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Introduction
In our last article (Gray & Tall 1992), in response to the question

“Why is it that so many fail in a subject that a small minarigard as
being trivially simple?”,

we showed that

the more able are doing qualitativalljfferentmathematicgrom the less
able

A major source of the generative power of mathematics is imngbeof
symbols which areused ambiguously to evoke both a process of
calculation and the product of that calculation. The amalgam of process
and concept, represented by twme symbolism we called maocept
The more able treasuch symbolism flexibly, as process or concept,
whichever is more appropriate in a given context,léss abletend to
conceive of mathematicemore as separate procedures to carry out
computations. The manipulation of concepts is cognitively easier than
the coordination of procedures, and so the more able are doing an easier
form of mathematics than thessable. In a nutshell, the more able are
using flexible procepts, théessable, procedures. This difference in
mathematical thinking we termed tpeoceptualdivide. We believe that
the proceptual divide is a majoause of thalifference betweesuccess
and failure.

In this article we move on into concepts tlwdicur in secondary
mathematics and through intmlvanced mathematics at thixth-form
and university. We find that procepts abound in secondary mathematics,
and this leads tdurther divisions betweensuccessand failure at
subsequent stages. But the proceptual divide is now occurring higher up
the ability range, so that now more children are failiagrthermore
the procepts that occur in higher levels of mathematics begin to take on
new features. In theearlier stages of mathematics, th&ssociated
processes are given by explicit proceduresch as counting, use of
multiplication tables, algorithm&or multidigit arithmetic, and so on.
But procepts in the sixth form will be found to include processes such as
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“tending to a limit” or symbolic integration where there may not be a
simple procedure tacarry out the process. This leads tturther
confusion. Those who need the security of a procedure to compute an
answer become unsettled by situations where concepts cannot be
computed directly by a singlprocedure. Thus the proceptudivide
widens into a chasm between the majority who have failed at some time
in their development and the few who continue to fiméthematics
(proceptually) easy.

Procepts in secondary mathematics

Recall that we defined @roceptto be a combined mental object
consisting of both process and concept in which the same symbolization
Is used to denote both the process and the object which is produced by
the process (Tall & Gray, 1992). Procepts in secondaayhematics
involve processes that act on symbols which themselvesprocepts.

They include:

* The notion of a fractionsay% which represents both

the process of dividing 22 by 7 and the result of that
process,

* The algebraic symbolx32 stands botHor the process
“add three timex and two” and for the product dhat
process, the expressionx®”,

. ) ) ) opposite
* The trigonometric ratio sine Wp%teﬁe represents

both the process focalculating the sine of an angle and
its value,

* The function notation )=x2—3 simultaneously tells both
how to calculate the value of the functifor a particular
value of x and encapsulates the complete concept of the
function for ageneralvalue ofx,

 The derivative {x) of a function such as Xj=sinx,
evokes both the process of finding the derivative and the
value of the derivative,

* The integralj f(x) dx evokes both the process of

calculating the integral and the symbolic function
produced by this process,



« The notation lim f(x) represents both the process of
tending to a limitand the concept of thalue of the limit

e So doesn lioron Sh,

n
. andnlirorgz ax
k=1
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and lim Z f(x) dx
a

These procepts begin to take on more comfems, for instance, the
derivative is given by an algorithm (if you know the derivative, write it
down, otherwise, use thfermulae for derivatives of a sunproduct,
composite etc to build up the derivative). The integnak several
associated algorithms (integration by substitution, integration of rational
functions, integration by parts, etc) but these only give the solution for a
limited number ofspecialcasesand do not guarantee an integration

formula in every case. (What% , for instance?)

sinx+Inx) dx
Worse is yet to come. We may know thEt/m tends to a limitl,
and be able to write

N
im, 3 an =
n=1
using a notation that represents both pihecessof tending to a limit
and thevalueof that limit. Yet there is no simple procedurecticulate
the value of.

The examples which follow lookriefly at a number of different
procepts and consider the problems faced by pupils sd® them
procedurally ratherthan proceptually. We shakee the proceptual
divide between those who succeed and those falip occupying a
moving position in the ability spectrum, so that, as the contegstzme
more advanced, it is not only thess ablevho find them difficult, but
the less able amongst the more able!

Example 1: Fractions

A fraction is a classical example of a procept, for the notatjomeans
both the process — divide 3 into four egpadces — and thproduct of
such a subdivision. Theneaning of a fraction poses considerable



problems. There are different procedures which produce séme
product: “divide three cakes between four people (and take one share)”,
“divide one cake into four and take three pieces”.

