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Introduction

In this paper I consider conceptual problems which students are known
to encounter in learning the calculus and show how computer sofware
based on “local straightness” can provide an environment for an
approach which is cognitively satisfying, gives a meaning to the Leibniz
notation which is in accord with the original conception, and provides a
conceptual introduction to modern theories of analysis, both standard
and non-standard.

Conceptual problems in the calculus

(i) problems with the limit concept

In recent years the difficulties of teaching the calculus have become a
focus of attention at college level. In the late seventies, my colleague
Rolph Schwarzenberger and I did some research with students which
showed that the notion of limit is a singularly difficult concept for the
beginning student. (Schwarzenberger & Tall 1978). We found that the
students developed a conception of the processes arising from their
experience of mathematics and the use of the language that caused them
to formulate implicit ideas which were at variance with the
mathematical theory. Subsequent research revealed that the quantifiers
occurring in the limit definition caused enormous problems. Students at
university have difficulty even remembering the definitions by rote, let
alone using them in a mathematical way.

In Britain it is common practice in the sixth-form (senior high school,
age 16 to 18) to approach the limit concept dynamically, “as x→a, so

f(x)→c” to describe the limit of a function, and to build the calculus on

(what was considered to be) an intuitive limit notion of derivative where

the gradient of the curve y=f(x) is defined to be the limit of 
f(x+h)–f(x)

h  
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as h→0. This was supported by a visualization of a secant “tending” to a

limiting position as a tangent to help the students to “see” what is going
on. Research performed in the late 1970s showed that these concepts
were less intuitive than many teachers believed and, as soon as the first
introduction of the formalities had passed by, the students simply
concentrated on the mechanics of calculating the derivative
symbolically. Here they faced further difficulties.

(ii) problems with the Leibniz notation

The derivative is often written using the Leibniz notation dy/dx, and it
sometimes seemed to behave like a fraction, as in the chain rule

dy
dx  = 

dy
dt   / 

dx
dt  

But students are usually told that they must not consider dy/dx to be a
fraction, but some kind of “useful fiction” invented by Leibniz which
happens to work by some kind of wizardry. For instance, in Teaching
the Calculus, Shuard & Neill wrote:

The student ... has to learn that, in spite of all the
evidence to the contrary, which seems to him to build up
from statements such as

 
dy
dx  x 

dx
dt   = 

dy
dt  

dy/dx is not a symbol for a fraction, but for the limit of
the gradient of a chord. (Shuard & Neill, p. 13).

A school textbook advised students:

‘dy/dx’ must, at least for some considerable time, be
regarded as an inseparable whole ... It does not in any
simple or straight-forward way mean anything like‘dy
divided by dx’, and a statement such as

dy/dx x dx/dt = dy/dt, by cancelling dx

is just so much gibberish.(SMP Advanced Mathematics, p.
221)

Students are told that the dx in ∫ f(x) dx means “with respect to x”, and

should not be thought of as a separate symbol, although they need to be

willing to make the substitution du = 
du
dx  dx, to compute the integral

by substitution.

Then the indivisible symbol  
dy
dx   in the differential equation
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dy
dx  = – 

x
y 

is suddenly written as

y dy = – x dx

to “separate the variables” and an integral sign is introduced to give

∫ y dy = – ∫ x dx

(where presumably dx suddenly changes its meaning to “with respect to
x”), to obtain the solution(s)

y2

2   = – 
x2

2   + c.

Under such circumstances, what are students to believe? Is it all a matter
of bogus trickery that one is taught to indulge in to “get the right
answer”?

(iii) problems with algebra

In Britain a much smaller proportion of the population studies the
calculus than in America, and it begins earlier, at age 16 in school. But
as access to higher education is being broadened, the chasm between
what students are asked to believe and what they feel capable of
understanding grows ever wider.

In the last two decades in Britain, the move to comprehensive education
has resulted in algebra being taught to an increasing proportion of the
population, with the result that it is perceived as being increasingly
difficult to teach and learn. At the same time, investigations and
problem-solving are on the increase and there is less attention given to
drill and practice. So students were getting progressively less able to
cope with the algebraic demands of the calculus. The deterioration has
now reached such a level that the new curriculum designed by the
School Mathematics Project for the 16 to 19 age group considers that

the manipulation of the expression 
(x+h)3–x3

h   to calculate the derivative

of x3 is too difficult for most students. University students seem to have
less facility with symbolic manipulation. With the decrease in drill and
practice, they seem to have difficulties simplifying expressions which
earlier generations would have regarded as routine.

