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“By giving a name to something, you acquire power over it”
(one of “Scott’s Laws” proposed by the late Professor Bernard Scott, Sussex University)

Introduction

Why is it that so many fail in a subject that a smailhority regard as
being trivially simple? In this article we introduce an idea that offers an
explanation for the great divergence in performance between those who
succeed and those wtiiail in mathematics. Our initial focus is on the
development of numerical concepts by youwtlgldren, in asecond
article we will broaden the mathematical perspective to consiolme

of the mathematics learned in the secondary school and at degree level.
By looking at the way in which mathematical idem® developed by
learners we come to the conclusion that the reason why soocceed

and a great many fail lies in the fact tithe more able are doing
gualitatively different mathematics from the less able

The more successfulperform in away which often makes the
mathematics seem so effortlefss them. If theyseem to use so little
effort, there must be an internal engine creating the motive fivbat
Is the nature of this engine? We shsdkthat the more able have a kind
of knowledge thaself-generatesew knowledge.

If others fail at mathematics, why is it that they often fail so
catastrophically? We shakethat the catastrophe occupscausdheir
mathematical thinking processes are qualitatively different. Thealdes
fail because the mathematics thee doing ismore difficult than the
mathematics of the more able (Gray, 1991).

A major source of the generative power of mathematics is in the use
of symbols. It is only in the last two millenia that the powemoitten
symbolism has allowed mathematics goow and to bepassedfrom
generation to generation, culminating in the great explosion of
mathematics in recent centuries.

If we subject this symbolism to close scrutiny, we find that, although
every attempt is made to refine it to make it explicit and unambiguous,
its power lies in a very specific kind aimbiguity It often refers both
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to something to doand tothe result of theloing So 3/4 refers to the
intention to divide 3 by 4, it indicates a process to be appliedaksad

to the result of the action of applying the process, the fracjorThe
symbol “-2” refers both to the intention to subtract twagain
indicating a process to be applied, and also to the result of the action of
subtracting 2, the negative number -2.

First encounters witlsuch symbolism can lead to bewilderment and
consternation for the learner iestablishing precisely what the
symbolism means. It may be easy to “take away 2” but how can one
have a negative number which“isssthan nothing”? The most able see
it for what it is: anamalgam of both process and concept, a process
which in mostcases isnanifest through a procedure to get an answer,
and a thing produced through the process or the manifestation of the
process which can itself be manipulated as a mental object. This
amalgam of process and concept we calpracept By giving this
construct a name we will begin to gain power over it. We sealhow
we can focus attention on a problem theats baffled mathematics
educators and the general public alike for centuries.

The development of mathematical processes into concepts

Number provides our first example of a mathematical proedssh
develops into a concept. It is one of timst mathematicaldeas that a
child meets. Yet when owolleague Jackorsterasked agroup of two
hundred student teachersday what “three” means, he met with total
silence. What is it that we expect the youngest children in our school to
appreciate yet proves so difficult for us ®xplain? Perhaps the
difficulty lies in the fact that the notion of “threeness” cannot easily be
defined in a sentence, butther depends on an accumulation of
experience. This is an insufficient and inadequate explanation; the
problem needs further analysis.

The meaning of “three” is only established when the counting process
is linked to the cardinal value of the set. Counting is a complex activity,
which individual childrenperform in many different ways, perhaps
using counters, fingers, marks on paper etc. It may be vocal or
subvocal. It can béorward or backward, starting anhe or starting at
any given number. At a more abstract level it may involve both
counting and keeping a check on the amount counted at one and the
same time. Counting involves a focus of attention on each object that is
counted (just once) and the co-ordination of this focus withs#ogience
of number words in an order.