B33 @

three quarters three quarters

There are alsequivalentprocesses that produce the same pro%J,cg

9
AR

At the very simplest level, childresee adifference between the
procedure and producsometimes by using different notation. For
instance, only 44% of a sample of 12 and 13 year old children following
a standard secondary mathematics course thought that 6+7 meant the
same thing a%4, because % is a fraction, 6+7 is a sum” (Thomas
1988).

For anyone whasees draction as a flexible procept, the arithmetic
of fractions is relatively trivial. Fothose whasee itonly as aroutine
symbolic process to be learnt, it is likely to be meaningless. The
proceptual structure of the arithmetic of fractions is subilyerent
from that of whole numbers. For whole numbers, multiplication is
repeated addition. For fractions this relationship is more deeply hidden.
Indeed, the algorithm for multiplication is actuaiiynplerto carry out
than that for addition in a purely procedural manner. But if cifiél
has failed to master the flexible procepts of sum arutiuct of whole
numbers, then the arithmetic of fractions is almost certampossible
to understand. The large number of children who fail to understand
fractions is consistent with a proceptual divide occurring at this stage.

Example 2: Signed number

Signednumber is a good example of procept. The signed nufHasr

is both the process of “add on three” or “move three units right on the
number line” and also the position +3 on the number line. sitgpeed
number “-2" is both the process of “subtract 2” or “move two units left
on the number line” and the position —2 on the number line.



“Modern” mathematics attempted to distinguish between the concept
of the signed number +2 and the procedure “add t8anednumbers
were introduced by somschemes asransformations on th@umber
line (as a process of shifting the whole line to the right or left). New
notations such as black numbers (positive) sedl numbers (negative)
were introduced so that “take away a red numbertaaceptually
different from “add a black number”. Awocedureghese ardifferent,
but asproducts they are the same. The masaccessful child realises
that that —(—-2) and +(+2) are the same, and it is this flexibke of
symbolism which gives them great power. The carefullgprded
distinction between them, which may well be an important cognitive
stage to passhrough in the learning process, involves considerable
difficulties which may freeze out thess ablechild, leading oncenore
to a proceptual divide.

Example 3: Algebraic notation

Traditionally algebra is often regarded as “generalized arithmetic”.
Thus X+2y means “when | know andy, | can work out the sum of
twice x plus twicey”. To many children the symbolismx22y means an
instruction to carry out a procedure, just as 2+3 is an instruction to add
2 and 3. But in the case of arithmetic they can produce an answer: 5. In
algebra the instructionx22y is asking them taarry out an operation
that they cannot do. For children whegard 2X+2y only as a
procedure, it is a process that they are unable to carry out. It isghe
time the children meet a procephose implicit process cannodadily

be carried out as a simple procedure to give an answeaules an
enormous conceptual obstacle, which Tall & Thomas (1991) call the
expected answarbstacle. These and other difficulties are catalogued in
greater detail in Kiichemann (1981).

There are added problems with the algebraic notation as a process,
for instance, the learner may lenfused with theorder inwhich the
process is to be carried oumstead of being read left tight, as with
normal speech, 2+%3 must be organised with multiplication taking
precedence over addition as “first multiply 3 yhen add the result to
2". Seeing it simplistically as a procedure reading from left to right may
lead to “2+3 is 5”, giving the erroneous answex":5

These difficulties make algebra enormously problematiddss able
pupils who simply do not understand the proceptual nature of the
notation as both process and concept. By this stage ircufréculum
those who fail are a far greater proportion of the total populatiay:
not only include the leass able who were the focus of the first article but
also theless able ofthe more ableSuch pupils see @arocedurethey
cannotcarry outand are unable t@ncapsulate the meaning into a
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concept. Tall & Thomas used various techniques to give meaning to
algebraic notation, involving the pupils in action games (to carry out the
procedure), programming (tspecify the procedure whictvas then
carried out by the computer) and appropriate software (wdckpted
standard algebraic notationBecausethe computer carries out the
procedure, the pupils are more likely to see that aByays gives the
sameresult as 2+3x, but is usually differentfrom 2+3. So the
computer activityfocusestheir attention on the notation gwoduct
ratherthan as process. By this method, more children were helped to
see algebra gwocept rather than as a collection of proceduresdory

out tasks (“multiply out brackets”, “collect together like term&hange
sides, change signs”, etc).