In the early 1980s I therefore found myself faced with a number of
seemingly inescapable conclusions:
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• The modern limit concept is extremely difficult for
students to understand and is not a natural starting point
for their understanding of the calculus,

• There is a mismatch between the notation of Leibniz and
the formalities of modern analysis, yet students are
expected to perform operations using this notation in a
mechanical way whilst overlooking any deficiencies in
meaning.

• algebraic skills seemed to be on the decrease and there
was a need for a new approach which demanded less
manipulation yet more meaning.

Insights from non-standard analysis

For several years I taught non-standard analysis in which the quantifiers
involved are somewhat easier to handle than in standard analysis.
Dynamic limiting ideas in which quantities “tended to zero” or grew “as
small as one pleases” tended to give students beliefs in “arbitrary small
quantities” (Cornu 1983). In some senses, therefore, non-standard
analysis offered certain advantages. In particular, it showed that under
an infinite magnification (when the “standard part” of each number is
taken) the graph of a differentiable function is straight. For instance,
y=x2 near x=a has the form (x+h)2 where h is small. The graph has

gradient 
(a+h)2–a2

h   =2a+h, and if h is infinitesimal, the standard part is

2a. Thus under infinite magnification, neglecting infinitesimals, the
gradient of the graph near x=a is 2a and the graph looks straight.
However, I found that there are certain difficulties in the initial stages
of non-standard analysis too. It is natural for students dealing with
variable quantities that become small to imagine that these produced
objects which are “arbitrarily small”. The intuitive belief in
infinitesimals is therefore strong. However, the cognitive imagery is
often at variance with the non-standard theory. (For instance, 0.9999...
is believed by many students to be “the largest number less than one”
whilst 0.999... to N places differs from 1 by 1/10N, so that even if N is a
(non-standard) infinite integer, there is a number between this and 1.)
The formal approach, involving a field Â* which is an extension field
of the real numbers also requires a greater sophistication than is present
at the time that students begin the calculus. So, although non-standard
analysis has some clues, as a formal theory there are still difficult entry
points for the learner.
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The computer and a locally straight approach to the calculus

Then the computer arrived and it gave an impetus for a new
development in the theory of calculus, perhaps more appropriate for
beginning students. Based on the non-standard idea of infinite
magnification, I considered finite magnification for a suitably large
scale factor. This turned out not to be very large at all. It was possible
to magnify a graph by a factor, say 100, and many standard graphs
would look so much less curved that they seemed almost straight (figure
1).

Figure 1: magnifying a small part of a graph

I therefore began to build an approach to the calculus based on this
notion of “local straightness” which is now available for IBM
compatibles (Tall et al, 1990). It transpires that the magnification
process has the limiting notion implicit within it. Thus it is not the
initial focus of attention. Instead one can use the computer to consider
examples in which the graph is locally straight and non-examples in
which the graph fails to magnify locally straight, say it has a “corner”
with a different left and right gradient, or it oscillates so wildly near a
point that the graph never magnifies to look straight, or it is so
wrinkled that it is nowhere locally straight. By including such a function
in the software I developed it became possible for students in their very
first encounter with the calculus to meet the idea of a function which is
intuitively everywhere continuous but nowhere differentiable. (figure
2).
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Figure 2: A graph which is so wrinkled it is  nowhere locally straight

New meanings for old notations

This approach also gives a new meaning to the Leibniz notation, which
proves to be equivalent to the old meaning formulated by Leibniz.
Initially I could only see it applying to the notion of the derivative, but
more recently I have looked at the pictures a little more sensitively and
now I can see a coherent use of the Leibniz notation throughout the
whole of differential and integral calculus, and in the meaning of
differential equations.

In the first publication on the calculus  in 1684 Leibniz referred to a
diagram which is shown simplified in figure 3 by referring only to the
standard variables x,y.

y

XB

dx
dy

Figure 3 : The Leibniz definition of dx and dy

The curve represents a variable y depending on x, and B is the point
where the tangent to the curve meets the x-axis.

Condensing what Leibniz said to concentrate on the variables x,y we get
the statement:

Jam recta aliqua pro arbitrio assumta vocetur dx, & recta
quae sit ad dx ut y est ad XB vocetur dy.

which translates to
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Now some straight line selected arbitrarily is called dx,
and the line which is to dx as y is to XB is called dy.

