advantage.

The cognitive function of “meaning” is straightforward. Short-term
memory skills are very limited. The need to be able to cope with great
complexity can only be solved by compression of knowledge, in which
symbolism often plays a central role. The ability of some symbolism to work
dually, evoking either a known process to compute a result, or an object to be
manipulated at a higher level, is particularly favourable to reduce cognitive
stress. Likewise the ability to link new ideas to old representations in the mind
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which themselves are in a form that can be readily manipulated can only
increase the chances of success.

The transition to formal mathematics

The transition from operational, or representational, or other forms of
intuitive mathematical knowledge to formal mathematics still requires serious
study. Indeed I commend this study as a central topic for future empirical
investigation and theory-building in the Advanced Mathematical Thinking
Working Group. Although conflicts between concept images and concept
definitions have often been documented, what papers are available in the
literature that seriously study the process of definition–proof development?
Without understanding this process, how can we prepare students for the
transition to this form of thinking?

In a mathematical treatment a definition is given (perhaps in conjuction
with some examples) and then theorems are proved about any object which
satisfies the definition.

Cognitively this involves serious difficulties. For instance if a “group” is
defined as a set G and a binary operation •  satisfying certain properties, is
there actually a “thing” called “a group”, as opposed to many different
examples which satisfy the properties of the group definition. When I prove
properties of “a group”, am I thinking of a specific instance of a group from
those that I know, or a prototype of a group which is “typical” of a range of
examples, or am I to think of an abstract thing called a group?

For, if there is to be a “thing called a group”, then this thing must satisfy
all the properties that can be deduced from the definition and only those
properties. In practice therefore, what a mathematician sees as “proving”
theorems about groups can cognitively involve the construction of the
properties of “a thing called a group”. For instance, we can call it G, and it
has a unique identity which we call e, and every element a∈ G has a unique
inverse a–1 satisfyinga•a-1=a and powers of elements defined by a1=a and
an+1=an•a satisfy properties such as am•an=am+n etc, etc. All these properties
must be proved from the definitions by students who already know that they
are trivially true in all the known examples. As the chain of deduction grows,
the links may seem weaker and the status of results that are proved and those
that are known may become confused. (I can remember being confused for a
time over 2+2=4, which I knew, but I needed to prove in a new thing called a
field”. And if I could do this, could I prove that 210 was bigger in an ordered
field than 103?)
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When writing Foundations of Mathematics with Ian Stewart, we faced this
dilemma by stopping at various points and establishing that certain “facts”
could now be assumed in the given context without quoting a proof. For
instance, once we had established field properties, we could now use these
without proof, but concentrate on new properties to do with order, then when
these were established we moved on to a new level where arithmetic and order
were assumed without further proof, but completeness properties needed to be
established with painstaking detail. This pragmatism had some measure of
practical success but it was never empirically tested in any experiment other
than noting that it seemed to work.

Students are quite capable of using definitions in serendipitous ways, for
instance, using different versions appropriate for different examples, as in the
following quote referring to limits of functions:

And I thought about all the definitions that we deal with, and I think they’re all right –
they’re all correct in a way and they’re all incorrect in a way because they can only
apply to a certain number of functions, while others apply to other functions, but it’s
like talking about infinity or God, you know. Our mind is only so limited that you
don’t know the real answer, but part of it. (Williams, 1991, p. 232)

In other contexts definitions operate as descriptions. For instance, in a
dictionary, the definition of a word simply evokes a context in which the word
already has a meaning. It evokes an idea which the individual is expected to be
able to put in context. In early school geometry the definitions of shapes such
as triangles, squares, rectangles often act more as descriptions than definitions.
Is a square a rectangle? What are the definitions? Can you prove a square is a
rectangle? An isosceles triangle is a triangle with two equal sides. Can you
prove that an isosceles triangle has equal base angles (and vice-versa). Proof
here is often seen as coherent relationships between definitions which function
as much to describe the objects as to define them. So it is that the student’s
concept image of definition and proof, based on previous experience, may be
at odds with the notions of definition and proof in advanced mathematics.

The case of vector spaces and groups illustrate some of the problems faced
by the student. Examples given of these two mathematical objects are subtly
different. Examples of vector spaces tend to be given geometrically, as vectors
in two or three dimensions, with vector addition and scalar multiplication
having physical meanings. In essence, examples of vector spaces involve
familiar described geometrical objects.

Examples of groups are different animals. Often the elements of examples
of groups are transformations, for instance, permutations of a finite set, or
transformations of a geometric figure with given symmetries. These elements
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are dually processes (transformations), which are composed by being
performed sequentially, and objects (elements of the group). They are
procepts.

This ambiguous use of symbol as process or object allows the expert to flip
between one conception and the other. But it can cause great difficulty with a
student in the early stages, which may account for some of the difficulties
experienced by students meeting groups in this way for the first time.
Certainly the operational aspects of groups, with the strangeness of lack of
commutativity, and the dual meaning of elements as process and object, prove
to be more difficult than the operational aspects of vector spaces. The
difficulties are then compounded when the transition to a formal approach is
attempted in either case.

Summary

I am sorry not to give a clear answer to the question I have posed – to explain
how students can make the transition to a definition-proof construction of
knowledge. However, it is one role of an initiator in a discussion meeting to
pose questions for others to discuss. I can see that there is mileage in an initial
operational approach to build up a concept image appropriate for later
formalities, indeed the notion of a tool-object dialectic highlighted in Michéle
Artigue’s paper is also consonant with this, because it advocates the implicit
use of mathematical ideas as tools to solve problems prior to reflection to turn
them into mathematical objects.

I also believe strongly in the need for versatile knowledge in which
symbolism can act as a pivot between process for action and concept for
manipulation, and other representations can be selected for use when they
present information in a more appropriate manner. As the individual is
sucessful at more subtle modes of operation I see greater flexibility available
in learning strategies. I find it inappropriate to accept “universal rules” that
say that one mode of operation must at all times precede another.

I see the notion of encapsulation/reification of process into object as more
clearly defined by the pioneering work of Sfard and Dubinsky,  each giving
clearer indications how the mechanisms might work. But I do not see this
encapsulation acting in isolation as the only mechanism for constructing new
knowledge. In particular, we need to attend to the methods of knowledge
construction used by successful mathematicians. Such methods are also likely
to be appropriate for some of our students who will grow into successful
mathematicians. But they may not be appropriate for many other students who
will undoubtedly need methods appropriate to their own needs.


