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Introduction

In this paper | consider conceptual problems which studert&nown

to encounter in learning the calculus and show how commaivare
based on “local straightness” cgmrovide an environment for an
approach which is cognitively satisfying, gives a meaning to the Leibniz
notation which is in accord with the original conception, and provides a
conceptual introduction to modern theories of analysis, both standard
and non-standard.

Conceptual problems in the calculus

(i) problems with the limit concept

In recent years the difficulties of teaching the calculus have become a
focus of attention at college level. In the late seventies, my colleague
Rolph Schwarzenberger and | did some research stiitlents which
showed that the notion of limit is a singularly difficult concégt the
beginning student. (Schwarzenberger & Tall 1978). We found that the
students developed a conception of the processes afiging their
experience of mathematics and the use of the language that caused them
to formulate implicit ideas which were at variance with the
mathematical theorySubsequentesearch revealed that the quantifiers
occurring in the limit definitiorcausedenormous problemsStudents at
university have difficulty even remembering the definitionsrbte, let
alone using them in a mathematical way.

In Britain it is common practice in the sixth-form (senior high school,
age 16 to 18) to approach the limit concept dynamicédly x—a, so

f(xX) - ¢’ to describe the limit of a function, and to build the calculus on
(what was considered to be) an intuitive limit notion of derivatwere

the gradient of the curwe=f(x) is defined to be the limit 01(—u—lf X+hh_f 2
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ash- 0. This was supported by a visualization of a secant “tending” to a

limiting position as a tangent to help the studentsé®” what is going
on. Researclperformed in the latdd970s showed that thes®ncepts
were less intuitive than many teachers believed and, as soonfasthe
introduction of the formalities hagbassedby, the students simply
concentrated on the mechanics of calculating tderivative
symbolically. Here they faced further difficulties.

(i) problems with the Leibniz notation

The derivative is often written using the Leibniz notatigda, and it
sometimes seemed to behave like a fraction, as in the chain rule

dy _dy jdx
dx ~dt / dr

But studentsare usually told that they must not considgrdd to be a
fraction, but some kind of “useful fiction” invented by Leibmich
happens tavork by some kind ofwizardry. Forinstance, inTeaching
the Calculus Shuard & Neill wrote:

The student... has tolearn that, in spite of all the
evidence to theontrary, which seems tchim to build up
from statements such as

dy dx _dy
dx “dt T dt
dy/dx is not a symbofor a fraction, but for the limit of
the gradient of a chord. (Shuard & Neill, p. 13).

A school textbook advised students:

‘dy/dxX must, at leastfor some considerable time, be
regarded as an inseparable whole ..ddes not in any
simple or straight-forward way mean anything likeyd
divided by &', and a statement such as

dy/dx x dx/dt = dy/dt, by cancelling ®

IS just so much gibberish.(SMP Advanced Mathematics, p.
221)

Students are told that thex ¢h [ f(x) dx means “with respect tv’, and
should not be thought of as a separate symbol, although they need to be

. " du .
willing to make the substitutionud= dx dx, to compute thentegral

by substitution.

Then the indivisible symbo&% in the differential equation
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dy _ _X
dx y

is suddenly written as

y dy = —x dx
to “separate the variables” and an integral sign is introduced to give

Jydy=—-[xdx

(where presumablyxdsuddenly changes its meaning to “with respect to
X"), to obtain the solution(s)

2 __x

5 =—% *C
Under such circumstances, what are students to believe? Is inaliter

of bogustrickery that one is taught to indulge in tget the right
answer”?

(ili) problems with algebra

In Britain a much smaller proportion of the populatistudies the
calculus than in America, and it begiearlier, atage 16 in school. But
as access thigher education is being broadened, tiasm between
what studentsare asked to believe and what they feel capable of
understanding grows ever wider.

In the last two decades in Britain, the move to comprehemsiueation

has resulted in algebra being taught to an incregsingortion of the
population, with the result that it is perceived as being increasingly
difficult to teach and learn. At theame time, investigations and
problem-solving are on the increase and thelessattention given to
drill and practice. Sstudents were getting progressivegss able to
cope with the algebraic demands of the calculus. déterioration has
now reached such a level that the neurriculum designed by the
School MathematicProject for the 16 to 1@ge group considers that

. . (X+h)s—x3 N
the manipulation of the expressugrﬁ—hL to calculate the derivative

of x3 is too difficult for most students. University students seermate
lessfacility with symbolic manipulation. With the decrease in drill and
practice, theyseem to have difficulties simplifying expressions which
earlier generations would have regarded as routine.