Thus the length dx is arbitrary and the length dy is the corresponding
increment in y such that the quotient dy/dx equals y/XB. Disentangling
the definition, we see that dx is any increment and dy is the
corresponding increment to the tangent (figure 4.)

dx
dy

x x+dx

y=f(x)

Figure 4 : The differentials of Leibniz as increments to the tangent

There is no mention of infinitesimals: they came later in the paper when
Leibniz had to develop a method of calculating the direction of the
tangent. Today we (usually) calculate the tangent direction by a limiting
process, but there is no reason why we should not use the Leibniz
notation in its original meaning. In modern terminology, the tangent is
drawn to the curve and the components of the tangent vector are dx, dy.
Provided that dx is suitably small (dependent on the curvature of the
graph in a naive sense), the graph will approximate to the tangent and a
small part of the tangent will look to the naked eye much like the locally
straight graph.

dx

dy

x

y=f(x)

Figure 5 : magnifying a locally straight graph
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Investigational approaches with new technology

In the new School Mathematics Project in Britain for 16-19 year old
students in school, we therefore designed a numerical and graphical
approach to the calculus in which the gradient of the graph was
investigated both numerically and pictorially. Using investigational
problem-solving techniques it became possible to conjecture (guess) the
gradient functions of many standard graphs: x2, x3, xn, sinx, cosx, ex,
ln|x|, etc, sufficient to give a meaningful start to the subject without too
much manipulation and without explicitly using the limit concept.

For instance, a graph such as y=x2 will look almost straight when any
small part is magnified (figure 6). This means that the rate of change of
y with respect to x, which is found by measuring

y-change
x-change ,

will not vary much over the magnified part.

x

y

magnify

Figure 6 : Magnifying the graph of y=x2

It is this idea that such a curve magnifies to look straight when a small
portion is placed under a microscope that makes the calculus possible.

A student quickly learns to scan an eye along the graph and see various
parts of it changing in gradient. Just by looking, the gradient can be
seen decreasing from a large negative gradient, getting less and less
steep until the gradient is zero at the origin, then increasing for positive
values.
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x

y

gradient about +1gradient zero

gradient about –1

gradient increasinggradient getting less steep

Figure 7: The changing gradient of y=x2

By using software that sketches this gradient more accurately, the
students may see that it stabilises on y=2x and thus the gradient curve
can be conjectured before any symbolic manipulation is performed. By
such methods students in the SMP curriculum are now being encouraged
to see the changing gradient of a graph and to use computer software to
give them the environment in which they may conjecture the formula
for the gradient of the graph. (It is my personal belief that this
particular syllabus goes too far by relying mainly on visual imagery and
conjectures. Visual imagery is only of lasting value when it can be
turned into mathematics that can produce answers. It is my hope that
future iterations of the syllabus will demand more linkage between
pictures and symbols, and more expectation of manipulative ability, but
only time will tell.)

Undoing differentiation

Traditionally integration is seen as the reverse process to
differentiation. This is not the most appropriate way of viewing the

problem. The reverse of differentiation is knowing the gradient 
dy
dx , to

find the original function y=f(x). This is the theory of differential
equations, not the theory of integration. A solution of a first order
differential equation must, by definition, be differentiable, In the small,
a tiny portion of its graph must approximate to a straight line segment
and, if we know the gradient of the segment, then we can draw it. For
instance, if we have

dy
dx  = 1

2
  y.

which tells us that the gradient of the original function through (x,y) is
1
2

  y, then we can draw a line segment of gradient  1
2

  y. By visually
sticking such line segments end to end we can build up an approximate



– 10 –

solution curve. Figure 8 shows the Solution Sketcher software written
for the new 16-19 A-level with a line segment drawn through x=1.5,
y=2, where the gradient is therefore  1

2
  y=1.

Figure 8 : part of a curve of gradient 
1
2 y

By simply moving the segment around the computer screen under
software control, and leaving a trace of such curves fitting end to end,
an approximate solution curve can be built. A student performing this
activity will sense physically that the resulting curve everywhere has
gradient given by the differential equation and therefore will have a
deeper cognitive understanding of the meaning of a solution.

Figure 9 shows such a curve and an array of line segments showing the
directions of other possible solution curves. Through each point in the
plane there is a unique solution of the differential equation

dy
dx  = 1

2
  y.

Figure 9 : A solution curve and an array of other segments with the appropriate gradient
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This is the essential idea of a differential equation. It is an equation
which specifies the gradient of a graph and, provided it does this
unambiguously at every point, there is a unique solution of the
differential equation through every point in the plane. This leads to the
idea which is very new to the beginning student, that there is a whole
family of solutions to a given differential equation.