Because ofthis complexity, it is idealistic to conceive of a single
counting process shared by everyone. Each individual develops personal
methods ofcarrying out theactions which are grouped togethander
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the general umbrella of “counting”. It is useful to distingulstween

the notion of grocesswhich is the general intention to be carrimuat,

and the particular methagsed by an individual at a given time which
we shall call aprocedure There are many general processes in
mathematics, including the counting process, the addition process, the
subtraction process, the process of finding a fraction or the process of
solving an algebraic equation. Each of these carcdreied out by
individual procedures, which may be the resultnoéchanical action,
algorithmic routine or idiosyncratic behaviour.

The different possible procedures which arise are @articular
interest when we turn to the process of addition and its retaeckept
of sum. Consider the question:

“What is 2+27?”

The obvious answer is “4”. But how is it calculated?dguires the
processof addition. When the child attempts tlig the first time, the
addition process is usually manifested through a proceduineh
involves counting twosets eachwith two objects. At its simplest, it
requires either taking two objects and two more, then counting them all
saying “one, two, three, four”, or carrying the first two in the head and
counting on from two, saying “three, four”. Thus “2+2” signals both the
counting processand theproductof that process: the number 4. The
symbol 2+2 evokes both tipgocessof addition and theonceptof sum.

The use of a symbolism to mean both process @moduct occurs
throughout mathematics. Aumbersuch as “three” involves both the
process of counting and the concept of number. The symbolism 2+2
standsfor both the process of addition and tbencept of sum. This
phenomenon occurs again and again:

 The symbol 43 standdor the process of multiplication
“four multiplied by three” which in procedural terms may
involve repeated addition to produce the producfoafr
and three which is the number 12.

 The symbol% standdor both the process of division and
the concept of fraction,

 The symbol +4 standsr both the process ¢add four”
or shift four units along the number line, and toacept
of the positive number +4,

 The symbol -7 stand®r both the process of “subtract
seven”, or shift seven units in the opposite direction along
the number line, and the concept of the negativember
_7,



* In the second article omore advanced mathematics we
will consider furtherexamples in algebrarigonometry,
calculus and mathematical analysis, showing ik
pervading nature of symbolism whiokvokes both a
process and a concept produced by that process.

The notion of procept

The idea of a process giving a product, or output, represented by the
same symbol is seen to occur at all levels in mathematicstHelisfore
worth giving this idea a name:

We define aproceptto be a combined mental object
consisting of both process and concept in whichsdrae
symbolization is used to denote both the process and the
object which is produced by the process.

Usually the object is produced by a specific procedure — cougiveg

the sum, repeated addition gives product — but we shall see se¢bad
article that this does not always hold in sixth-form mathematichanel

we shall find the lack of an adequate procedure leads to its own peculiar
problems.

As with Scott'slaw, we will find that the giving of a name to this
idea begins to help us gain power over it which enables us to explain the
vast difference in success between those who succeed and those who fail.

A procept is, of course, a special kind of concept. It is ustiaty
met as a procedure, thensgmbolism is introducedor the output of
that procedure, and ths/mbolism takes on the dual meaning which
evokes both procedure and its output. As a child learns mathematics, the
introduced symbol takes on a life of its own. It canvréten (say,
3+2), it can beead it can bespoken(“three plus two”), it can béeard
It is an external object that different people can share, so it has, or
seems to have, its own external reality. It is ¢bastruction of meaning
for such symbols, the processesxjuired to compute them, and the
higher mental procedures required to manipulate them,ctvatitute
the abstraction of mathematics. Indeed #Hmabiguity of notation to
describe either procedure or output, whichever is more convenient at
the time, proves to be a valuable thinking deVfime the professional
mathematician.

A procept is organic. It soon growsgher than the single process
which generates it. Different symbolism may represent sheme
processes but different procedures may give the gmotRict, as in the
case of 4+1 and 3+2. The first, as a procedure, might incduating
on one from four whilst the second counts on two from three. However,
the result of both procedures is the same number, “five”. The procept of



“five” therefore growsricher inits interior structure, giving avider
flexibility in which it may be decomposed idifferent ways, to be
reorganized and transformed into an equivalent symbolgmch
represents a different procedure but Hzmeproduct. Wetherefore
envisage a procept as beiplgstic— something flexible that can be re-
moulded and reconstructed at will.

