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The Quest

In recent years we have been teaching mathematadysis using the
computer to give experiences to help students understancbiicepts
(Mills & Tall 1988). It hasproved to be a valuable aid in mamgys,
but the method depends on giving a suitaiitin environmentenabling
students to experience the full range of possibilities. A gnestkness
of the use ofregular computetanguages is that they hold numbers in
memory as a finite expansion in base two, so, effectively, all numbers in
such a systemare rational. This meant that we were unable to
demonstrate any ideas that depend on the difference betag@mals
and irrationals; for instance, we could not plot graphs of the kind
_00 (x rational),

i) = (>(< irrationalg.
It meant that we could not give computer experiences appropriate for
the more exotic functions that occur in mathematical analysis, and so
students following such an approach were likely to have limited
experiences fronwhich to generalize. As aonsequence they may not
have natural intuitions which give them insights into more esoteric
theorems and, in short, they would not be much different frongnbat
majority of mathematicsstudents who find theheory of analysis
abstract and impenetrable.

Our main aimwas to define a&computer functionrat(x) whose value
would be TRUE ifx were rational and FALSE ik were irrational.
Clearly we were on a losing wickdtecause wewere intending to
program in BBC BASIC and here every computer numberis
rational! So we lowered owights somewhat and sought out a function
that would haveat(x)=TRUE for most familiar rationals like, 1, —3/2,
213, 22/7, yet would have ra)eFALSE for familiar irrationals, liker,
V2,V/3+1, and so on.



Our plan was to approximate a numbxeby a rational number and use
the nature of the approximation to divide numbers into two kinds,
pseudo-rationals  including 1, -1.5, 2/3=0.6666666667,
22/7=3.1428571429 andpseudo-irrationals like T1=3.141592654,
V2=1.41421356/3+1=1.73205081, etc.

The Plan

We used the method of the Ancient Greeks to compute continued
fractions, which gives aequence of successiketional approximations
to a real number. In thease of aational, this eventually produces the
rational expression in lowest terms. In gese of anrrational, it goes
on forever, computing a rational expression with ever largenerator
and denominator. In theoryherefore,the irrationals are thosehose
denominator grows ever largewxhilst the rationals eventually stop. In
practice we calculated the continued fraction approximation until it was
within a specifiederror (say e=1/1®) and, defined the number to be
pseudo-irrationalif the denominatorexceeded a chosdarge number
(sayN=10000).
The actual mechanism for computing fractional approximationséala
numberx, starts by writingk as

X = n1+d1

wheren; is the integer part of andd, is the decimal part. 18, is non-

zero, we can get a better rational approximation to this bysithple
expedient of noting that d/ is greater than 1 and finding theteger
partn, of 1/d,, giving

1/d; = ny+d,,
wheren, is an integer and, lies between 0 and 1.
This gives
X =n; + 1/(n,+dy)
which in turn contains a better rational approximationxfar the form
X=ng + 1ho.
This may be turned into a repeating algorithm by writing
ry =X,
then, wherr, is found, let
ng = integer part ofy, dx = r—ny.



If d¢ = 0, the process stops, otherwise, rigt = 1/dx and repeat the
process.

This gives a sequence of fractional approximationsitothe form
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For instance, for the rational number22/7, we get
n, = 3,d=1/7,r,=7, son,=7, d,=0,

and the process stops, with the usual rational expression:
22/7 =3 + 1/7.

For the irrational numbex=11, we get
n;=3, d;=0.141592654¢,=1/d,=7.062513306,
n,=7, d,=0.062513306¢3=1/d,=15.99659441,
ng=15, d3=0.99659441r,=1/d;=1.003417229,
ns=1, d;=0.003417229, etc,

giving the sequence of rational approximations
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with ever increasing denominators, getting ever closer, but resued
to, T

Using this algorithm, we wrote BRBBC BASIC function which repeated
the calculation for a given numbgr until the fractional approximation
was within a specifieerror e, then looked at the denominator of the
fraction toseehow large it had become, returning thalue TRUE if
the denominator did not exceed a specified valMieand FALSE
otherwise. This idea was implemented usingalgorithm derivedirom
one given in the Mathematical AssociatitB2 Short Programsbut
reformulated in BBC BASIC as a function:



DEF FNfrac(x,e,N)
LOCAL r,s,t,b,t0,b0,t1,b1,n,d
r=x :t0=0: b0=1:1tl1=1: bl1l=0
REPEAT
N=INTr : d=r—n : t=n*t1+t0 : b=n*b1+b0
IF d<>0 THEN r=1/d : t0=t1 : bO=bl : t1=t : b1=b0
UNTIL ABS(t/b—x)<e
= (b<=N)
By experimenting with the values ef (as small as practicable) an
(suitably large, but not too large), we ended up defining

DEF FNrat(x)=FNfrac(x,1E—9,10000)

It was this function that we used to distinguish between “pseudo-
rationals” (for which rnratx) is TRUE) and “pseudo-irrationals” (when
FNrat(X) IS FALSE)

Skating on Thin Ice

We knew that as we did this we were operating a dangerous technique.
Theoreticallyif x is rational, the continued fraction method terminates
to give an exact answdn practice because ofounding errors, where

the decimal part, should be zero, it may be incredibly small, but non-
zero. So the routine would continue witl;=1/dy, which is now huge

and leads to incredibly awfudrrors. Byterminating the routine for
FNfrac when theerror gets small we were side-stepping this possibility,
but we were aware that we should not try to presstecinnique too
hard otherwise it could lead to unmitigated disaster! We found peculiar
things happened in practice but the exercise proved useful in flexing our
muscles for more difficult tasks that lay ahead.

The Consequences

What we found was quiteemarkable. The functiomat(x) givesrat(1),
rat(—1.5), rat(2/3), rat(22/7) all to be TRUE, whitat(PIl), rat(SQR2),
rat(SQR3+1) are all FALSE.

Because it inly an approximation we knew that the function would
fail in many ways. For instance, rationals with large denominasacs

as 12/12345 would fail the test, so that rat(12/12345) turns out to be
FALSE and 12/12345 would be considered a pseudo-irrational.
Likewise, if we took a number we wanted to beseudo-irrational,
such asm, then a large multiple, such as 1@0@ould be defined to
fewer decimalplaces and might giveat(100G7)=TRUE, so that 100©

Is considered pseudo-rational! In fact, everrt Mias large enough to
give a TRUE response, and one might wish to change the definition of
rat(x) to sayrNfrac(x,1E-9,1000) t0 lessen this type of flaw.



The definition thereforehas some peculiaproperties. However, we
should not give up on an idea just because it seems to fail — it was bound
to fail anyway. A bonus of the definition is that it providssme
fascinating parallels with true rationals and irrationals. Finstralomly
generated numbenas a highprobability of being pseudo-irrational,
which is analogous to theasethat most real numbers (in a cardinal
sense) are irrationals.

A short program of the form
c=0:n=0
REPEAT : n=n+1: IF FNrat(RND(1))=TRUE THEN c=c+1

PRINT c/n
UNTIL FALSE

will generate random numbers RND(1) between 0 and 1, and increase
the counterc every time a pseudo-rational is given; thimws thatess

than 10% of pseudo-rationals are generated. Changing the valum of
FNfrac(x,e,N), say ton=1000 instead ok=10000 will radically reduce the
proportion of numbers considered to be pseudo-rational.

In the real case a random number has a probability 1 of beatgpnal

and O of being rational, which is reasonaldla, if we have atruly
randomly generated number in which each digit sslected
independently, the probability of getting a repeated block throughout
the expansion is rather small.

Plotting Rational and Irrational Parts of the Domain

We used two methods of plotting graptxger an interval 4,b] which

were implemented in th8MP Function Analyseron the Archimedes
computer (Tall 1991). One methoshakes manypassesalong the
interval. At the first pass it plots the value at the mid-poaib}/2, then

made a second pass filling in the other quarter poiath)4, 3@th)/4,

then the intermediate eighths, the intermediate sixteerithisty-

seconds, sixty-fourths, and so on. If tleeiginal points a,b were

rational, then this plotting methaasesall rational numbers andven

allowing for roundingerrors in arithmeticand the peculiar definition
of pseudo-rational, it turns out that this initially plots omdgeudo-
rationals. Figure 1 shows the eleventh pass drawing the function

y=if(rat(x),1,-1),

where rat(x) is the function we have just introduced and
if(exprvall,val?) tests thdruth of exprand, if it is true, returnyall
else itreturns the valuegal2. In thiscasethe function returns 1 ik is
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Figure 1 : Plotting rational points (all “pseudo-rational”, so far)

pseudo-rational and —1 i is pseudo-irrational. In figure all the
points plotted so far are pseudo-irrational, (the interval is 10 wimnils

and the 11thpass divides this into 2 parts each of width
10*2-11=10/2048, all qualifying as a pseudo-rationals). After a few
more passeshe points develop too large a denominator, together with
rounding errors,which start to produce numbers considered to be
pseudo-irrational. We should also note that if tknterval were
changedrom [-5,5] to anirrational interval,say [071, then we would

be likely to pick up pseudo-irrationals from the very first pass.

