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“By giving a name to something, you acquire power over it”
(one of “Scott’s Laws” proposed by the late Professor Bernard Scott, Sussex University)

Introduction

Why is it that so many fail in a subject that a small minority regard as
being trivially simple? In this article we introduce an idea that offers an
explanation for the great divergence in performance between those who
succeed and those who fail in mathematics. Our initial focus is on the
development of numerical concepts by young children, in a second
article we will broaden the mathematical perspective to consider some
of the mathematics learned in the secondary school and at degree level.
By looking at the way in which mathematical ideas are developed by
learners we come to the conclusion that the reason why some succeed
and a great many fail lies in the fact that the more able are doing
qualitatively different mathematics from the less able.

The more successful perform in a way which often makes the
mathematics seem so effortless for them. If they seem to use so little
effort, there must be an internal engine creating the motive force. What
is the nature of this engine? We shall see that the more able have a kind
of knowledge that self-generates new knowledge.

If others fail at mathematics, why is it that they often fail so
catastrophically? We shall see that the catastrophe occurs because their
mathematical thinking processes are qualitatively different. The less able
fail because the mathematics they are doing is more difficult than the
mathematics of the more able (Gray, 1991).

A major source of the generative power of mathematics is in the use
of symbols. It is only in the last two millenia that the power of written
symbolism has allowed mathematics to grow and to be passed from
generation to generation, culminating in the great explosion of
mathematics in recent centuries.

If we subject this symbolism to close scrutiny, we find that, although
every attempt is made to refine it to make it explicit and unambiguous,
its power lies in a very specific kind of ambiguity. It often refers both
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to something to do, and to the result of the doing. So 3/4 refers to the
intention to divide 3 by 4, it indicates a process to be applied, and also
to the result of the action of applying the process, the fraction 3

4. The
symbol “–2” refers both to the intention to subtract two, again
indicating a process to be applied, and also to the result of the action of
subtracting 2, the negative number –2.

First encounters with such symbolism can lead to bewilderment and
consternation for the learner in establishing precisely what the
symbolism means. It may be easy to “take away 2” but how can one
have a negative number which is “less than nothing”? The most able see
it for what it is: an amalgam of both process and concept, a process
which in most cases is manifest through a procedure to get an answer,
and a thing produced through the process or the manifestation of the
process which can itself be manipulated as a mental object. This
amalgam of process and concept we call a procept. By giving this
construct a name we will begin to gain power over it. We shall see how
we can focus attention on a problem that has baffled mathematics
educators and the general public alike for centuries.

The development of mathematical processes into concepts

Number provides our first example of a mathematical process which
develops into a concept. It is one of the first mathematical ideas that a
child meets. Yet when our colleague Jack Forster asked a group of two
hundred student teachers to say what “three” means, he met with total
silence. What is it that we expect the youngest children in our school to
appreciate yet proves so difficult for us to explain? Perhaps the
difficulty lies in the fact that the notion of “threeness” cannot easily be
defined in a sentence, but rather depends on an accumulation of
experience. This is an insufficient and inadequate explanation; the
problem needs further analysis.

The meaning of “three” is only established when the counting process
is linked to the cardinal value of the set. Counting is a complex activity,
which individual children perform in many different ways, perhaps
using counters, fingers, marks on paper etc. It may be vocal or
subvocal. It can be forward or backward, starting at one or starting at
any given number. At a more abstract level it may involve both
counting and keeping a check on the amount counted at one and the
same time. Counting involves a focus of attention on each object that is
counted (just once) and the co-ordination of this focus with the sequence
of number words in an order.

Because of this complexity, it is idealistic to conceive of a single
counting process shared by everyone. Each individual develops personal
methods of carrying out the actions which are grouped together under
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the general umbrella of “counting”. It is useful to distinguish between
the notion of a process, which is the general intention to be carried out,
and the particular method used by an individual at a given time which
we shall call a procedure. There are many general processes in
mathematics, including the counting process, the addition process, the
subtraction process, the process of finding a fraction or the process of
solving an algebraic equation. Each of these can be carried out by
individual procedures, which may be the result of mechanical action,
algorithmic routine or idiosyncratic behaviour.