For instance, the idea the 3+2 is 5, leads to several equivalent ideas,
that 2+3 is 5, or that if “3 plus something is 5" then the “something”
must be 2. This flexible use of composition and decomposition of
numbers means that subtraction cansken as justnother way of
looking at addition, so that the undoing of addition as subtraction is just
a manipulation of flexible knowledgether than the counting process
manifest through theise of aprocedure which may be the inverse of
that used for addition.

It is in the use of procepts that we consider lies the major difference
between the performance of the more able and I¢lse able in
mathematics. In the development of skills, it is the failure of some to see
the processes encapsulated as procepts which leads to a catastrophic
division between those that can do mathematics and those that cannot.
Those whosee processasterpreted as procedures and want atiprt
term success -how to do something — are more likely toondemn
themselves to anerry-go-round of procedure after proceduxgh
success inbeing able toperform the current task, but inability to
coordinate the processes into dagger coherent theory. Coordinating
processes in time is a difficult activity. Those who develop flexible
procepts have mental objects that both enable thetatwe process and
manipulatethe symbols conceived as objects. The plasticity of procepts
allow them to be flexibly decomposed armbrganised at willBecause
of the richness of conceptual linkagésss needs to beemembered
becausemore can be reconstructed. Thus proceptual thinkers are doing
a qualitatively different kind ofmathematics that is for them -
conceptually far easier.

This divergence which occurs at all levels of mathemakesyeen
those who usenterpret processes only as procedures dhdrefore
make mathematicharder for themselves, and those thsg¢ethem as
flexible procepts we call thproceptual divide (Gray & Tall, 1991).

The difference betweersuccessand failure lies in the difference
between procept and procedure. Proceptual thinkidlgides the use of
procedures where appropriate asgmbols as manipulable objects
where appropriate. The flexibility provided by using the ambiguity of
notation as process or product gives great mathematical power.

The examples which follow consider the encapsulatiopro€edures
into procepts at differenstages of mathematical development. At any
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stage, if the cognitive demands on the individual grow too great, it may
be that someone, previously successful, foundersasksftell me how

to do it”, anxiously seeking the security opeocedure rathethan the
flexibility of procept. From this point on failure is almost inevitable. It
Is for this reason that mathematics is known chiefly as a subject in which
people fail, and fail badly, and fail often.

Example 1: The number concept

The number concept is a procept. It embodies both a process (counting)
and the output of the procedure which is the implementation of the
process (number) within the same symbolism. We have seen how a child
learns the sequence of counting numbersrater, and begins theitual

of countingsets of objects bpointing at each iurn and reciting the
number words. “One, two, three four”. There are “four” thingshis
collection. The sameinderlying procedure can be done different
ways: theorder inwhich the numbers are counted can vary. Each of
theseprocedures gives theameproduct “four”. Having the number
concept means not only being able to count, it means being aware that
different ways ofcarrying out thesame counting process will give the
same result.

Children may view number in two different ways, one as a
PROCESS ofcounting — manifested as an uncrystallizetbcedure
which is not regarded as a flexible concept — and one as the PROCEPT
of number which involves counting, the knowledge that differgays
of counting give the same result, and the crystallized number concept all
in one flexible package. Thus the attaining of the procept of number is
what Piaget would call “conservation of number”. The one additional
item in our formulation is the dualism of the notation: tember
“five” being built out of process yet being considered simultaneously of
concept.