Again there is a proceptual divide between those who successfully see
the algebraic notation as flexible procept and those sd®itonly as
process and fall into routines using instrumental procedures to carry out
computations. Those using the computer approach were more likely to
fall into the former category.

Example 4: Equations

The idea of an equation, such as

3x—1=5,
iIs one which will causegreat difficulties to children whesee an
algebraic expression as a process. It is much more likely to be
meaningful to those who see it as procept. Those who see the solution of
an equation purely as a collection of procedures which enable them to
carry outthe process — “add the same thing to both sid&siange
sides, change sign”, etc — are likely to less versatile in solving
equations. Those whgee each side as procept, to be flexibly
decomposed angkorganized are more likely to solve the equation in a
meaningful and versatile way. Thermer might add one to botkides
to get %=6 and divide both sides by 3 to get2. The latter might see
that “one less thanxds 5, so & is 6 and s is 2”. A versatilethinker
seeing the equation as a procept would be able to recognize

3s-1=5

as the same equation, with solutisn2. The student solving by

procedure might even recognize it @ssentially the same, but might
then need to go through the formal procedure to confirmréiselt.
Faced with the equation

3(st1)-1=5,

the proceptual divide opens up clearly. Theocedural student

multiplies out the bracket, collects together like terms to geR-3b,
takes 2 from each side, and divides by three tocsgkt The proceptual



thinker, able to chunk together the expressigh as a single entitysees
once more the same equation, ws#i=2, sos=1.

In Tall & Thomas (1991), empirical evidence is given to show that
students using a computer approach to give meaning to algebraic
notation as product of a process are more likely to respond imahe
versatile way which we now hypothesize is due to thinking with
procepts rather than just procedures.

Example 5: Trigonometry

Trigonometric formulae are all eﬂ““:’e ¢
procepts. For instance, saying that oot opposite
SinA = opposite
~ hypotenuse A adjacent B

involves both process (to divide the length of the opposite Bitldy
the length of the hypotenugeC) and product, the number which is the
ratio of these two lengths. But it involves muchore than this. It
involves the flexible ability tosee that BC=AC sinA, and that
AC=BC/sinA, and tosee theseelationships in other triangles with the
same angles but havindifferent sizesand different orientations. It
requires the flexibility to perceive that as the angle increfieas 0° to
90° then the sine increasé®m 0 to 1 and to giveneaning to the
singularcaseswhen the angle is zero or 90° and the trianggases to
exist as goroper triangle. Later it requirethe flexibility to extend to
the case when the angle increases beyond 90° or becomes negative.

Thus it is that children may learn the rule for ®ieeratio, they
may even be able toarry outthe processof calculating theratio, but
unless theyseethe proceptof sine as a plastic amalgam oflated
processes and concepts, they will fail to understaiggnometry in a
meaningful way.

Once again, Blackett (1990) showed that pupils usirgpraputer
program designed to enable them to link numerical data dynamically
with accurate geometric representations, are more likely to respond in a
versatile manner characteristic of procept rather than just procedure.

Example 6: The Function Concept

The function concept is another archetypal procept. poeessit is an
input—output machine, transforming an element the domain to an
element fk) in the range. The composite of two functions is found by
coordinating the processes, one after the other, first transforrmiiag
f(x), then fk) to g(f(x)). The difficult process of thinking of a function
as a concepis enshrined in the use of the symbol f to denote the



function and the composite gf of two functions f andPgior to the
advent of modern mathematics and set theory, the use of the symobol
(ambiguously) represent either a specific or a “variabdEment
allowed the notation %) to represent the function both as process and as
concept. Ifx is a variable, then it embodies the whole process; for
instance if f)=x2, then fk) embodies the act of takingny numberx

and transforming it tx2. On the other hand, ¥ is a specifimumber,
sayx=2, then fK) is the correspondingalue of the function, f(2)=4.

The function proceptbecomesmore plastic as thdéearner gains
experience. It exists in several representatigmecedural, numerical,
symbolic, graphical, tabular, ... The powerful wayuse the function
procept is to be able to use whichevepresentation isppropriate,
moving from one to the other without asgnse oftransition, because
there is no transition — they are all the same procept.