Cumulative growth: integration

The final ingredient of the calculus is given by the cumulative growth of
a function. The most straightforward example is to take a function and
calculate the growing area under the graph. Say one might take a graph
as in figure 10 and, by some method or other, work out the area from a
fixed point a to a variable point x. The area will then be a function
A(x).

y=f(x)

xa

A(x)

Figure 10 : The area A(x) under the curve from a to x

The area from x=a to x=b is easily calculated approximately on a
computer by simply simply chopping up the interval from a to b into
small lengths which, in the Leibniz notation will be denoted by dx, and
then adding together the rectangles of height f(x) and width dx (figure
11).

y=f(x)

x
dx

f(x)

a b

Figure 11 : The Leibniz sum
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By taking thinner and thinner strips the Leibniz sum is likely to give
better and better approximations to the area.

Leibniz denoted the area by

⌡⌠a
b f(x) dx 

where the elongated S denoted the first letter of the Latin word Summa,
for sum. This Leibniz notation should therefore be read “the sum from
a to b of f(x) dx”. It is also called “the integral from a to b of f(x) dx”.

It is this notation that has been the subject of most misunderstanding,
compared with the dy/dx notation in differentiation. There is a reason
for this. The limiting process for the derivative:

lim
h→0

 
f(x+h)–h

h  

occurs only at one point, with only one variable (h) tending to zero. The
limiting process for the numerical approximation to the integral takes
many strips and must occur over a whole interval. It is the extra
complication of this process that seems to have prevented an adequate
modern interpretation of the Leibniz notation in integration.

Let us use the notation ∑
a

b f(x) dx  to denote the sum of strips for a

partition of the interval [a.b] in which dx denotes the (finite) strip width
of a typical strip and x denotes the left-hand endpoint of the strip. (This
is the essential definition of Cauchy at the beginning of the nineteenth
century). Figure 10 shows this sum of strips seen as an area calculation.

However, a much more productive way to consider this notation is to
look instead at the graph of a function I(x) whose derivative is
I '(x)=f(x) and instead draw the corresponding graph of I(x) (figure 12).

y=I(x)

dx

dy
I(b)

I(a)

a x b

dy = I'(x)dx

Figure 12 : The Leibniz sum as a sum of vertical line segments
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This picture has the same subdivision of the interval from a to b into
subintervals. As we saw earlier in figure 6, the value of I'(x) dx is equal
to the vertical distance to the tangent. Because f(x)=I '(x), the Leibniz
sum

 ∑
a

b f(x) dx  =  ∑
a

b I '(x) dx  

is the sum of these vertical segments.

The picture as it stands is not very helpful. But now we must see it
through our new spectacles and set Leibniz’s reputation straight. Figure
13 shows the same idea with a large number of very thin strips.

b

y=I(x)

a

I(a)

I(b)

dy

dx

Figure 13: The Leibniz sum as the sum of the risers to the curve y=I(x)

Because the graph of y=I(x) has a derivative, under a microscope it will
look straight. So now the vertical steps are approximately equal to
staircase risers. Adding together all these risers when the strips are very
small gives the total sum to be the rise from x=a to x=b, which is

I(b)–I(a).

Thus, when a very large number of strips are taken, the value of the

Leibniz sum will stabilise on a value which we denote by ⌡⌠a
b f(x) dx ,

which satisfies

 ⌡⌠a
b f(x) dx , = I(b)–I(a)

which is simply the Fundamental Theorem of the Calculus.
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Towards a formal proof of the Fundamental Theorem

In other papers (e.g. Tall 1986 and Tall 1991a) I have shown how a
different method of visualising the area under a graph by pulling it
horizontally can lead to a proof of the fundamental theorem for a
continuous function. The idea is simple. interesting pictures might occur
by maintaining a constant y-range whilst taking a much smaller x-range.
For instance, figure 14 shows the graph of y=sinx with the same
y-range in each (–3 to 3) but x-range being changed from –3 to 3 down
to 1 to 1.01. What happens is that the graph in the second case is pulled
flat by the stretching of a thin x-range to fill the computer window.

             
Figure 14 : The graph of y=sinx, pulled out flat

If one calculates the area under a flat graph like this, the area from x to
x+h is approximately f(x)h. This represents a change in area from A(x)
to A(x+h), so

A(x+h)–A(x) ≈ f(x)h.

This suggests that we may have

A(x+h)–A(x)
h   ≈ f(x),

and perhaps, as h → 0, we might get

A '(x)=f(x).