The different possible procedures which arise are of particular
interest when we turn to the process of addition and its related concept
of sum. Consider the question:

 “What is 2+2?”
The obvious answer is “4”. But how is it calculated? It requires the

process of addition. When the child attempts this for the first time, the
addition process is usually manifested through a procedure which
involves counting two sets each with two objects. At its simplest, it
requires either taking two objects and two more, then counting them all
saying “one, two, three, four”, or carrying the first two in the head and
counting on from two, saying “three, four”. Thus “2+2” signals both the
counting process and the product of that process: the number 4. The
symbol 2+2 evokes both the process of addition and the concept of sum.

The use of a symbolism to mean both process and product occurs
throughout mathematics. A number such as “three” involves both the
process of counting and the concept of number. The symbolism 2+2
stands for both the process of addition and the concept of sum. This
phenomenon occurs again and again:

• The symbol 4x3 stands for the process of multiplication
“four multiplied by three” which in procedural terms may
involve repeated addition to produce the product of four
and three which is the number 12.

• The symbol 
3
4  stands for both the process of division and

the concept of fraction,

 • The symbol +4 stands for both the process of “add four”
or shift four units along the number line, and the concept
of the positive number +4,

• The symbol –7 stands for both the process of “subtract
seven”, or shift seven units in the opposite direction along
the number line, and the concept of the negative number
–7,
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• In the second article on more advanced mathematics we
will consider further examples in algebra, trigonometry,
calculus and mathematical analysis, showing the all-
pervading nature of symbolism which evokes both a
process and a concept produced by that process.

The notion of procept

The idea of a process giving a product, or output, represented by the
same symbol is seen to occur at all levels in mathematics. It is therefore
worth giving this idea a name:

We define a procept to be a combined mental object
consisting of both process and concept in which the same
symbolization is used to denote both the process and the
object which is produced by the process.

Usually the object is produced by a specific procedure – counting gives
the sum, repeated addition gives product – but we shall see in the second
article that this does not always hold in sixth-form mathematics and here
we shall find the lack of an adequate procedure leads to its own peculiar
problems.

As with Scott’s law, we will find that the giving of a name to this
idea begins to help us gain power over it which enables us to explain the
vast difference in success between those who succeed and those who fail.

A procept is, of course, a special kind of concept. It is usually first
met as a procedure, then a symbolism is introduced for the output of
that procedure, and this symbolism takes on the dual meaning which
evokes both procedure and its output. As a child learns mathematics, the
introduced symbol takes on a life of its own. It can be written (say,
3+2), it can be read, it can be spoken (“three plus two”), it can be heard.
It is an external object that different people can share, so it has, or
seems to have, its own external reality. It is the construction of meaning
for such symbols, the processes required to compute them, and the
higher mental procedures required to manipulate them, that constitute
the abstraction of mathematics. Indeed the ambiguity of notation to
describe either procedure or output, whichever is more convenient at
the time, proves to be a valuable thinking device for the professional
mathematician.

A procept is organic. It soon grows richer than the single process
which generates it. Different symbolism may represent the same
processes but different procedures may give the same product, as in the
case of 4+1 and 3+2. The first, as a procedure, might involve counting
on one from four whilst the second counts on two from three. However,
the result of both procedures is the same number, “five”. The procept of
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“five” therefore grows richer in its interior structure, giving a wider
flexibility in which it may be decomposed in different ways, to be
reorganized and transformed into an equivalent symbolism which
represents a different procedure but the same product. We therefore
envisage a procept as being plastic – something flexible that can be re-
moulded and reconstructed at will.

For instance, the idea the 3+2 is 5, leads to several equivalent ideas,
that 2+3 is 5, or that if “3 plus something is 5” then the “something”
must be 2. This flexible use of composition and decomposition of
numbers means that subtraction can be seen as just another way of
looking at addition, so that the undoing of addition as subtraction is just
a manipulation of flexible knowledge rather than the counting process
manifest through the use of a procedure which may be the inverse of
that used for addition.

It is in the use of procepts that we consider lies the major difference
between the performance of the more able and the less able in
mathematics. In the development of skills, it is the failure of some to see
the processes encapsulated as procepts which leads to a catastrophic
division between those that can do mathematics and those that cannot.
Those who see processes interpreted as procedures and want only short
term success – how to do something – are more likely to condemn
themselves to a merry-go-round of procedure after procedure with
success in being able to perform the current task, but inability to
coordinate the processes into any larger coherent theory. Coordinating
processes in time is a difficult activity. Those who develop flexible
procepts have mental objects that both enable them to do the process and
manipulate the symbols conceived as objects. The plasticity of procepts
allow them to be flexibly decomposed and reorganised at will. Because
of the richness of conceptual linkages, less needs to be remembered
because more can be reconstructed. Thus proceptual thinkers are doing
a qualitatively different kind of mathematics that is – for them –
conceptually far easier.