Examples from more advanced mathematics

In advanced mathematics, proceptsliferate. The limitconcept in its
various guises isregarded as both process and concept. ikstance,
calculating the derivative of{=x2 using the notation:

f(x+h)—f(x
has a definite dynamicalense ofh getting close tazero, whilst the
notation

. f(x+h)—f(x)
”Eno h

Is both processh(approaching zero) and product (the limitinglue
itself). The process here has a less explicit procedureatifulationthan
examples earlier in thecurriculum This limit process has many
representations: as numerical approximations, as a graphical image of a
secant approaching a tangential positimm “first principles” as a
symbolic manipulation to obtain an expression in whithcan be
allowed to tend to zero, as a symbolic algorithm using theoadrost

sum, difference, product, quotient or composite of functiomese
derivatives have been calculatedm first principles, and so ofi.here

is the alternative notation:

d
& =0

in which some insi% IS just a single symbol, but others allow it to be
a fraction representing the quotient of aeomponent of the tangent
vector by thex-component.



All the following manifestations of limit are simultaneously process
and product:
i x2—1
xl_ml x-1
i 1—xn
nl_mo 1—x

[00]

2 an

N=1

b

e!irPo Z f(x) X .

X=a

In each case they represent both phecessof calculating the limit and
the productof this process — the limiting value itself. But the process is
not always associated with an egsycedure for computation of the
limit and againbehavesvery differently from procepts in elementary

mathematics. Whilst a notation such as 3+2 conjures up in the mind a
specific procedure to calculate the answer (count on), the limit notation

[00]

2 an

N=1
does not evoke any way to calculate the value of the limit. The limits are
calculated by deriving facts in a completely new way by using-an

definition to develop a few speciabsesand a few general theorems

from which the results are deduced. Here there are “known facts” of
o0

two distinct types particular facts(such as) 1/n2 converges) and

n=1

general theoremsgsuch as the comparison theorem which asserts that if
(00] (00]

Z a, Is a convergent series with positive terms @d)n IS a series

N=1 N=1
(00)

of positive terms wittb, < a, for all n, then z b, converges). New
N=1
“known facts” are derivedrom old ones by circuitous routes which
only serve to cause enormous confusion in the student meetindeése
for the first time.
Research shows most beginniagiversity students conceive of a
limit as a dynamigrocessratherthan the statidimit concept and end

—9—



up with all sorts of confusions (Schwarzenberger & Tall, 1977). They
fail to understand the deeply embedded cultural way that mathematicians
use ambiguity of notation tbridge the difference between process and
concept. It seems, too, that many mathematicians are unawdhes of
explicit ambiguity in their thinking processes.

The computer and the principle of selective construction

Let us close on a positive note. We haeen thathere is a qualitative
difference between the thinking processes of those suuzeed and
those who fail in which the flexible use of symbolism playsmnaportant
role. Might it be possible to improve the situation?

Initially it seemsthat we are in a catch-22 situation. Tless able
remember fewer facts, so they have less in their mind to manipulate and
therefore rely on procedures whiekxist in time and imposgreater
cognitive strain to coordinate. Soseemsthat the traditional way of
breaking up the difficulties into smallesteps will only make the
situation worse. It may give thless able an evegreater number of
parts to coordinate. Perhaps the innate ability of shecessful gives
them an advantage that cannot be bridged by those less fortunate.

All is not lost. A possible way ahead might involve reducing the
cognitive strain by allowing the learner to concentrate onctimeept
without having tocarry outthe procedure to obtain it. The calculator
and computer can be afsistancéere. We have intentionallysed the
word “procedure” to describe theequence of actions the chitérries
out in the mathematicSuch aprocedure is usually aalgorithm that
can beprogrammed on a calculator or computer. Thsludes the
procedures of arithmetic, algebra, calculus, drawing grapbking
equations, etc.

We suggest that Bearning strategy to reduce cognitive strain is to
separate out the doing of the procedure from the manipulation of the
concept and to do them at different times. Historically the aiekeded
to carry outthe procedure to obtain the concept to manipulate. But if
the computer caonarry outthe procedure, it may bgossible to allow
the child to concentrate on the concept without first doing the
procedure.

Consider thecase of gie-chart. The meaning afuch achart, that
bigger slices mean digger contribution, is apparent to a very young
child. Yet the process ofirawing a pie-chart.does not occur in the
National Curriculum until level 6 when the child is in the eddgns,
for it requires handlingngles up to 360°, calculating fractions of 360
and coordinating the measurement of angles in the pictureddfadase
with graphical facilities is used to conveappropriate data into pie-
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chart form, the complicated arithmetic procedures can be circumvented
and the child can focus on interpreting the pie-chattter than on the
intermediate process of making the calculation to draw the picture.

At another time it is possible to focus on the process of drawing a
pie-chart, thus separating the two events:pfeecedure of drawing and
the interpretation of the result. In this way one msalect theportions
of knowledge that the child is asked to understand at a divee,
selecting some to be constructed by the child whilst others are
constructed (internally) by the computer.

