
-  1 -

Modelling Irrational Numbers in Analysis
using Elementary Programming

David Tall & John Mills

Mathematics Education Research Centre

University of Warwick

COVENTRY CV4 7AL

The Quest

In recent years we have been teaching mathematical analysis using the
computer to give experiences to help students understand the concepts
(Mills & Tall 1988). It has proved to be a valuable aid in many ways,
but the method depends on giving a suitably rich environment enabling
students to experience the full range of possibilities. A great weakness
of the use of regular computer languages is that they hold numbers in
memory as a finite expansion in base two, so, effectively, all numbers in
such a system are rational. This meant that we were unable to
demonstrate any ideas that depend on the difference between rationals
and irrationals; for instance, we could not plot graphs of the kind

f(x) = 


 0   (x  rat ional),
1   (x irrational). 

It meant that we could not give computer experiences appropriate for
the more exotic functions that occur in mathematical analysis, and so
students following such an approach were likely to have limited
experiences from which to generalize. As a consequence they may not
have natural intuitions which give them insights into more esoteric
theorems and, in short, they would not be much different from the great
majority of mathematics students who find the theory of analysis
abstract and impenetrable.

Our main aim was to define a computer function rat(x) whose value
would be TRUE if x were rational and FALSE if x were irrational.
Clearly we were on a losing wicket because we were intending to
program in BBC BASIC and here every computer number x is
rational! So we lowered our sights somewhat and sought out a function
that would have rat(x)=TRUE for most familiar rationals like, 1, –3/2,
2/3, 22/7, yet would have rat(x)=FALSE for familiar irrationals, like π,
√2, √3+1, and so on.
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Our plan was to approximate a number x by a rational number and use
the nature of the approximation to divide numbers into two kinds,
pseudo-rationals including 1, –1.5, 2/3=0.6666666667,
22/7=3.1428571429 and pseudo-irrationals, like π=3.141592654,
√2=1.41421356,√3+1=1.73205081, etc.

The Plan

We used the method of the Ancient Greeks to compute continued
fractions, which gives a sequence of successive rational approximations
to a real number. In the case of a rational, this eventually produces the
rational expression in lowest terms. In the case of an irrational, it goes
on forever, computing a rational expression with ever larger numerator
and denominator. In theory, therefore, the irrationals are those whose
denominator grows ever larger, whilst the rationals eventually stop. In
practice we calculated the continued fraction approximation until it was
within a specified error (say e=1/108) and, defined the number to be
pseudo-irrational if the denominator exceeded a chosen large number
(say N=10000).

The actual mechanism for computing fractional approximations to a real
number x, starts by writing x as

x = n1+d1

where n1 is the integer part of x and d1 is the decimal part. If d1 is non-
zero, we can get a better rational approximation to this by the simple
expedient of noting that 1/d1 is greater than 1 and finding the integer
part n2 of 1/d1, giving

1/d1 = n2+d2,

where n2 is an integer and d2 lies between 0 and 1.

This gives

x = n1 + 1/(n2+d2)

which in turn contains a better rational approximation for x in the form

x ≈ n1 + 1/n2.

This may be turned into a repeating algorithm by writing

r1 = x,

then, when rk is found, let

nk = integer part of rk, dk = rk–nk.
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If dk = 0, the process stops, otherwise, let r k+1 = 1/dk and repeat the
process.

This gives a sequence of fractional approximations to x in the form

n1 , n1 + 
1
n2

    ,   n1 + 
1

n2 + 1/n3
   ,  n1 + 

1

n2 +  
1

n3+1/n4

   , ...

For instance, for the rational number x=22/7, we get

n1 = 3, d1=1/7, r2=7, so n2=7, d2=0,

and the process stops, with the usual rational expression:

22/7 = 3 + 1/7.

For the irrational number x=π, we get

n1=3, d1=0.141592654, r2=1/d1=7.062513306,

n2=7, d2=0.062513306, r3=1/d2=15.99659441,

n3=15, d3=0.99659441, r4=1/d3=1.003417229,

n4=1, d4=0.003417229, etc,

giving the sequence of rational approximations

3,

3+
1
7  = 

22
7  ,

3+
1

7+
1

1 5
  = 

333
106 ,

3+
1

7+
1

15+
1
1

  = 
355
113 , ...

with ever increasing denominators, getting ever closer, but never equal
to, π.

