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Introduction

 In our last article (Gray & Tall 1992), in response to the question

“Why is it that so many fail in a subject that a small minority regard as
being trivially simple?”,

we showed that

the more able are doing qualitatively different mathematics from the less
able.

A major source of the generative power of mathematics is in the use of
symbols which are used ambiguously to evoke both a process of
calculation and the product of that calculation. The amalgam of process
and concept, represented by the same symbolism we called a procept.
The more able treat such symbolism flexibly, as process or concept,
whichever is more appropriate in a given context, the less able tend to
conceive of mathematics more as separate procedures to carry out
computations. The manipulation of concepts is cognitively easier than
the coordination of procedures, and so the more able are doing an easier
form of mathematics than the less able. In a nutshell, the more able are
using flexible procepts, the less able, procedures. This difference in
mathematical thinking we termed the proceptual divide. We believe that
the proceptual divide is a major cause of the difference between success
and failure.

In this article we move on into concepts that occur in secondary
mathematics and through into advanced mathematics at the sixth-form
and university. We find that procepts abound in secondary mathematics,
and this leads to further divisions between success and failure at
subsequent stages. But the proceptual divide is now occurring higher up
the ability range, so that now more children are failing. Furthermore
the procepts that occur in higher levels of mathematics begin to take on
new features. In the earlier stages of mathematics, the associated
processes are given by explicit procedures, such as counting, use of
multiplication tables, algorithms for multidigit arithmetic, and so on.
But procepts in the sixth form will be found to include processes such as
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“tending to a limit” or symbolic integration where there may not be a
simple procedure to carry out the process. This leads to further
confusion. Those who need the security of a procedure to compute an
answer become unsettled by situations where concepts cannot be
computed directly by a single procedure. Thus the proceptual divide
widens into a chasm between the majority who have failed at some time
in their development and the few who continue to find mathematics
(proceptually) easy.

Procepts in secondary mathematics

Recall that we defined a procept to be a combined mental object
consisting of both process and concept in which the same symbolization
is used to denote both the process and the object which is produced by
the process (Tall & Gray, 1992). Procepts in secondary mathematics
involve processes that act on symbols which are themselves procepts.
They include:

• The notion of a fraction, say 
22
7   which represents both

the process of dividing 22 by 7 and the result of that
process,

• The algebraic symbol 3x+2 stands both for the process
“add three times x and two” and for the product of that
process, the expression “3x+2”,

• The trigonometric ratio sine = 
opposite

hypotenuse  represents

both the process for calculating the sine of an angle and
its value,

• The function notation f(x)=x2–3 simultaneously tells both
how to calculate the value of the function for a particular
value of x and encapsulates the complete concept of the
function for a general value of x,

• The derivative f'(x) of a function such as f(x)=sinx,
evokes both the process of finding the derivative and the
value of the derivative,

• The integral ⌡⌠  f(x) dx  evokes both the process of

calculating the integral and the symbolic function
produced by this process,
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• The notation lim
x→a

  f(x) represents both the process of

tending to a limit and the concept of the value of the limit,

• So does lim
n→∞  sn,

• and lim
n→∞ ∑

k=1

n

 ak  ,

• and lim
δx→0

 ∑
a

b

 f(x) δx  .

These procepts begin to take on more complex forms, for instance, the
derivative is given by an algorithm (if you know the derivative, write it
down, otherwise, use the formulae for derivatives of a sum, product,
composite etc to build up the derivative). The integral has several
associated algorithms (integration by substitution, integration of rational
functions, integration by parts, etc) but these only give the solution for a
limited number of special cases and do not guarantee an integration

formula in every case. (What is ⌡

⌠ 1

(sinx+lnx) dx  , for instance?)

Worse is yet to come.  We may know that Σ1/n3 tends to a limit l,
and be able to write

 lim
N→∞ ∑

n=1

N

 an  = l ,

using a notation that represents both the process of tending to a limit
and the value of that limit. Yet there is no simple procedure to calculate
the value of l.

The examples which follow look briefly at a number of different
procepts and consider the problems faced by pupils who see them
procedurally rather than proceptually. We shall see the proceptual
divide between those who succeed and those who fail, occupying a
moving position in the ability spectrum, so that, as the concepts become
more advanced, it is not only the less able who find them difficult, but
the less able amongst the more able!