This is one of the firstplaces inlearning where a qualitative
difference may occur between individuals. “Slower learners” do not
form the procept of number early on.dfich childrenare to move on
to addition, they will be at a serious disadvantage. The mathematics that
they will have to do will prove to be significantly more difficult for
them. Whilst those with the procept of number will be able to
manipulate the symbols flexibly in the mind to do arithmetic, l&ss
able will now have the much more difficult task of coordinating
processes — the counting process and the addition process, both manifest
through a series of procedures which become one super-procedure —
and then performing them in sequence. It is a far more congu&xto
carry out twoprocesses in time, one after the other and to attempt to
conceive of them in the mind as a single entity. Itfas easier to
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manipulate symbols on paper which can deen simultaneously and
handled much more fluently. It is here that the proceptual divide occurs
between those who are handling processes, coordinated sequentially in
time, and those manipulating symbdts proceptswhich may beseen
simultaneously onpaper Those who are fortunate to thinksing
flexible procepts have fundamentally easier mathematics to do than
those who operate by carrying out processes.

Such adivide is also embodied iusubel's (1968) differentiation
betweenmeaningfulandrote learning, orSkemp’sdistinction between
relational andinstrumentalunderstanding (1976). However, ttieeory
we give herehas anextra ingredient. It is not just theelating of one
idea to another, or the giving ofr@eaningto a process or concept. It is
the ability to give meaning to the processa flexible waythat allows
process andconcept to be interchanged atill, often without any
distinction being made between the two.

Example 2: Addition

Addition can only becarried out meaningfully when tha@aumber
procept has beeastablished as embodying both process and concept.
However, in the early stagesiore elementary forms of additiamtcur
which are either processes or combinations of procept and process.

For examplecounting allis a strategy used by young children in
which, given the sum “3+2”, is translated into a procedurtich
involves first counting a set of three objects, then a set ofobvyects,
then collecting the twaetstogether and finally counting the whole set
“one, two, three, four, five”. Thushe count-all strategygonsists of
threedistinct counting procedures, one after another. Each separate
procedure is a manifestation of the counting process. Thus COUNT-
ALL consists of PROCESS plus PROCESS leading to a PROCESS.
Given the fact that theseccur successively intime, it requires
considerable cognitive effort to link the input numbers 3 and 2 to the
output 5. So the child using count-all Issslikely to seethe triple
counting procedure as leading to the number fact.

Counting onis a more subtl@rocedure. It occurpossiblythrough
the realization that to count the first set is simply a repetition of a
counting process which involves recitation of the initial numbeames
and presenting the number name of the last tagged element as the
cardinal value of the whole set, so a short cut is possible in which one
simply counts orfrom the next numbename after the number in the
first set. Counting on 3+2, simply involves saying two numbers (starting
after the “three” of the first part) to get “four, five”, so that result is
“five”. Here the first number iseen as groceptand the second as a
process. COUNTING ON consists of PROCEPT & PROCESS.
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But the counting process here is a subtle double-couptingedure.

It is necessary both to count-on “four, five” whilst keeping track of the
number of elements counted (two). Often one tbése counting
procedures is done by using concrete elemdats support. For
instance, a child might move two fingers to keep track whilst counting
“four, five”. Alternatively it is possible to usermumber line or auler

to start at the number “three” then to pointsatcessiveiumbers whilst
counting “one, two” to end up at “five”.

The complexities involved in counting-on, especially for ldes able
child, can lead to two possible outcomdzr the less ablechild,
counting-on may become the favoured procedure to do addition. It may
take an input, say 8+4, and produce a counting-on “nine, ten, eleven,
twelvée, giving a result 12. As this occuia time the child may be
successful in getting thesult, yet not relate the earlier input (8+4) to
the output 12. For this child counting-on is buyiracedurefor getting a
result. It islesslikely to lead to the remembering of the result as a
known fact.

For another child, who is able to relate input and output, this may
crystalise into a procept, in the form of a known fact, “8342". In
this more fortunate case, counting takes theform of PROCEPT &
PROCESS giving PROCEPT.