In the early 1980s therefore found myself faced with a number of
seemingly inescapable conclusions:



« The modern limit concept is extremely difficult for
students to understand and is not a natural starting point
for their understanding of the calculus,

* There is a mismatch between the notation of Leibniz and
the formalities of modern analysis, ystudents are
expected toperform operationsising this notation in a
mechanical way whilst overlooking any deficiencies in
meaning.

» algebraic skillsseemed to be on the decrease #mele
was a needor a new approach which demandésks
manipulation yet more meaning.

Insights from non-standard analysis

For several years | taught non-standard analysis in which the quantifiers
involved are somewhat easier to handle than in standasadysis.
Dynamic limiting ideas in which quantities “tended to zero” or grew “as
small as ongleases'tended to give students beliefs“arbitrary small
guantities” (Cornu 1983). In someenses,therefore, non-standard
analysisoffered certain advantages. particular, itshowed thauunder

an infinite magnification (when the “standard part” of each number is
taken) the graph of a differentiable function is straight. Fstance,

y=x2 nearx=a has theform (x+h)z where h is small. The graph has

gradient(ihhzﬂ =2a+h, and if h is infinitesimal, the standard part is

2a. Thus under infinite magnification, neglecting infinitesimals, the
gradient of the graph neat=a is Z2a and the graph lookstraight.
However, | found that there are certain difficulties in the inisi@ges

of non-standard analysi®o. It is natural forstudents dealing with
variable quantities that become small to imagine that tpeséuced
objects which are “arbitrarily small”. The intuitive belief in
infinitesimals is therefore strong. However, the cognitive imagery is
often at variance with the non-standard theory. (lRstance0.9999...

Is believed by many students to be “the largasiberlessthan one”

whilst 0.999... toN places differs from 1 by 1/¥0so that even iN is a
(non-standard) infinite integer, there is a number between this and 1.)
The formal approach, involving a field* which is an extension field

of the real numbers also requires a greater sophistication than is present
at the time that students begin the calculus. So, although non-standard
analysis has some clues, a®amal theory there are still difficuentry

points for the learner.



The computer and a locally straight approach to the calculus

Then the computer arrived and gave an impetusfor a new
development in the theory of calculus, perhaps more appropriate for
beginning students.Based on the non-standard idea of infinite
magnification, | considered finite magnification for saitably large
scalefactor. This turned out not to be very large at allw#s possible

to magnify a graph by a factosay 100, and many standagidaphs
would look so much less curved that they seemed almost st(&igunte

1).
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Figure 1: magnifying a small part of a graph

| therefore began to build an approach to the calculus based on this
notion of “local straightness” which is now availabler IBM
compatibles (Tall et al, 1990). It transpires that the magnification
process has the limiting notiomplicit within it. Thus it is not the
initial focus of attention. Instead one can use ¢cbhmputer to consider
examples in which thgraph is locally straight and non-examples in
which the graph fails to magnify locally straiglsgy it has dcorner”
with a different left and right gradient, or ascillates so wildlynear a
point that the graph never magnifies to look straight, or it is so
wrinkled that it isnowherelocally straight. By including such a function
in the software | developed it became possiblestudentsn their very

first encounter with thealculusto meet the idea of a function which is
intuitively everywherecontinuous but nowherdifferentiable (figure

2).
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Figure 2: A graph which is so wrinkled it is nowhere locally straight

New meanings for old notations

This approach also gives a new meaning to the Leibniz notation, which
proves to be equivalent to the old meaning formulated by Leibniz.
Initially | could only see itapplying to the notion of the derivative, but
more recently | have looked at the pictures a little nsmesitively and
now | cansee acoherent use of the Leibniz notatidinroughout the
whole of differential and integral calculus, and in the meaning of
differential equations.

In the first publication on the calculum 1684 Leibnizreferred to a
diagram which is shown simplified in figure 3 bgferring only to the

X

y

B X

Figure 3 : The Leibniz definition of dx and dy

The curve represents a varialyledepending orx, andB is the point
where the tangent to the curve meetsxtagis.

Condensing what Leibniz said to concentrate on the variabfeae get
the statement:

Jam recta aliqua pro arbitriassumtasocetur &, & recta
guae sit ad xluty est adXB vocetur .

which translates to



Now some straight lineselectedarbitrarily is called ,
and the line which is toxdasy is toXB is called ¢.

Thus the length xis arbitrary and the length ylis the corresponding
increment in y such that the quotient/ak equalsy/XB. Disentangling
the definition, we see that & is any increment and ydis the

corresponding increment to the tangent (figure 4.)