Example 1: Fractions

A fraction is a classical example of a procept, for the notation 3
4 means

both the process – divide 3 into four equal pieces – and the product of
such a subdivision. The meaning of a fraction poses considerable
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problems. There are different procedures which produce the same
product: “divide three cakes between four people (and take one share)”,
“divide one cake into four and take three pieces”.

three quarters three quarters

There are also equivalent processes that produce the same product: 
3
4 , 

6
8

, 
9
12 , …

At the very simplest level, children see a difference between the
procedure and product, sometimes by using a different notation. For
instance, only 44% of a sample of 12 and 13 year old children following
a standard secondary mathematics course thought that 6÷7 meant the
same thing as 6 7, because “6 7 is a fraction, 6÷7 is a sum” (Thomas

1988).
For anyone who sees a fraction as a flexible procept, the arithmetic

of fractions is relatively trivial. For those who see it only as a routine
symbolic process to be learnt, it is likely to be meaningless. The
proceptual structure of the arithmetic of fractions is subtly different
from that of whole numbers. For whole numbers, multiplication is
repeated addition. For fractions this relationship is more deeply hidden.
Indeed, the algorithm for multiplication is actually simpler to carry out
than that for addition in a purely procedural manner. But if the child
has failed to master the flexible procepts of sum and product of whole
numbers, then the arithmetic of fractions is almost certainly impossible
to understand. The large number of children who fail to understand
fractions is consistent with a proceptual divide occurring at this stage.

Example 2: Signed number

Signed number is a good example of procept. The signed number “+3”
is both the process of “add on three” or “move three units right on the
number line” and also the position +3 on the number line. The signed
number “–2” is both the process of “subtract 2” or “move two units left
on the number line” and the position –2 on the number line.
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“Modern” mathematics attempted to distinguish between the concept
of the signed number +2 and the procedure “add two”. Signed numbers
were introduced by some schemes as transformations on the number
line (as a process of shifting the whole line to the right or left). New
notations such as black numbers (positive) and red numbers (negative)
were introduced so that “take away a red number” is conceptually
different from “add a black number”. As procedures these are different,
but as products, they are the same. The more successful child realises
that that –(–2) and +(+2) are the same, and it is this flexible use of
symbolism which gives them great power. The carefully worded
distinction between them, which may well be an important cognitive
stage to pass through in the learning process, involves considerable
difficulties which may freeze out the less able child, leading once more
to a proceptual divide.

Example 3: Algebraic notation

Traditionally algebra is often regarded as “generalized arithmetic”.
Thus 2x+2y means “when I know x and y, I can work out the sum of
twice x plus twice y”. To many children the symbolism 2x+2y means an
instruction to carry out a procedure, just as 2+3 is an instruction to add
2 and 3. But in the case of arithmetic they can produce an answer: 5. In
algebra the instruction 2x+2y is asking them to carry out an operation
that they cannot do. For children who regard 2x+2y only as a
procedure, it is a process that they are unable to carry out. It is the first
time the children meet a procept whose implicit process cannot readily
be carried out as a simple procedure to give an answer. It causes an
enormous conceptual obstacle, which Tall & Thomas (1991) call the
expected answer obstacle. These and other difficulties are catalogued in
greater detail in Küchemann (1981).

There are added problems with the algebraic notation as a process,
for instance, the learner may be confused with the order in which the
process is to be carried out. Instead of being read left to right, as with
normal speech, 2+3x must be organised with multiplication taking
precedence over addition as “first multiply 3 by x then add the result to
2”. Seeing it simplistically as a procedure reading from left to right may
lead to “2+3 is 5”, giving the erroneous answer “5x”.

These difficulties make algebra enormously problematic for less able
pupils who simply do not understand the proceptual nature of the
notation as both process and concept. By this stage in the curriculum
those who fail are a far greater proportion of the total population: they
not only include the leass able who were the focus of the first article but
also the less able of the more able. Such pupils see a procedure they
cannot carry out and are unable to encapsulate the meaning into a
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concept. Tall & Thomas used various techniques to give meaning to
algebraic notation, involving the pupils in action games (to carry out the
procedure), programming (to specify the procedure which was then
carried out by the computer) and appropriate software (which accepted
standard algebraic notation). Because the computer carries out the
procedure, the pupils are more likely to see that (2+3)x always gives the
same result as 2x+3x, but is usually different from 2+3x. So the
computer activity focuses their attention on the notation as product
rather than as process. By this method, more children were helped to
see algebra as procept, rather than as a collection of procedures to carry
out tasks (“multiply out brackets”, “collect together like terms”, “change
sides, change signs”, etc).