This divergence which occurs at all levels of mathematics, between
those who use interpret processes only as procedures and therefore
make mathematics harder for themselves, and those that see them as
flexible procepts we call the proceptual divide (Gray & Tall, 1991).
The difference between success and failure lies in the difference
between procept and procedure. Proceptual thinking includes the use of
procedures where appropriate and symbols as manipulable objects
where appropriate. The flexibility provided by using the ambiguity of
notation as process or product gives great mathematical power.

The examples which follow consider the encapsulation of procedures
into procepts at different stages of mathematical development. At any
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stage, if the cognitive demands on the individual grow too great, it may
be that someone, previously successful, founders and asks “tell me how
to do it”, anxiously seeking the security of a procedure rather than the
flexibility of procept. From this point on failure is almost inevitable. It
is for this reason that mathematics is known chiefly as a subject in which
people fail, and fail badly, and fail often.

Example 1: The number concept

The number concept is a procept. It embodies both a process (counting)
and the output of the procedure which is the implementation of the
process (number) within the same symbolism. We have seen how a child
learns the sequence of counting numbers in order, and begins the ritual
of counting sets of objects by pointing at each in turn and reciting the
number words. “One, two, three four”. There are “four” things in this
collection. The same underlying procedure can be done in different
ways: the order in which the numbers are counted can vary. Each of
these procedures gives the same product “four”. Having the number
concept means not only being able to count, it means being aware that
different ways of carrying out the same counting process will give the
same result.

Children may view number in two different ways, one as a
PROCESS of counting – manifested as an uncrystallized procedure
which is not regarded as a flexible concept – and one as the PROCEPT
of number which involves counting, the knowledge that different ways
of counting give the same result, and the crystallized number concept all
in one flexible package. Thus the attaining of the procept of number is
what Piaget would call “conservation of number”. The one additional
item in our formulation is the dualism of the notation: the number
“five” being built out of process yet being considered simultaneously of
concept.

This is one of the first places in learning where a qualitative
difference may occur between individuals. “Slower learners” do not
form the procept of number early on. If such children are to move on
to addition, they will be at a serious disadvantage. The mathematics that
they will have to do will prove to be significantly more difficult for
them. Whilst those with the procept of number will be able to
manipulate the symbols flexibly in the mind to do arithmetic, the less
able will now have the much more difficult task of coordinating
processes – the counting process and the addition process, both manifest
through a series of procedures which become one super-procedure –
and then performing them in sequence. It is a far more complex task to
carry out two processes in time, one after the other and to attempt to
conceive of them in the mind as a single entity. It is far easier to
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manipulate symbols on paper which can be seen simultaneously and
handled much more fluently. It is here that the proceptual divide occurs
between those who are handling processes, coordinated sequentially in
time, and those manipulating symbols for procepts which may be seen
simultaneously on paper. Those who are fortunate to think using
flexible procepts have fundamentally easier mathematics to do than
those who operate by carrying out processes.

Such a divide is also embodied in Ausubel’s (1968) differentiation
between meaningful and rote learning, or Skemp’s distinction between
relational and instrumental understanding (1976). However, the theory
we give here has an extra ingredient. It is not just the relating of one
idea to another, or the giving of a meaning to a process or concept. It is
the ability to give meaning to the process in a flexible way that allows
process and concept to be interchanged at will , often without any
distinction being made between the two.

Example 2: Addition

Addition can only be carried out meaningfully when the number
procept has been established as embodying both process and concept.
However, in the early stages, more elementary forms of addition occur
which are either processes or combinations of procept and process.

For example, counting all is a strategy used by young children in
which, given the sum “3+2”, is translated into a procedure which
involves first counting a set of three objects, then a set of two objects,
then collecting the two sets together and finally counting the whole set
“one, two, three, four, five”. Thus the count-all strategy consists of
three distinct counting procedures, one after another. Each separate
procedure is a manifestation of the counting process. Thus COUNT-
ALL consists of PROCESS plus PROCESS leading to a third PROCESS.
Given the fact that these occur successively in time, it requires
considerable cognitive effort to link the input numbers 3 and 2 to the
output 5. So the child using count-all is less likely to see the triple
counting procedure as leading to the number fact.