Figure 4 : The differentials of Leibniz as increments to the tangent

There is no mention of infinitesimals: they came later in the papen
Leibniz had to develop a method of calculating the direction of the
tangent. Today we (usually) calculate the tangent direction by a limiting
process, but there is no reason why we should uset the Leibniz
notation in its original meaning. In modern terminology, the tangent is
drawn to the curve and the components of the tangent vectoxady.d
Provided that ® is suitably small (dependent on the curvature of the
graph in a naive sense), the graph will approximate to the tangent and a
small part of the tangent will look to the naked eye much like the locally
straight graph.

Figure 5 : magnifying a locally straight graph



Investigational approaches with new technology

In the new School Mathemati¢xoject in Britain for 16-19 year old
students in school, wiherefore designed a numerical and graphical
approach to the calculus in which the gradient of ¢gnaph was
investigated both numerically and pictorially. Using investigational
problem-solving techniques it became possible to conjecture (guess) the
gradient functions of many standard grapkes:x:, X", Sinx, CO¥, &,

In|x|, etc, sufficient to give a meaningful start to the subject without too
much manipulation and without explicitly using the limit concept.

For instance, a grapsuch asy=x2 will look almost straight when any
small part is magnified (figure 6). This means that the rate of change of
y with respect tx, which is found by measuring

y-change
x-change’

will not vary much over the magnified part.

AY

magnify

>
X

Figure 6 : Magnifying the graph of y=x2

It is thisidea that such &urve magnifies to look straight whersiaall
portion is placed under a microscope that makes the calculus possible.

A student quickly learns to scan an eye alonggitagph andseevarious
parts of it changing in gradiendust bylooking the gradient can be
seen decreasinfom a largenegative gradient, gettintgss and less
steep until the gradient is zero at the origin, then increasingdsitive
values.
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Figure 7: The changing gradient of y=x?

By using software thasketches thisgradient more accurately, the
students maygeethat it stabilises ory=2x and thus the gradiemurve

can be conjectured before any symbolic manipulatiqgrerformed. By

such methods students in the SMP curriculum are now being encouraged
to seethe changing gradient of a graph and to ce®puter software to

give them the environment in which they may conjecturefohmula

for the gradient of the graph. (It is my personal belief tthas
particular syllabus goes too far by relying mainly on visual imagery and
conjectures. Visual imagery is only of lasting value when it can be
turned into mathematics that can produce answers. It is my hope that
future iterations of thesyllabus will demandmore linkagebetween
pictures and symbols, and more expectation of manipulative ability, but
only time will tell.)

Undoing differentiation

Traditionally integration is seen as thereverse process to
differentiation. This is not the most appropriate way of viewing the

problem. The reverse of differentiation is knowing the grad%u to

find the original functiony=f(x). This is the theory ofifferential
equations not the theory of integration. A solution of a firetder
differential equation must, by definition, be differentiable, In the small,
a tiny portion of its graph must approximate to a straight §egment
and, if we know the gradient of the segment, then we can draw it. For
instance, if we have

d
o =Y

which tells us that the gradient of the original function through) (is
: 'y, then we can draw a line segment of gradienty. By visually
sticking such line segments end to end we can build ugpanoximate
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solution curve. Figure 8hows theSolution Sketchesoftwarewritten
for the new 16-19 A-level with a line segment drawn througil.5,
y=2, where the gradient is therefotey=1.

dy-dx=8.5y

-4
A x=1.5888
y=2.8888
dy-dx=
4 4 1.8888
e A Z 4
A
e Ay

Figure 8 : part of a curve of gradient ;—y

By simply moving the segment around the computer scraether
software control, and leaving a tracesafch curves fitting end to end,
an approximate solution curve can be built. A stugerforming this
activity will sensephysically that the resulting curve everywhere has
gradient given by the differential equation and therefore hale a
deeper cognitive understanding of the meaning of a solution.

Figure 9 shows such a curve andaaray of linesegments showing the
directions of othepossible solution curve§.hrough each point in the
plane there is a unique solution of the differential equation

dy _,
dx —z Y-

x=1.5888
y=2.68888
dy-sdx=
1.8888
&,
k) . 's%( “‘»‘,
“;, :2% @ "‘;,,
s s s s s ;;i; ”’x’ "z‘ s s s s
s s s

Figure 9 : A solution curve and an array of other segments with the appropriate gradient
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This is the essential idea of differential equation. It is an equation
which specifies thegradient of a graph and, provided dbes this
unambiguously at every point, there is a unique solution of the
differential equation through every point in the plane. Téagls to the
idea which is very new to the beginning student, thate is a whole
family of solutions to a given differential equation.