The second plotting method generates random nunmbersgheinterval
[a,b] and plots the points f(r)). This soon fills out sufficient points to
see the shape of the graph. Truly randomly generated points hexed
a high probability of beingirrational. These computer-generated
(pseudo-)random numbers have a fairly high probability befng
pseudo-irrational, so this method is far more likely to pglstudo-
irrationals than rationals. In figure 2 vgeethat the line of pixels for
=—1 is virtually filled out, whilsty=+1 is more sparsely visited,
revealing the far larger proportion of pseudo-irrationals generated.
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Figure 2 : Plotting random points (nearly all “pseudo-irrational”)

Hence wehave two methods of plotting graphs, one giving mainly
pseudo-rationals values »f the other mainly pseudo-irrationals!

Integrating highly discontinuous functions

Now we ask what happens if we try ¢alculate the area under a highly
discontinuous graph, say
_ o0 (x rational),
"9 (x irrational).

Figure 3 shows the area calculated ungs=i(x) using strips ofandom

M F Area=3.618682
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L'

i-4

Figure 3 : Calculating the area under y=f(x) using a random partition
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Figure 4 : Calculating the area using a (fairly) rational partition

width whose height is f( for a random point in the strip. Thearea
function is drawn and is approximatelyx, so that the area from O to 4
Is given as 3.618628, representing the fact that only a gmaglortion
of random points have a pseudo-rational value (alhB8/4=10%,
agreeing with the figure calculated earlier). Lowering the valud of
FNfrac(x,e,N) reduces the proportiofurther by defining fewer pseudo-
rationals.

Figure 4uses afixed (rational) step-width and the mid-point efch
strip to calculate the area by the mid-ordinate rule. Here virtually all the
points picked up are (pseudo)-rational, so the area function Xrgfinto

x=4 is approximately=0. Only at the end (just below=4) is there a
slight hiccup, caused possibly bygunding errors incalculationwhere

the area limps up to 0.16.

The visions given by these pictures are intriguing. In the theoreasal
every step has both rational and irrational points, so the lowetakas

the ordinate to be zero and the upper sum takeertheate to be 1. So
the “lower area” is 0 and the “upper argfom 0 tox) is x. For non-
zerox these are not the same, so the Riemann integral is dewhéal
exist However, the modeduggestshat a random partition is famore
likely to pick up irrational points than rational ones, so the area is likely
to be much closer to the Riemann upper area than the lower one. In
fact, assuming the probability of picking a rational to Zs®o, then
theoretically a random area calculation will have a probability 1 of
equalling the Riemann upper area.



This model is therefore likely to give intuitions that there arenfare
irrationals than rationals, and that there may be a nsophisticated
theory of integration that takes this into account. It therefore leeue
naturally to theLebesgue integralhich arises later in a university
course (if at all) and is to do with tmeeasureof the setsinvolved (see
Weir 1974). The Lesbegue integral in tloase equalthe Riemann
upper area.

When this approach was used in class with university studentsvete

not mathematics majors, it led naturally taigcussion ofwhy there
might be more irrationals than rationals. The “randomly generated
number” argumentwas avery powerful motivator. Although the
students had previously shown that “between evmly of rationals
there is an irrational” antbetween everypair of irrationals there is a
rational”, they now had a new way to appreciate that there were far
more irrationals in any interval than rationals. This led tcaammnated
discussion about a concept that had previossgmed to many of them

to be no more than an esoteric fiction.

Although the pseudo-rational definition given in this article is at best a
gross approximation, it does offer vitally importansights intohigher

level mathematical theory, including cardinaldgncepts and Lesbegue
integration. In this case the authors found themselves seeing old ideas in
a meaningful way for the first time. Tistudents were intrigued by the
ideas sufficiently to wish to talk about thefarther. In this way
computer simulations, even flawed ones, can help students gain
intuitions about subtle higher level theory.
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