Counting on is a more subtle procedure. It occurs possibly through
the realization that to count the first set is simply a repetition of a
counting process which involves recitation of the initial number names
and presenting the number name of the last tagged element as the
cardinal value of the whole set, so a short cut is possible in which one
simply counts on from the next number name after the number in the
first set. Counting on 3+2, simply involves saying two numbers (starting
after the “three” of the first part) to get “four, five”, so that result is
“five”. Here the first number is seen as a procept and the second as a
process. COUNTING ON consists of PROCEPT & PROCESS.
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But the counting process here is a subtle double-counting procedure.
It is necessary both to count-on “four, five” whilst keeping track of the
number of elements counted (two). Often one of these counting
procedures is done by using concrete elements for support. For
instance, a child might move two fingers to keep track whilst counting
“four, five”. Alternatively it is possible to use a number line or a ruler
to start at the number “three” then to point at successive numbers whilst
counting “one, two” to end up at “five”.

The complexities involved in counting-on, especially for the less able
child, can lead to two possible outcomes. For the less able child,
counting-on may become the favoured procedure to do addition. It may
take an input, say 8+4, and produce a counting-on “nine, ten, eleven,
twelve”, giving a result 12. As this occurs in time, the child may be
successful in getting the result, yet not relate the earlier input (8+4) to
the output 12. For this child counting-on is but a procedure for getting a
result. It is less likely to lead to the remembering of the result as a
known fact.

For another child, who is able to relate input and output, this may
crystalise into a procept, in the form of a known fact, “8+4 is 12”. In
this more fortunate case, counting on takes the form of PROCEPT &
PROCESS giving PROCEPT.

Over a period of time the latter is more likely to lead to the pupil
developing a collection of flexible “known facts”. These could, of
course, be learnt by rote, just as the chorus of the song “Inchworm”
sung by Danny Kaye in the film “Hans Christian Andersen” goes:

One and one are two,
Two and two are four,
Four and four are eight,
Eight and eight are sixteen,
Sixteen and sixteen are thirty-two...

But a rote learnt phrase has no generative meaning. One may be able
to repeat the words “four and four are eight”, but this gives no clue as
to the meaning of four and five.

At the highest level a known fact is seen as a procept. The known
fact “3+2 is 5” can be immediately recalled as a number bond “3+2=5”,
but if necessary it can be decomposed either as procept plus process
(counting on) or even process plus process (counting all) but, more
likely, it will simply be visualized as an iconic array of five objects
broken down into a three and a two.

The less able child may make some steps in this direction. But known
facts are harder to learn and with fewer facts it is difficult to use them
flexibly. Some known facts are learnt before others (e.g. “adding one”
(3+1=4), “adding two to an even number” (4+2=6), or “doubling”
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(4+4=8) or “number bonds making ten” (8+2=10)). Even if a less able
child collects together some of these, the burden of using them may be
great. For instance Stuart (aged 10) was asked to calculate “8+6”. He
said:

“I know 8 and 2 is ten, but I have trouble taking 2 from 6. But
4 and 4 makes 8, and 6 and 4 makes 10, and the other 4 makes
14.”

He is here successful, but leans on the number bonds 8+2=10, 4+4=8,
6+4=10 based around “sums making ten” and a “double”. He cannot
cope with 6–2 and his methods may collapse with other number pairs
that are unavailable to him. Such children may find that using the few
known facts at their disposal causes considerable strain and seek the
solace and security of counting procedures.

This underlines the need for children to know their number bonds.
The national press is full of demands for children to know their tables.
Our experience shows that the problem is further down. Children need
regular practice to establish all the number combinations to twenty in a
context which enables them to use them proceptually. There are some
favoured number bonds that are learnt easier than others (add on one,
doubles such as 4+4) and there are others that are accentuated (such as
number bonds that add to ten) but there remain others, such as 3+5 or
6+8 which tend to get missed out and would benefit from regular
practice. Otherwise we may have children like Stuart, who are
beginning to manipulate numbers relationally but may eventually fail
because of the lack of appropriate number bonds.

Once more we are faced by the proceptual divide, now at a higher
conceptual level. The child who sees addition only as a procedure is
faced with the difficult task of coordinating different mental procedures
whilst the more able child who develops a collection of flexible known
facts can use them to derive other facts: for instance, “8 and 9” is seen
as the double “8 and 8” plus one, giving “seventeen”. The child on the
borderline between the two may be in a delicate state of balance where
successful use of derived facts may lead on to further success, but
failure through inadequate development and use of number bonds may
degenerate to the security of counting.