Again there is a proceptual divide between those who successfully see
the algebraic notation  as flexible procept and those who see it only as
process and fall into routines using instrumental procedures to carry out
computations. Those using the computer approach were more likely to
fall into the former category.

Example 4: Equations

The idea of an equation, such as
3x–1=5,

is one which will cause great difficulties to children who see an
algebraic expression as a process. It is much more likely to be
meaningful to those who see it as procept. Those who see the solution of
an equation purely as a collection of procedures which enable them to
carry out the process – “add the same thing to both sides”, “change
sides, change sign”, etc – are likely to be less versatile in solving
equations. Those who see each side as a procept, to be flexibly
decomposed and reorganized are more likely to solve the equation in a
meaningful and versatile way. The former might add one to both sides
to get 3x=6 and divide both sides by 3 to get x=2. The latter might see
that “one less than 3x is 5, so 3x is 6 and so x is 2”. A versatile thinker
seeing the equation as a procept would be able to recognize

3s–1=5
as the same equation, with solution s=2. The student solving by

procedure might even recognize it as essentially the same, but might
then need to go through the formal procedure to confirm the result.
Faced with the equation

3(s+1)–1=5,
the proceptual divide opens up clearly. The procedural student

multiplies out the bracket, collects together like terms to get 3s+2=5,
takes 2 from each side, and divides by three to get s=1. The proceptual
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thinker, able to chunk together the expression s+1 as a single entity, sees
once more the same equation, with s+1=2, so s=1.

In Tall & Thomas (1991), empirical evidence is given to show that
students using a computer approach to give meaning to algebraic
notation as product of a process are more likely to respond in the more
versatile way which we now hypothesize is due to thinking with
procepts rather than just procedures.

Example 5: Trigonometry

Trigonometric formulae are all
procepts. For instance, saying that

sinA = 
opposite

hypotenuse  

involves both process (to divide the length of the opposite side BC by
the length of the hypotenuse AC) and product, the number which is the
ratio of these two lengths. But it involves much more than this. It
involves the flexible ability to see that BC=AC sinA, and that
AC=BC/sinA, and to see these relationships in other triangles with the
same angles but having different sizes and different orientations. It
requires the flexibility to perceive that as the angle increases from 0˚ to
90˚ then the sine increases from 0 to 1 and to give meaning to the
singular cases when the angle is zero or 90˚ and the triangle ceases to
exist as a proper triangle. Later it requires the flexibility to extend to
the case when the angle increases beyond 90˚ or becomes negative.

Thus it is that children may learn the rule for the sine ratio, they
may even be able to carry out the process of calculating the ratio, but
unless they see the procept of sine as a plastic amalgam of related
processes and concepts, they will fail to understand trigonometry in a
meaningful way.

Once again, Blackett (1990) showed that pupils using a computer
program designed to enable them to link numerical data dynamically
with accurate geometric representations, are more likely to respond in a
versatile manner characteristic of procept rather than just procedure.

Example 6: The Function Concept

The function concept is another archetypal procept. As a process it is an
input–output machine, transforming an element x in the domain to an
element f(x) in the range. The composite of two functions is found by
coordinating the processes, one after the other, first transforming x to
f(x), then f(x) to g(f(x)). The difficult process of thinking of a function
as a concept is enshrined in the use of the symbol f to denote the

A B

C

opposite

adjacent

hypotenuse
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function and the composite gf of two functions f and g. Prior to the
advent of modern mathematics and set theory, the use of the symbol x to
(ambiguously) represent either a specific or a “variable” element
allowed the notation f(x) to represent the function both as process and as
concept. If x is a variable, then it embodies the whole process; for
instance if f(x)=x2, then f(x) embodies the act of taking any number x
and transforming it to x2. On the other hand, if x is a specific number,
say x=2, then f(x) is the corresponding value of the function, f(2)=4.

The function procept becomes more plastic as the learner gains
experience. It exists in several representations: procedural, numerical,
symbolic, graphical, tabular, ... The powerful way to use the function
procept is to be able to use whichever representation is appropriate,
moving from one to the other without any sense of transition, because
there is no transition – they are all the same procept.