What kind of function, when stretched out horizontally near x=x0, looks
flat ? If we suppose this means that the graph lies in a pixel representing
a height f(x)±ε, then we need to know that, given such an ε > 0, then we
can find a small enough x interval, say x±δ, so that when t lies between
x–δ and x+δ, then f(t) lies between f(x)–ε and f(x)+ε. In other words, a
natural condition for the function to satisfy the fundamental theorem is
that it be continuous in the formal sense:
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Given any ε>0, a δ>0 can be found such that whenever x–δ < t <x+δ we
know that f(x)–ε < f(t) < f(x)+ε.

For such a function if the width of a strip h is taken positive and less
than δ then the value of f(t) will lie between f(x)–ε and f(x)+ε

throughout the strip and so

(f(x)–ε)h  < A(x+h)–A(x) < (f(x)+ε)h.

Hence

A(x+h)–A(x)
h  

is sandwiched between f(x)–ε and f(x)+ε. A similar argument holds for h
negative. As ε is arbitrary, this is the formal definition that

lim
ε→0

  
A(x+h)–A(x)

h    = f(x),

i.e. A'(x) = f(x).

In this way we see that the formal notion of continuity arises as a
natural ingredient of the fundamental theorem of calculus, not as an
esoteric definition introduced for purely theoretical purposes.

Note that the fundamental theorem requires only requires the
continuity of f(x), not that it be differentiable. Using another piece of
software, The Function Analyser (Tall 1991b), I have programmed a
numerical way of calculating the approximate area as a function A(x).
This uses the speed of a 32 bit RISC chip in the British Archimedes
computer to calculate the area quickly from a fixed point a to a variable
point x with specified strip-width using the mid-ordinate rule. It is
therefore possible to numerically differentiate the area function and get
back to the original function. Thus it is possible to integrate the
nowhere differentiable blancmange function to get an area function
differentiable everywhere once (whose derivative is the blancmange)
and is therefore differentiable nowhere twice.

I have even amused myself by programming in a function that
distinguishes between “pseudo-rationals” and “pseudo-irrationals”,
giving the value TRUE to 1, 22/7, yet FALSE to π, e and √2. This uses
the Greek method of continued fractions to approximate to a number to
work out a close rational approximation and declares the number
“pseudo-irrational” if the approximation has a large denominator. Using
this approach I have been even able to simulate functions which take the
value 1 on (pseudo)irrationals and 0 on (pseudo)rationals to start the
beginnings of a theory of integration which gives intuitions for
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Lesbegue integration rather than Riemann integration. But that is
another story! (Mills & Tall (to appear).)

Parametric functions

In other software developed for the School Mathematics Project (Tall
1991b) I programmed four views of a parametric curve x=x(t), y=y(t),
to simultaneously show the curve in three-dimensional t-x-y space and
its component pictures projected onto the three coordinate planes. The
three-dimensional view can be rotated in space to coincide with any of
the three projections. A numerical tangent can be calculated through
two points with parameter t differing by a small value dt. This gives a
tangent vector with coordinates that may be denoted by (dt, dx, dy),
whose projections give the standard Leibniz picture in any of the three
coordinate planes. It is in this way that the equation:

dy
dx  = 

dy
dt   / 

dx
dt  

can be seen to have meaning – as an equation involving the three sides
of a box in three-dimensional space. Of course there will be a problem
if the relationship between t and x is such that dx/dt=0, for then dx=0
for non-zero dt. But (provided that dy is not also zero), this will simply
correspond to a vertical tangent (dx,dy) in the x–y plane.

Figure 15: four views of a numerical tangent to a parametric curve

It is not far from here to consider higher dimensional pictures. The
geometry gets more difficult to see, but the corresponding linear
algebra works just as well and it is time for the symbolism to play a
much more dominant role. Once more the notion of local straightness
remains centre stage, now in terms of locally linear approximations in
differentiable manifolds.
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Thus it is that a locally straight approach to the calculus can be begun in
a relatively unsophisticated and naive way, using the students natural
intuitions, building implicitly, but not explicitly on the notion of limit in
such a way that the theory is coherent with both standard and non-
standard analysis (and, for those interested in computability, it has a
close relationship with constructive analysis as well).

Our experience in the UK is that it works well with a wider cross-
section of abilities than a traditional approach. The graphical ideas are
readily absorbed by the those with mathematical minds who seek to
refine the logic and may pursue a more formal course based on an
intuition which can visualize non-differentiability, But it also gives good
intuitions and a non-technical approach to those who need to know what
a differential equation is, so that it can be used in applications. IBM
versions of software based on this Graphical Approach to the Calculus
are also available in the USA (Tall et al 1990).
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