 In this way the more able child moves from a body of flexible
known facts to building up a technique of re-assemblage of procepts
which give new derived facts. At this stage mathematics starts to get
easier. Because so much can be derived, less needs to be learned. The
use of procepts builds up a feed-back loop in which known facts are re-
combined in new ways to produce new known facts. The more able
child has an organic knowledge structure which grows under its own
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internal energy, almost without any seeming effort. Arithmetic becomes
more sophisticated and progressively simpler to do.

Meanwhile the less able child has a different goal in mind, the goal
of mastering the procedure of counting and applying it to more
complicated tasks. The procedure of counting-on – which may be
proving very successful – makes the child a victim of its own limited
success. Although individual sums may be correctly carried out by
counting on there is less likely to be a feed-back loop giving the
explosion of knowledge characterising the more able child. The
procedure of counting-on does not give a coordination between input
and product which leads to new known facts. Only with extensive
practice may some facts be learned incidentally but many of these are
retained in isolation. The child therefore has much harder mathematics
to do: each time a sum uses the same (counting on) procedure but as the
sums get more difficult there is little flexible structure on which to
build.

If the child obtains success through counting-on, then this leads to a
security in the use of this system which makes it far harder to progress.
Sums involving several digits must now be performed with counting-on
subroutines that drastically extend the length of the procedures
involved, placing a greater strain on the weaker child, leading to likely
failure.

This is a savage indictment of the belief that children should be
allowed to develop their own personal modes of performing arithmetic.
For if the less able child develops a highly personalized method of
coping with a limited range of sums (often by counting using various
parts of the body or various finger configurations to represent different
numbers), then that child may develop methods which do not generalize.
There may be short term success with small numbers, but catastrophic
failure with more general problems. In the day-to-day running of a
classroom short-term success may be more immediate and instantly
rewarding, but if it is at the cost of eventual failure, it is a devastatingly
bad strategy.

Allowing children only to do number work at their own pace from
work-cards designed at their own level can actually disguise the
symptoms of eventual failure. The child may succeed at addition sums
more slowly through counting procedures, yet may be developing the
very strategies which lead down a cul-de-sac. Only through discussion
and listening to a child talking through the processes being used can one
hope to diagnose the possible development of inappropriate strategies.
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Example 3: Subtraction

Subtraction, as a reversal of addition proves to be far easier as part of a
proceptual structure rather than as a reverse of a procedure. In the
former case, if a child has a meaningful concept of 4+2 being 6, so that
6 can be decomposed into 4 and 2, then subtraction is already built in to
the structure. If 2 is taken away from 6, then 4 remains. If it is not, we
may end up with the phenomenon of Stuart who has “awful trouble
taking 2 from 6”.

There is worse to come. If addition is seen only as a procedure, such
as “counting on” using a number line, the individual may attempt to
“take away” by counting back. Thus 9 take away 3 is performed by
pointing at the number 9 and counting back three: 8, 7, 6. Here
subtraction is seen as a true reversal of the procedure of addition, but it
is a view fraught with danger. Counting back may be easy on a concrete
number line, but the mental operation of counting back is one of the
most difficult ways of performing subtraction. It requires a reverse
counting of the number sequence (9), 8, 7, 6, with a corresponding
count of the number of terms counted (1, 2, 3), giving a double
counting procedure of great complexity compounded further by the
difficulty of starting at the right place (counting down from 9 requires
starting the double counting at 8). Once again, the child locked in
procedure is faced with the far greater task.

For the more successful child, the flexible procept of addition and
the existence of appropriate additive number bonds can lead easily into
derived subtraction facts, once again with a feedback loop which makes
the procepts even more flexible and powerful. The following now all
mean the same thing: “3+2=5”, “2+3=5”, “3+something=5 means
something=2”, “2+something=5 means something =3”, and so on.