Cumulative growth: integration

The final ingredient of the calculus is given by tumulative growthof

a function. The mosstraightforwardexample is to take a function and
calculate the growing area under the grapalyone might take graph

as in figure 10 and, by some method or other, work out the area from a
fixed pointa to a variable poink. The area will then be a function
A(X).

A =
N
\/\
A(¥
a X >

Figure 10 : The area A(x) under the curve from ato x

The area fromx=a to x=b is easily calculated approximately on a
computer by simply simply chopping up the interval franto b into
small lengths which, in the Leibniz notation will be denoted kyahd
then adding together the rectangles of heigkt &hd width & (figure
11).

A =)

_—|
_—

(%)

dx
a X b

Figure 11 : The Leibniz sum
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By taking thinner and thinner strips the Leibniz sum is likely to give
better and better approximations to the area.

Leibniz denoted the area by
b
J2 f(x) dx

where the elongated S denoted the first letter of the Latin Wardma,
for sum. This Leibniz notation should therefore be read “the fsam
atob of f(x) dx”. It is also called “thentegral from a to b of f(x) dx”.

It is this notation that has been the subject of most misunderstanding,
compared with theydx notation in differentiation. There is a reason
for this. The limiting process for the derivative:

. f(x+h)-h

L0 —
occurs only abnepoint, with onlyonevariable ) tending to zero. The
limiting process for the numerical approximation to the integaiks
many strips and must occur over a whole interval. It is dRk&ra
complication of this process thaeems to haverevented aradequate
modern interpretation of the Leibniz notation in integration.

Let us use the notatioEb f(x) dx to denote the sum of striger a
a

partition of the intervald.b] in which dk denotes the (finite) strip width

of a typical strip and denotes the left-hand endpoint of the strip. (This
Is the essential definition of Cauchy at the beginning of the nineteenth
century). Figure 10 shows this sum of strips seen as an area calculation.

However, a much more productive way to consider this notation is to
look instead at the graph of a functionx)l(whose derivative is
I'(X)=f(x) and instead draw the corresponding graph»f(fgure 12).

A y=I(x) ﬁk‘r/
f dy = I'(x)dx
dy ] il
T 1(b)
(a)
a X b >

Figure 12 : The Leibniz sum as a sum of vertical line segments
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This picturehas the same subdivision of theerval from a to b into
subintervals. As we saw earlier in figure 6, the valué(aj tix is equal
to the vertical distance to the tangeBecause %)=I1'(x), the Leibniz

sum
b b
f(x) dx = I d
> 2109 0 = 3 P roo o

Is the sum of these vertical segments.

The picture as istands is novery helpful. But now we mussee it
through our new spectacles and set Leibniz’s reputatight. Figure
13 shows the same idea with a large number of very thin strips.

dx

I(b)

(@)
a b

Figure 13: The Leibniz sum as the sum of the risers to the curve y=I(x)

Because the graph g£l(x) has a derivative, under a microscope it will
look straight. So now the verticadtepsare approximately equal to
staircase risers. Adding together all these risers when the striperagre
small gives the total sum to be the rise froma to x=b, which is

I(b)-I(a).
Thus, when a very large number of strips are taken, the value of the
Leibniz sum will stabilise on a value which we denotej@/f(x) dx ,

which satisfies
[R1(x) dx , = 100)-1(a)

which is simply thdcundamental Theorem of the Calculus
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Towards a formal proof of the Fundamental Theorem

In other papers (e.g. Tall 1986 and Tall 1991a) | have shown how a
different method of visualising the area under a graph by pulling it
horizontally can lead to a proof of the fundamental theofem a
continuous function. The idea is simple. interesting pictures noigtdr

by maintaining a constagtrange whilst taking a much smalleirange.

For instance, figure 14hows thegraph of y=sinx with the same
y-range in each (-3 to 3) bxtrange being changddom -3 to 3down

to 1 to 1.01. What happens is that the graph insdw®nd case is pulled
flat by the stretching of a thixxrange to fill the computer window.

-2 S 2 | 1.882 1.886

Figure 14 : The graph of y=sinx, pulled out flat

If one calculates the area under a flat graph like this, the areaxfitom
x+h is approximately #)h. This represents a change in afem A(X)
to A(x+h), so

A(x+h)-A(X) = f(x)h.
This suggests that we may have
A(x+h)—A(X)
h

= f(x),
and perhaps, as — 0, we might get

A'(X)=f(x).
What kind of function, when stretched out horizontally neax,, looks

flat ? If we suppose this means that the graph lies in a pixel representing
a height f§)+e, then we need to know that, given sucheanO, then we

can find a small enoughk interval, sayx+s, so that when lies between
x—3 andx+s, then ft) lies between ¥)— and fk)+<. In other words, a
natural condition for the function teatisfy the fundamental theorem is
that it becontinuousn the formal sense:
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Given any:>0, as>0 can be found such that whenewxes <t <x+35 we
know that f&)— < f(t) < f(X)+e.