Using this algorithm, we wrote a BBC BASIC function which repeated
the calculation for a given number x, until the fractional approximation
was within a specified error e, then looked at the denominator of the
fraction to see how large it had become, returning the value TRUE if
the denominator did not exceed a specified value N and FALSE
otherwise. This idea was implemented using an algorithm derived from
one given in the Mathematical Association 132 Short Programs, but
reformulated in BBC BASIC as a function:
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DEF FNfrac(x,e,N)
LOCAL r,s,t,b,t0,b0,t1,b1,n,d
r=x :  t0=0 :  b0=1 :  t1=1 :  b1=0
REPEAT

n=INTr : d=r–n : t=n* t1+t0 : b=n* b1+b0
IF d<>0 THEN r=1/d : t0=t1 : b0=b1 : t1=t : b1=b0

UNTIL ABS(t/b–x)<e
= (b<=N)

By experimenting with the values of e (as small as practicable) and N
(suitably large, but not too large), we ended up defining

DEF FNrat(x)=FNfrac(x,1E–9,10000)

It was this function that we used to distinguish between “pseudo-
rationals” (for which FNrat(x) is TRUE) and “pseudo-irrationals” (when
FNrat(x)  is FALSE).

Skating on Thin Ice

We knew that as we did this we were operating a dangerous technique.
Theoretically if x is rational, the continued fraction method terminates
to give an exact answer. In practice, because of rounding errors, where
the decimal part dk should be zero, it may be incredibly small, but non-
zero. So the routine would continue with rk+1=1/dk, which is now huge
and leads to incredibly awful errors. By terminating the routine for
FNfrac when the error gets small we were side-stepping this possibility,
but we were aware that we should not try to press our technique too
hard otherwise it could lead to unmitigated disaster! We found peculiar
things happened in practice but the exercise proved useful in flexing our
muscles for more difficult tasks that lay ahead.

The Consequences

What we found was quite remarkable. The function rat(x) gives rat(1),
rat(–1.5), rat(2/3), rat(22/7) all to be TRUE, whilst rat(PI), rat(SQR2),
rat(SQR3+1) are all FALSE.

Because it is only an approximation we knew that the function would
fail in many ways. For instance, rationals with large denominators, such
as 12/12345 would fail the test, so that rat(12/12345) turns out to be
FALSE and 12/12345 would be considered a pseudo-irrational.
Likewise, if we took a number we wanted to be a pseudo-irrational,
such as π, then a large multiple, such as 1000π would be defined to
fewer decimal places and might give rat(1000π)=TRUE, so that 1000π
is considered pseudo-rational! In fact, even 10π was large enough to
give a TRUE response, and one might wish to change the definition of
rat(x) to say FNfrac(x,1E–9,1000) to lessen this type of flaw.
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The definition therefore has some peculiar properties. However, we
should not give up on an idea just because it seems to fail – it was bound
to fail anyway. A bonus of the definition is that it provides some
fascinating parallels with true rationals and irrationals. First a randomly
generated number has a high probability of being pseudo-irrational,
which is analogous to the case that most real numbers (in a cardinal
sense) are irrationals.

A short program of the form
c=0 :  n=0
REPEAT :  n=n+1 : IF FNrat(RND(1))=TRUE THEN c=c+1
PRINT c/n
UNTIL FALSE

will generate random numbers RND(1) between 0 and 1, and increase
the counter c every time a pseudo-rational is given; this shows that less
than 10% of pseudo-rationals are generated. Changing the value of N in
FNfrac(x,e,N), say to N=1000 instead of N=10000 will radically reduce the
proportion of numbers considered to be pseudo-rational.

In the real case a random number has a probability 1 of being irrational
and 0 of being rational, which is reasonable, for if we have a truly
randomly generated number in which each digit is selected
independently, the probability of getting a repeated block throughout
the expansion is rather small.

Plotting Rational and Irrational Parts of the Domain

We used two methods of plotting graphs over an interval [a,b] which
were implemented in the SMP Function Analyser on the Archimedes
computer (Tall 1991). One method makes many passes along the
interval. At the first pass it plots the value at the mid-point (a+b)/2, then
made a second pass filling in the other quarter points, (a+b)/4, 3(a+b)/4,
then the intermediate eighths, the intermediate sixteenths, thirty-
seconds, sixty-fourths, and so on. If the original points a,b were
rational, then this plotting method uses all rational numbers and, even
allowing for rounding errors in arithmetic, and the peculiar definition
of pseudo-rational, it turns out that this initially plots only pseudo-
rationals. Figure 1 shows the eleventh pass drawing the function

 y=if(rat(x),1,–1),

where rat(x) is the function we have just introduced and
if(expr,val1,val2) tests the truth of expr and, if it is true, returns val1
else it returns the value val2. In this case the function returns 1 if x is
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pseudo-rational and –1 if x is pseudo-irrational. In figure 1 all the
points plotted so far are pseudo-irrational, (the interval is 10 units wide
and the 11th pass divides this into 211 parts each of width
10*2–11=10/2048, all qualifying as a pseudo-rationals). After a few
more passes the points develop too large a denominator, together with
rounding errors, which start to produce numbers considered to be
pseudo-irrational. We should also note that if the x-interval were
changed from [–5,5] to an irrational interval, say [0,π], then we would
be likely to pick up pseudo-irrationals from the very first pass.