Examples from more advanced mathematics

In advanced mathematics, procepts proliferate. The limit concept in its
various guises is regarded as both process and concept. For instance,
calculating the derivative of f(x)=x2 using the notation:

as h→0, 
f(x+h)–f(x)

h   → 2x

has a definite dynamical sense of h getting close to zero, whilst the
notation

lim
h→0

   
f(x+h)–f(x)

h  

is both process (h approaching zero) and product (the limiting value
itself). The process here has a less explicit procedure of calculation than
examples earlier in the curriculum. This limit process has many
representations: as numerical approximations, as a graphical image of a
secant approaching a tangential position, from “first principles” as a
symbolic manipulation to obtain an expression in which h can be
allowed to tend to zero, as a symbolic algorithm using theorems about
sum, difference, product, quotient or composite of functions whose
derivatives have been calculated from first principles, and so on. There
is the alternative notation:

dy
dx  = f'(x)

in which some insist 
dy
dx  is just a single symbol, but others allow it to be

a fraction representing the quotient of the y-component of the tangent
vector by the x-component.
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All the following manifestations of limit are simultaneously process
and product:

lim
x→1

 
x2–1
x–1 

lim
n→∞ 

1–xn

1–x  

∑
n=1

∞
 an 

lim
δx→0

 ∑
x=a

b
 f(x) δx .

In each case they represent both the process of calculating the limit and
the product of this process – the limiting value itself. But the process is
not always associated with an easy procedure for computation of the
limit and again behaves very differently from procepts in elementary
mathematics. Whilst a notation such as 3+2 conjures up in the mind a
specific procedure to calculate the answer (count on), the limit notation

∑
n=1

∞
 an 

does not evoke any way to calculate the value of the limit. The limits are
calculated by deriving facts in a completely new way by using an ε–δ
definition to develop a few special cases and a few general theorems
from which the results are deduced. Here there are “known facts” of

two distinct types : particular facts (such as ∑
n=1

∞
 1/n2  converges) and

general theorems (such as the comparison theorem which asserts that if

∑
n=1

∞
 an  is a convergent series with positive terms and ∑

n=1

∞
 bn  is a series

of positive terms with bn < an for all n, then ∑
n=1

∞
 bn  converges). New

“known facts” are derived from old ones by circuitous routes which
only serve to cause enormous confusion in the student meeting the ideas
for the first time.

Research shows most beginning university students conceive of a
limit as a dynamic process rather than the static limit concept and end
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up with all sorts of confusions (Schwarzenberger & Tall, 1977). They
fail to understand the deeply embedded cultural way that mathematicians
use ambiguity of notation to bridge the difference between process and
concept. It seems, too, that many mathematicians are unaware of this
explicit ambiguity in their thinking processes.

The computer and the principle of selective construction

Let us close on a positive note. We have seen that there is a qualitative
difference between the thinking processes of those who succeed and
those who fail in which the flexible use of symbolism plays an important
role. Might it be possible to improve the situation?

Initially it seems that we are in a catch-22 situation. The less able
remember fewer facts, so they have less in their mind to manipulate and
therefore rely on procedures which exist in time and impose greater
cognitive strain to coordinate. So it seems that the traditional way of
breaking up the difficulties into smaller steps will only make the
situation worse. It may give the less able an even greater number of
parts to coordinate. Perhaps the innate ability of the successful gives
them an advantage that cannot be bridged by those less fortunate.

All is not lost. A possible way ahead might involve reducing the
cognitive strain by allowing the learner to concentrate on the concept
without having to carry out the procedure to obtain it. The calculator
and computer can be of assistance here. We have intentionally used the
word “procedure” to describe the sequence of actions the child carries
out in the mathematics. Such a procedure is usually an algorithm that
can be programmed on a calculator or computer. This includes the
procedures of arithmetic, algebra, calculus, drawing graphs, solving
equations, etc.

We suggest that a learning strategy to reduce cognitive strain is to
separate out the doing of the procedure from the manipulation of the
concept and to do them at different times. Historically the child needed
to carry out the procedure to obtain the concept to manipulate. But if
the computer can carry out the procedure, it may be possible to allow
the child to concentrate on the concept without first doing the
procedure.

Consider the case of a pie-chart. The meaning of such a chart, that
bigger slices mean a bigger contribution, is apparent to a very young
child. Yet the process of drawing a pie-chart. does not occur in the
National Curriculum until level 6 when the child is in the early teens,
for it requires handling angles up to 360˚, calculating fractions of 360
and coordinating the measurement of angles in the picture. If a database
with graphical facilities is used to convert appropriate data into pie-
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chart form, the complicated arithmetic procedures can be circumvented
and the child can focus on interpreting the pie-chart rather than on the
intermediate process of making the calculation to draw the picture.