For such a function if the width of atrip h is taken positive anéess
than 5 then the value of ff will lie between fk)— and fi)+e

throughout the strip and so

(f(x)—)h < A(x+h)—A(x) < (f(x)+e)h.
Hence

A(x+h)—A(X)

h

is sandwiched betweenxjt= and fk)+s. A similar argument holds fdr
negative. As is arbitrary, this is the formal definition that

im A(x+hr)]—A(x)

£-0
.e. A'(x) = f(x).

In this way we sedhat the formal notion of continuity arises as a
natural ingredient of the fundamental theorem of calculus, not as an
esoteric definition introduced for purely theoretical purposes.

= f(x),

Note that the fundamental theorem requires only requires the
continuityof f(x), not that it be differentiable. Using another piece of
software, The FunctionAnalyser(Tall 1991b), | haveprogrammed a
numerical way of calculating the approximate aasaa functionA(x).

This usesthe speed of a 32 bRISC chip in the British Archimedes
computer to calculate the area quickly from a fixed paitd a variable
point x with specified strip-width using the mid-ordinatele. It is
therefore possible to numerically differentiate the area function and get
back to the original function. Thus it igossible to integrate the
nowhere differentiable blancmange function to get an area function
differentiable everywhere once (whose derivative is the blancmange)
and is therefore differentiable nowhere twice.

| have even amused myself byrogramming in a functionthat
distinguishes between “pseudo-rationals” and “pseudo-irrationals”,
giving the value TRUE to 1, 22/7, yet FALSE 1 e andv2. Thisuses

the Greek method of continued fractions to approximate to a number to
work out a close rational approximation and declares thember
“pseudo-irrational” if the approximation has a large denominaisimg

this approach | have been even able to simulate functions which take the
value 1 on (pseudo)irrationals and 0 on (pseudo)rationals to start the
beginnings of a theory of integration which gives intuitions for
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Lesbegue integratiorrather than Riemann integration. But that is
another story! (Mills & Tall (to appear).)

Parametric functions

In other software developddr the School Mathematic®roject (Tall
1991b) | programmed four views ofparametric curvex=x(t), y=y(t),

to simultaneously show the curve in three-dimensianaly space and

its component pictures projected onto the three coordinate planes. The
three-dimensional view can be rotatedspace to coincidevith any of

the three projections. A numerical tangent can be calculieigh

two points with parameter differing by a small valuetd This gives a
tangent vector with coordinates that may be denoted bydd dy),
whose projections give the standard Leibpicture in any of thehree
coordinate planes. It is in this way that the equation:

QX_QL’/d_X
dx —dt 7 dt

can be seen to have meaning — as an equation involvinthrtbe sides
of a box in three-dimensional space. Of course there will ppe@llem
if the relationship betweenhandx is such that xfdt=0, for then a=0
for non-zero ¢t But (provided that ylis not also zero), this wikimply
correspond to a vertical tangenkd) in thex—y plane.

o |ty plane I

Figure 15: four views of a numerical tangent to a parametric curve

It is not far from here to consider highdmimensional pictures. The
geometry gets more difficult to see, but the correspondingar
algebra works just as well and it is tinfhe the symbolism to play a
much more dominant roléOnce more the notion of local straightness
remains centre stage, now in terms of locally linear approximations in
differentiable manifolds.
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Thus it is that a locally straight approach to the calculus can be begun in
a relatively unsophisticated and naive way, using the studexttsal
intuitions, building implicitly, but not explicitly on the notion of limit in
such a way that théheory is coherent with both standard and non-
standard analysis (anfr those interested in computability, it has a
close relationship with constructive analysis as well).

Our experience in the UK is that it works well with a wider cross-
section of abilities than a traditional approach. The graphiess are
readily absorbed by the those with mathematical minds sdek to
refine the logic and may pursue a more formal courased on an
intuition which can visualize non-differentiability, But it also gives good
intuitions and a non-technical approach to those who need to know what
a differential equations, so that it can be used in applications. I1BM
versions of software based on tidsaphical Approach to theCalculus

are also available in the USA (Tall et al 1990).
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