Over a period of time the latter is more likely to lead to the pupil
developing a collection of flexible “known facts”. These could, of
course, be learnt by rote, just as the chorus ofsthreg “Inchworm”
sung by Danny Kaye in the film “Hans Christian Andersen” goes:

One and one are two,

Two and two are four,

Four and four are eight,

Eight and eight are sixteen,
Sixteen and sixteen are thirty-two...

But a rote learnt phrase has no generative meaning. One nabfebe
to repeat the words “four and four are eight”, but tiiiees no clue as
to the meaning of four anfuve.

At the highest level a known fact is seen agraecept. The known
fact “3+2 is 5” can be immediately recalled as a number bond “3+2=5",
but if necessary it can be decomposed either as procept plus process
(counting on) or even process plus process (counting all) rbate
likely, it will simply be visualized as an iconiarray of five objects
broken down into a three and a two.

The less able child may make some steps in this direction. But known
facts are harder to learn and with fewacts it is difficult to use them
flexibly. Some known factare learnt before others (e.g. “addioge”
(3+1=4), “adding two to an even number” (4+2=6), or “doubling”



(4+4=8) or “number bonds making ten” (8+2=10)). Even iess able
child collects together some of these, the burden of using them may be
great. Forinstance Stuart (aged 1@as asked to calculate “8+6”. He
said:

“I know 8 and 2 is ten, but | have trouble taking 2 from 6. But

4 and 4 makes 8, and 6 and 4 makes 10, and the othekes

14"
He is here successful, blgans on theaumber bonds 8+2=10, 4+4=8,
6+4=10 basedaround “sums making ten” and a “double”. He cannot
cope with 6-2 and his methods may collapse wither number pairs
that are unavailable to hinguchchildren may find that using the few
known facts at theirdisposal causesonsiderable strain anseek the
solace and security of counting procedures.

This underlines the neddr children toknow their number bonds
The national press is full of demanids children to know theitables.

Our experienceshows that theroblem is further down. Childreneed
regular practice t@stablish all theaumber combinations to twenty in a
context which enables them to use thproceptually. There aresome
favoured number bonds that are learnt easier than others (add on one,
doubles such as 4+4) and there others that araccentuated (such as
number bonds that add to ten) but there remain otkact as 3+5 or

6+8 which tend to get missed out and would bengbm regular
practice. Otherwise we may have children like Stuart, who are
beginning to manipulate numbers relationally but may eventually fail
because of the lack of appropriate number bonds.

Once more we are faced by theoceptualdivide, now at ahigher
conceptual level. The child wheeesaddition only as a procedure is
faced with the difficult task of coordinating different mergabcedures
whilst the more able child whdevelops a collection of flexible known
facts can use them terive other factsfor instance, “8 and 9” iseen
as the double “8 and 8” plus one, giving “seventeen”. The child on the
borderlinebetween the two may be in a delicate state of balaheze
successful use oflerived facts may lead on ttrther success, but
failure through inadequate development aisd of number bonds may
degenerate to the security of counting.

In this way the more able child mové®m a body of flexible
known factsto building up a technique of re-assemblage of procepts
which give newderived facts At this stage mathematics starts to get
easier Because smuch can be derivedess needs to biearned. The
use of procepts builds up a feed-back loop in which known facts are re-
combined in new ways tproduce new known facts. The moable
child has an organic knowledgtructure which grows under its own



internal energy, almost without any seeming effort. Arithmb&comes
more sophisticated and progressively simpler to do.

Meanwhile theless ablechild has adifferent goal in mind, theoal
of mastering the procedure of counting and applying itntore
complicated tasks. The procedure of counting-on — which may be
proving verysuccessful — makes the child a victim of its olivnited
successAlthough individual sums may beorrectly carried out by
counting on there idess likely to be a feed-back loop giving the
explosion of knowledge characterising the more able child. The
procedure of counting-odoes not give a coordination between input
and product whichleads to new known facts. Only witaxtensive
practice may some facts be learned incidentally but many of these are
retained in isolation. The child thereforas muchharder mathematics
to do: each time a sum uses the same (counting on) procedure but as the
sums getmore difficult there is little flexible structure on which to
build.