The second plotting method generates random numbers r  in the interval
[a,b] and plots the points (r ,f(r)). This soon fills out sufficient points to
see the shape of the graph. Truly randomly generated points would have
a high probability of being irrational. These computer-generated
(pseudo-)random numbers have a fairly high probability of being
pseudo-irrational, so this method is far more likely to plot pseudo-
irrationals than rationals. In figure 2 we see that the line of pixels for
y=–1 is virtually filled out, whilst y=+1 is more sparsely visited,
revealing the far larger proportion of pseudo-irrationals generated.

Figure 1 : Plotting rational points (all “pseudo-rational”, so far)
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Figure 2 : Plotting random points (nearly all “pseudo-irrational”)

Hence we have two methods of plotting graphs, one giving mainly
pseudo-rationals values of x, the other mainly pseudo-irrationals!

Integrating highly discontinuous functions

Now we ask what happens if we try to calculate the area under a highly
discontinuous graph, say

f(x) = 


 0   (x  rat ional),
1   (x irrational).

 

Figure 3 shows the area calculated under y=f(x) using strips of random

Figure 3 : Calculating the area under y=f(x) using a random partition
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width whose height is f(t) for a random point t in the strip. The area
function is drawn and is approximately y=x, so that the area from 0 to 4
is given as 3.618628, representing the fact that only a small proportion
of random points have a pseudo-rational value (about 0.38/4=10%,
agreeing with the figure calculated earlier). Lowering the value of N in
FNfrac(x,e,N) reduces the proportion further by defining fewer pseudo-
rationals.

Figure 4 uses a fixed (rational) step-width and the mid-point of each
strip to calculate the area by the mid-ordinate rule. Here virtually all the
points picked up are (pseudo)-rational, so the area function from x=0 to
x=4 is approximately y=0. Only at the end (just below x=4) is there a
slight hiccup, caused possibly by rounding errors in calculation where
the area limps up to 0.16.

The visions given by these pictures are intriguing. In the theoretical case
every step has both rational and irrational points, so the lower sum takes
the ordinate to be zero and the upper sum takes the ordinate to be 1. So
the “lower area” is 0 and the “upper area” (from 0 to x) is x. For non-
zero x these are not the same, so the Riemann integral is deemed not to
exist. However, the model suggests that a random partition is far more
likely to pick up irrational points than rational ones, so the area is likely
to be much closer to the Riemann upper area than the lower one. In
fact, assuming the probability of picking a rational to be zero, then
theoretically a random area calculation will have a probability 1 of
equalling the Riemann upper area.

Figure 4 : Calculating the area using a (fairly) rational partition
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This model is therefore likely to give intuitions that there are far more
irrationals than rationals, and that there may be a more sophisticated
theory of integration that takes this into account. It therefore leads more
naturally to the Lebesgue integral which arises later in a university
course (if at all) and is to do with the measure of the sets involved (see
Weir 1974). The Lesbegue integral in this case equals the Riemann
upper area.

When this approach was used in class with university students who were
not mathematics majors, it led naturally to a discussion of why there
might be more irrationals than rationals. The “randomly generated
number” argument was a very powerful motivator. Although the
students had previously shown that “between every pair of rationals
there is an irrational” and “between every pair of irrationals there is a
rational”, they now had a new way to appreciate that there were far
more irrationals in any interval than rationals. This led to an animated
discussion about a concept that had previously seemed to many of them
to be no more than an esoteric fiction.

Although the pseudo-rational definition given in this article is at best a
gross approximation, it does offer vitally important insights into higher
level mathematical theory, including cardinality concepts and Lesbegue
integration. In this case the authors found themselves seeing old ideas in
a meaningful way for the first time. The students were intrigued by the
ideas sufficiently to wish to talk about them further. In this way
computer simulations, even flawed ones, can help students gain
intuitions about subtle higher level theory.
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