     2 + 3 is 5
or 3 + 2 is 5
or 5 – 3 is 2
or 5 – 2 is 3

....
Contrast this with the intriguing example of a particular slow learner
responding to the problem “5 take away 3” using a limited number of
known facts:

“That’s one I always have difficulty with. But I know two
and two is four, so two and three is five, so five take
away three is two...”
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This amazing piece of mathematical deduction shows the mental powers
of the child considered to be slow. He does not lack mathematical flair.
But he has a limited array of known facts and uses his knowledge to
derive facts by such a tortuous route that even a simple sum is a major
voyage of discovery. It is no wonder that our intrepid voyager falls
down when the journey gets just that little bit longer. He has the
knowledge of how to travel but his map is in tiny parts that do not fit so
easily together. Although he is beginning to use his knowledge
imaginatively, the product of his procedure is not readily added to his
knowledge base, and there is no general feed-back loop to link
subtraction flexibly to addition. If he fails as the problems increase in
difficulty, then he is likely to revert back to an earlier strategy –
counting – which increases the burden of difficulty that he faces.

Example 4: Multiplication

Multiplication may be seen initially as repeated addition: 5×3 is five
repeated three times. Again the notation is a flexible procept. If the five
and the three are seen as processes, not procepts, then repeated addition
through adding five to five to five is unbearably difficult. (“six, seven,
eight, nine, ten ... that’s two fives, eleven, twelve, thirteen, fourteen,
fifteen ... that’s three fives”.) However, if it is seen as a procept, two
lots of 5 might be seen as 10, then 10 and 5 as 15, by combining and
recombining the constituent parts.

Flexibly linking the product to a visual array can help see that
different processes give (essentially) the same product:

3 lots of 5

15

Thus it is that the procept takes on different representations, which
are still considered to be the same product.

How is a child who still sees addition as counting to be expected to
cope with multi-digit multiplication? One of our student teachers was
confident that she could teach anything to any child, provided that she
had the time. She had reached a point in the National Curriculum where
a child must multiply a three digit number by a single digit number. A
slower learner was faltering, so she went through a simple example :
“234 times 2”, explaining that first the 4 must be multiplied by 2, so the
child counted on “five, six, seven, eight”, then the 3 must be multiplied
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by two, so the child counted on “four, five, six”, then the 2 multiplied
by two (“three, four”). She found that the child seemed to be able to do
it when she was there to help, even when “carrying” was involved, but
there were so many steps to carry out, that when the child was left to his
own devices, the procedure collapsed under the weight of all the
counting.

Example 5: Place value

Place value uses notation in a powerful way. The two 3s in the symbol
353 are used with entirely different meanings, the first being 3
hundreds, the second 3 units. The place value notation not only
represents a number as a combination of units, tens, hundreds, ..., it
does so in a canonical way in which the number of bundles of each is
between 0 and 9. Initially a child may think of a number in the same
way as a name, perhaps living at number 47, where the symbols 4 and 7
have no more separate meaning than the two ms in “mum”. True
meaning can only be given when the individual digits are conceived as
procepts: both the process of counting and the concept of a group of
objects that can be regrouped in various ways. The symbol 5 might be
seen as 2+3 or 4+1, and this extends to 12 being seen as 10+2 or 32 as
30+2. It requires the procept of number (rather than just the process of
counting or the knowledge of the sequence of number words) to be able
to view place value as both a grouping procedure in which 452 is the
procedure of grouping “4 hundreds, 5 tens, 2 units”, and the result of
the procedure: the number 452.

Conclusion

What we have attempted to do in this article is to consider the ambiguity
of symbolism in the initial stages of mathematics. What we have seen is
the inherent ambiguity of mathematics symbolism and the development
of procepts out of the applied actions of mathematical process. The
proceptual divide occurs between those who complete this transition and
those who fail.

Our analysis points to the weakness of the less able child turning to
the security of procedures rather than the successful use of procepts.
Therefore the additional practice at such procedures may only make the
differences greater, not close the gap.

In general classroom activity it is essential for the teacher to talk to
individual children and to listen to how those children are performing
their arithmetic calculations. Simply allowing them to carry out
idiosyncratic procedures may actually be leading them up a cul-de-sac
of eventual failure at more advanced arithmetic.
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This burden imposed on the less able, who are constrained to
perform harder (procedural) mathematics rather than the more
powerful and easier proceptual mathematics, provides a challenge which
seems have little hope of resolution by traditional means.

As a first stage to resolving the problem our “cri de coeur” must be
that we look closely at the ways through which children achieve success:
the methods that bring about short term success may lead to long term
failure.

Within the next article, we extend the notion of procept to higher
mathematics and consider points where the proceptual divide may
occur. As a further attempt at resolution of the problem we conclude on
a positive note and consider ways in which we may concentrate on the
concept rather than responding to immediate need through reliance on a
procedure.
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