If the child obtainssuccesshrough counting-on, then thisads to a
security in the use of this system which makemintharder to progress.
Sums involving several digits must now jperformed with counting-on
subroutines that drastically extend the length of twecedures
involved, placing a greater strain on the weaker child, leading to likely
failure.

This is asavageindictment of the beliethat children should be
allowed to develop their own personal modegpeifforming arithmetic.

For if the less ablechild develops a highly personalized method of
coping with a limited range afums (often by counting usingarious
parts of the body or various finger configurations to repredéfarent
numbers), then that child may develop methods wtiechot generalize
There may be short tersuccessvith small numbers, but catastrophic
failure with more general problems. In the day-to-day running of a
classroom short-ternmsuccessmay be more immediate andstantly
rewarding, but if it is at the cost of eventual failure, it idemastatingly
bad strategy.

Allowing children only to do number work at their owacefrom
work-cards designed at their own levehln actually disguise the
symptoms of eventutdilure. The child maysucceed at additiosums
more slowly through counting procedures, yet may be developing the
very strategies which lead down a cul-de-sac. Only thradigtussion
andlisteningto a child talking through the processes being used can one
hope to diagnose the possible development of inappropriate strategies.
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Example 3: Subtraction

Subtraction, as a reversal of addition proves to be far easier as part of a
proceptual structure rathghan as a reverse of a procedure. In the
former case, if a child has a meaningful concept of 4+2 being 6, so that
6 can be decomposed into 4 and 2, then subtraction is already built in to
the structure. If 2 is taken away from 6, then 4 remains. If it is not, we
may end up with the phenomenon of Stuart who has “awéulble
taking 2 from 6”.

There is worse to come. If addition is seen only as a procesuch,
as “counting on” using a number line, the individual may attempt to
“take away” by counting back. Thus 9 take away Jesformed by
pointing at the number 9 and counting back three: 8, 7Hé&e
subtraction is seen as a true reversal of the procedure of addition, but it
Is a view fraught with danger. Counting back may be easy @nerete
number line, but the mental operation of counting back is one of the
most difficult ways ofperforming subtraction. It requires r&@verse
counting of the numbesequencg9), 8, 7, 6, with a corresponding
count of the number of terms counted (1, 2, 3), giving a double
counting procedure of great complexity compoundedher by the
difficulty of starting at the right place (counting dodnom 9 requires
starting the double counting at 8). Once again, the child locked in
procedure is faced with the far greater task.

For the moresuccessfutchild, the flexible procept of addition and
the existence oéppropriate additive number bonds can leadily into
derived subtraction facts, once again with a feedback loop whates
the procepts even more flexible and powerful. The following now all
mean the same thing: “3+2=5", “2+3=5", “3+something+beans
something=2", “2+something=5 means something =3”, and so on.

|

2+3is5
or3+2is5
or5—-3is2
or5-2is3

Contrast this with the intriguing example of a particular slearner
responding to the problem “5 take away 3” using a limited number of
known facts:

“That’s one | always have difficulty with. But | know two
and two isfour, so twoand three is five, so fivéake
away three is two...”
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This amazing piece of mathematical deduction shows the nyntadrs

of the child considered to be slow. He does not lack mathem#taal

But he has a limiteérray ofknown facts andiseshis knowledge to
derive facts by such a tortuowusute that even a simple sum isnajor
voyage of discovery. It is no wonder that our intrepid voyaigds
down when the journey gets just that little bit longer. lkes the
knowledge of how to travel but his map is in tiny parts that do not fit so
easily together. Although he is beginning tese his knowledge
imaginatively, the product of his procedure is not readily added to his
knowledge base, and there is no general feed-back loop to link
subtraction flexibly to addition. If he fails as the problems increase in
difficulty, then he is likely torevert back to anearlier strategy —
counting — which increases the burden of difficulty that he faces.