At another time it is possible to focus on the process of drawing a
pie-chart, thus separating the two events: the procedure of drawing and
the interpretation of the result. In this way one may select the portions
of knowledge that the child is asked to understand at a given time,
selecting some to be constructed by the child whilst others are
constructed (internally) by the computer.

The traditional sequence of learning first required that procedures
were practised until they were routinized and capable of being reduced
to subconscious action before the products of the processes could be
successfully manipulated and understood. By using the computer to
carry out the procedures, the learner can be focused on the products and
thus the higher level activities can be encouraged earlier and separately
from the processes. This reduces the cognitive strain and offers the
possibility of the less able breaking out of the proceptual divide wherein
they cannot master the procedure because it is too complex and they
therefore cannot encapsulate the procedure as a mental object because
the procedure causes too much cognitive strain. Thus the computer can
be used, by a process of selective construction, to encourage the
formation of flexible procepts in a wider range of ability.

This philosophy is already being used with success in the new 16–19
A-level. Students meeting the derivative for the first time do so by
magnifying the graph and if a small portion looks almost straight, then
the gradient of this (locally) straight segment is taken as the gradient of
the graph. Thus the students can conceive intuitively of the changing
gradient of the curved graph before they begin to look at the algorithms
for symbolic differentiation. Indeed, before they do symbolic
differentiation, they carry out numerical procedures to give arithmetic
methods of calculating the gradient of a graph.

Likewise, in solving a first order differential equation, they may use
a piece of software (The Solution Sketcher) which will draw a small line
segment of gradient given by the differential equation and use the
computer to stick small segments together to build up the concept of a
solution before studying the (numeric or symbolic) procedures to
calculate a solution.

In studying the Newton-Raphson method of finding a solution of
f(x)=0 by using a linear approximation to the graph near a root, again
students can use software to see the method in action, to build up the
concept before studying the symbolism and numerical calculations of the
method.
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Several research projects in various areas of mathematics show that
this is a promising avenue of development, in algebra (Tall & Thomas
1991), in trigonometry (Blackett 1990), in calculus (Tall 1986), and the
CAN project (Shuard et al, 1991) shows children improving their use
and understanding of arithmetic and number through free access to
calculators. These experiments do not show success for all children, but
the position of the proceptual divide between success and failure is
shifted in a positive direction. The philosophy of using the computer
and calculator to carry out certain processes whilst the child
concentrates on the resulting concepts is therefore a powerful strategy
to develop.

Conclusion

It has long been known that mathematics is a hierarchical subject and if
one does not understand one stage then the next stage becomes difficult
and the one after that is impossible. What we have attempted to do in
our two articles is to make this universal observation more precise.
What we see is procedures becoming procepts. The proceptual divide
occurs between those who complete this transition and those who fail.

If the flexible meaning of procept as both procedure and concept
(through the use of the same symbolism for both) fails to occur to a
satisfactory extent, then it may happen that procedural success can occur
at the current level, but may not give a solid foundation for future
development. Such procedural thinking is less likely to lead to flexible
proceptual thinking with its feed-back loop of derived facts effortlessly
generating new knowledge. Short term success (which the children
crave and the teacher feels duty bound to give) may thus lead inexorably
to long term failure. Allowing children to perform arithmetic in their
own way at their own speed without any teacher enquiry or intervention
may significantly contribute to the worsening of the gap.

Our analysis points to the weakness of the less able child turning to
the security of procedures rather than the successful use of procepts.
Therefore the additional practice at such procedures may only make the
differences greater, not close the gap. Additional practice has been the
traditional response, it can hardly claim to have been successful.

Resolution of the challenge created by those who are constrained to
perform harder (procedural) mathematics rather than the more
powerful and easier proceptual mathematics has been faced in two ways:
a need for greater insight into the ways in which today’s success is
achieved and a means of providing support learners to make the
process/product links.

We believe that a helpful way ahead is to support the less able child
(and the more able for that matter) with the computer as a tool, to give
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added power in those areas that the learner is weak, just as someone
with weak eyesight might use spectacles, or someone wishing to travel
from London to Glasgow might use motorised transport instead of foot-
power. By using the computer to carry out the procedures, it may be
possible to concentrate on the products of those procedures to build up a
better conceptual structure. By focusing at one time on the product of
procedures (using a computer), and at another time on the procedures
themselves, the cognitive strain may be reduced and the position of the
proceptual divide in the spectrum of mathematical performance may be
moved to give advantage to a larger number of children.
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