The traditionalsequence ofearning first required that procedures
were practised until they were routinized and capable of being reduced
to subconscious actiobefore the products of the processes could be
successfully manipulated anghderstood. By using the computer to
carry out the procedures, the learner can be focused @natectsand
thus the higher level activities can be encouraggdier and separately
from the processes. This reduces the cognitive strain and offers the
possibility of the less able breaking out of the proceptual divide wherein
they cannot master the procedurecause it ig00 complex and they
therefore cannoéncapsulate thprocedure as a mental objdmcause
the procedurecausesoo much cognitive strain. Thus the computer can
be used, by a process of selective construction, to encourage the
formation of flexible procepts in a wider range of ability.

This philosophy is already being used wstlccess ithe new 16-19
A-level. Students meeting thaerivative for the first time do so by
magnifying the graph and if a small portion looks almost straiflet;
the gradient of this (locally) straight segment is taken as the gradient of
the graph. Thus thstudents can conceive intuitively of the changing
gradient of the curved graph before they begin to look at the algorithms
for symbolic differentiation. Indeed, before they dsymbolic
differentiation, theycarry out numerical procedures ¢ve arithmetic
methods of calculating the gradient of a graph.

Likewise, in solving a first order differentigquation, they may use
a piece of software (The Solution Sketcher) which will draw a small line
segment of gradient given by the differential equation asé the
computer to stick smalegmentdogether to build up theonceptof a
solution before studying the (numeric or symbolic) procedures to
calculate a solution.

In studying the Newton-Raphson method of finding a solution of
f(x)=0 by using a linear approximation to the graph neavc, again
students can use software geethe method in action, to build up the
conceptbeforestudying the symbolism and numerical calculations of the
method.
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Several research projects in various areas of mathematics show that
this is a promising avenue of development, in algebra (Tall & Thomas
1991), in trigonometry (Blackett 1990), in calculus (Tall 1986), and the
CAN project (Shuard et al, 199Ehowschildren improving their use
and understanding of arithmetic and number through &emess to
calculators. These experiments do not slsoacesgor all children, but
the position of the proceptual divide betwesumccessand failure is
shifted in a positive direction. The philosophy of using toenputer
and calculator tocarry out certain processes whilst the child
concentrates on the resulting concepttherefore a powerful strategy
to develop.

Conclusion

It has long been known that mathematics is a hierarchical subject and if
one does not understand one stage then the next stage beldbicids

and the one after that is impossible. What we have attempted to do in
our two articles is to make this universal observation more precise.
What we see iprocedures becoming procepts. Theceptual divide
occurs between those who complete this transition and those who fail.

If the flexible meaning of procept as both procedure emkcept
(through theuse of the same symbolisfar both) fails to occur to a
satisfactory extent, then it may happen that procedural success@an
at the current level, but may not givesalid foundationfor future
developmentSuchprocedural thinking idesslikely to lead to flexible
proceptual thinking with its feed-back loop of derived facts effortlessly
generating new knowledge. Short tersnccess(which the children
crave and the teacher feels duty bound to give) may thus lead inexorably
to long term failure. Allowing children tperform arithmetic intheir
own way at their own speed without any teacher enquiry or intervention
may significantly contribute to the worsening of the gap.

Our analysis points to theveakness othe less ablechild turning to
the security of proceduremther than the successful use pfocepts.
Therefore the additional practice at such procedures may only make the
differences greater, natose the gap. Additional practice has been the
traditional response, it can hardly claim to have been successful.

Resolution of the challenge created by those who are constrained to
perform harder (proceduralmathematicsrather than the more
powerful and easier proceptual mathematics has been faced inaygo
a needfor greater insight into thevays in which today’ssuccess is
achieved and a means @froviding support learners to make the
process/product links.

We believe that a helpful way ahead is to supportegbge able child
(and the more able for that matter) with the computer as a togly¢o
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added power in those areas that li@ner is weak, just asomeone

with weak eyesight might use spectacles, or someone wishitrg\el

from London to Glasgow might use motorised transport insteddobf
power. By using the computer tarry outthe procedures, it may be
possible to concentrate on the products of those procedures to build up a
better conceptuadtructure. By focusing at one time on the product of
procedures (using a computer), and at another time oprteedures
themselves, the cognitive strain may be reduced and the position of the
proceptual divide in the spectrum of mathematical performance may be
moved to give advantage to a larger number of children.
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