Example 4: Multiplication

Multiplication may be seemitially as repeated addition:x3 is five
repeated three times. Again the notation is a flexible procept. If the five
and the three are seen as processes, not procepts, then repeated addition
through adding five to five to five is unbearably difficult. (“sbeven,
eight, nine, ten ..that's twofives, eleven, twelve, thirteerfpurteen,
fifteen ... that'sthree fives”.) However, if it isseen as grocept, two
lots of 5 might beseen ad40, then 10 and 5 as 15, by combining and
recombining the constituent parts.

Flexibly linking the product to a visuadrray can helpsee that
different processes give (essentially) the same product:

[eecco[cccce|0c000]
15
3lotsof 5

Thus it is that the procept takes different representationsyhich
are still considered to be the same product.

How is achild who still seesaddition as counting to be expected to
cope with multi-digit multiplication? One of our student teachers was
confident that she could teach anything to any clufdyvided that she
had the time. She had reached a point in the National Curricuioere
a child must multiply a three digit number by a single digit number. A
slower learnerwas faltering, soshe wentthrough a simple example :
“234 times 27, explaining that first the 4 must be multiplied by 2, so the
child counted on “five, six, severight, then the 3 must be multiplied
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by two, so the child counted on “four, five, six”, then the 2 multiplied
by two (“three, four”). She found that the chddemed to be able to do

it when she waghere to help, even when “carryingvas involved, but
there were so many steps to carry out, that when the child was left to his
own devices, the procedureollapsedunder the weight of all the
counting.

Example 5: Place value

Place valuausesnotation in a powerful way. The two 3s in tegmbol

353 are used with entirely different meanings, the first being 3
hundreds, the second 3 units. The place value notation not only
represents a number as a combination of units, tens, hundreds,

does so in a canonical way in which thember of bundles of each is
between 0 and 9. Initially a child may think of a number in shme

way as a nhame, perhaps living at number 47, where the symbols 4 and 7
have no more separate meaning than the two ms in “mumie
meaning can only be given when the individual digits are conceived as
procepts: both the process of counting and the concept of a group of
objects that can beegrouped in various ways. The symbol 5 might be
seen as 2+3 o#+1, and this extends to 12 beisgen as 10+2 or 32 as
30+2. It requires theroceptof number (rathethan just the process of
counting or the knowledge of the sequence of number words) &blbe

to view place value as both a grouping procedure in which 452 is the
procedure of grouping “4 hundreds, 5 tens, 2 units”, and the result of
the procedure: the number 452.

Conclusion

What we have attempted to do in this article is to consider the ambiguity
of symbolism in the initiaktages of mathematics. What we have seen is
the inherent ambiguity of mathematics symbolism and the development
of procepts out of the applied actions of mathematical process. The
proceptual divideoccurs between those who complete this transition and
those who fail.

Our analysis points to theveakness othe less ablechild turning to
the security of proceduremther than the successful use pfocepts.
Therefore the additional practice at such procedures may only make the
differences greater, not close the gap.

In general classroom activity it essentiafor the teacher ttalk to
individual children and tdistento how those children arperforming
their arithmetic calculations. Simply allowing them twarry out
idiosyncratic procedures may actually be leading them gpl-ale-sac
of eventual failure at more advanced arithmetic.
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This burden imposed on thkess able, who are constrained to
perform harder (proceduralmathematicsrather than the more
powerful and easier proceptual mathematics, provides a challenge which
seems have little hope of resolution by traditional means.

As a first stage to resolving the problem ouwri‘de coeut must be
that we look closely at the ways through which children achseceess:
the methods that bring about short tesaccessnay lead to longerm
failure.

Within the next article, we extend the notion of procepthigher
mathematics and consider points where the proceptual divide may
occur. As a further attempt at resolution of the problem we conclude on
a positive note and consider ways in which we may concentrate on the
concept rather than responding to immediate need through reliance on a
procedure.
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