The Transition
to
Advanced Mathematical Thinking:

Functions, Limits, Infinity and Proof:

Introduction

Advanced mathematical thinking - as evidenced by publications in research journals - is
characterized by two important componeptscisemathematicadefinitions (including

the statement of axioms in axiomatic theories)lagital deductionf theorems based
upon them. However, tharintedword is but the tip of the iceberg - the record of the
final “precising phase”, quite distinct from tieeeativephases ofmathematicathinking

in which inspirations and false turns play their part.

A major focus in mathematical education at the higher levels is to initiate the learner into
the completavorld of the professionalmathematician, not only in terms tfe rigour
required, but also to providthe experience omvhich the concepts ardounded.
Traditionally this has been done through gentle introduction to thenathematical
concepts and the process of mathematical proof in school before progressing to present
mathematics in a more formally organizedd logical framework atcollege and
university.

The move to more advancetathematicathinking involves a difficulttransition, from

a position where concepts have an intuithsis founded on experience, to one where
they are specified by formal definitions and their properties re-constrtiutedgh
logical deductions. During this transition (and long after) there will exist simultaneously
in the mind earlier experiences and th@iopertiestogether withthe growing body of
deductiveknowledge.Empirical research hashownthatthis produces a wideariety

of cognitive conflict which can act as an obstacle to learning.

In this chapter we will look athe results of research intthe conceptualization of
several advancecbnceptsjncluding the notion of dunction, limits and infinity and

the process of mathematical proof, particularly during the transition phase fraatethe
years of school taollegeand university. But first we mudihger alittle and consider

the nature ofour own perceptions ofmathematicalconcepts, foreven those of
professional mathematicians contain idiosyncrasies dependent on personal experience.

Creases in the mind

“The human mind”, wrote Antoine Lavoisier, the French Chemist guillotined
during the French Revolution, “gets creased into a way of seeing things.” One
might add that the evolving corporate mind suffers no less, since it perceives by
indoctrination, from generation to generation.

(Adrian Desmond, The Hot-Blooded Dinosaurs, page 128)

As we look back athe historical development of mathematics seethat successive
generations develop theiwn corporate perception aghathematicaideas, based on
mutual agreemerdver importaniconcepts.The pre-Pythagorean Greekslievedthat
all numbers were rationalintil the Pythagorean theorem reveakbat thesquare root
of two is not. Aristotelian dynamicsuggestedhat thespeed of a moving body is

1 Published in Grouws D.A. (edJandbook of Research on MathematicsTeaching and
Learning, Macmillan, New York, 495-511
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proportional to the force applied unblewton’s laws proposethat it is acceleration
that is proportional toforce, not speed. For twanmillenia Euclidean geometry was
regarded as the pinnacle of deductive logic until nineteenth cemtatiyematicians
realized that therevere theoremshat depended ommplicit assumptions (such as the
fact that thediagonals of a rhombule inside the figure) which were notlogical
deductions from the axioms.

It would be amistake toassumethat at last we have “got it rightind that this
generation is free of the internal conflicts ammhfusions othe past. Ornthe contrary,
we haveour own share oforporate creases tifie mind. (See, foexample, Sierpin
ska 1985a, 1985b, 198 \any of thecreaseshat wepurport to see in students are
actually present imurselves anthave beermpassed down inaryingly modifiedforms
from generation to generation.

For examplethe idea that &unctiony=f(x) is single-valued habecome part of our
mathematical culturand we mayfind it strange to see students assertimag a circle
x2+y2=1 can be a function. Yet the term “implicit function” continues to®ed intext-
books todescribe such aexpression. I(to my eternal shamefind that | have
published a computer prograzalled the “implicitfunction plotter” which will draw,
amongst othethings, the graph ofx2+y2=1. Likewise | find myself considering the
draft of anew curriculum for the 16-19 age range in Britairwhich says ofthis
equation: “strictly speaking,is not a function ok because there is not a uniquaue
of y for each value af, but wemight think of it as a ‘double-valued’ function frox
toy”. What are students to think? Can anyusf with hand on ouheart state that we
have never indulged in any vagaries of this kihdfhim (or her) who is without sin
cast the first stone...



Concept definition and concept image

What is a good definition? For the philosopher or the scientist, it is a definition
which applies to all the objects to be defined, and applies only to them; it is that
which satisfies the rules of logic. But in education it is not that; it is one that can be
understood by the pupils. (Poincaré, 1908)

The “new mathematics” of the sixties was a val@tempt to create ampproach based
on clear definitions of mathematical concepts, presenteaveyahat it was hopedhat
students would understand. Bufatled to achieve alits high idealsThe problem is
that the individual’'s method of thinking abauathematicatoncepts depends anore
than just the form of words used in a definition:

Within mathematical activity, mathematical notions are not only used according to
their formal definition, but also through mental representations which may differ
for different people. These ‘individual models’ are elaborated from ‘spontaneous
models’ (models which pre-exist, before the learning of the mathematical notion
and which originate, for example, in daily experience) interfering with the
mathematical definition. We notice that the notion of limit denotes very often a
bound you cannot cross over, which can, or cannot, be approached. It is
sometimes viewed as reachable, sometimes as unreachable. (Cornu 1981)

Thus the experience of pupils prior to meeting formal definitions profoundly affects the
way in whichthey form mental representations of those concep@aring the late
seventies and early eighties many authors nibieanismatch between the concepts as
formulated and conceived by formal mathematicians, and as interpreted by the student
apprentice. For examplelifficulties were noted irthe understanding othe limiting
process as secants tend to tangents (Orton 197 Medaing of infinite decimalsuch

as “nought point nine recurring(Tall 1977), geometrical concepts (Vinner &
Hershkowitz, 1980)the notion of function (Vinnet983), limits and continuity(Tall

& Vinner 1981, Sierpin ska 1987),the meaning of the differential (Artigu£986),
convergence of sequences (RokbE®B2), limits of functions (Ervynck1983), the
tangent (Vinnerl983, Tall 1987), infinite series (Davis1982), infinite expressions
(Borasi 1985), the intuition of infinity (Fischbein et al 1979), and so on.

To highlight the role played by the individual’'s conceptual structure, the terms “concept
image” and “concept definition” were introduced\Vimner & Hershkowitz (1980) and
later described as follows:

We shall use the term concept image to describe the total cognitive structure that
is associated with the concept, which includes all the mental pictures and
associated properties and processes. ... As the concept image develops it need
not be coherent at all times. ... We will refer to the portion of the concept image
which is activated at a particular time the evoked concept image. At different
times, seemingly conflicting images may be evoked. Only when conflicting
aspects are evoked simultaneously need there be any actual sense of conflict or
confusion. (Tall & Vinner 1981, p.152)

On the other hand:
The concept definition [is] a form of words used to specify that concept.  (ibid.)
The consideration of conflicts in thinking is widespread in the literature:

New knowledge often contradicts the old, and effective learning requires
strategies to deal with such conflict. Sometimes the conflicting pieces of
knowledge can be reconciled, sometimes one or the other must be abandoned,
and sometimes the two can both be “kept around” if safely maintained in separate
mental compartments. (Papert, 1980, page 121)

In general, learning a new idea does not obliterate an earlier idea. When faced
with a question or task the student now has two ideas, and may retrieve the new
one or may retrieve the old one. What is at stake is not the possession or non-
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possession of the new idea; but rather the selection (often unconscious) of
which one to retrieve. Combinations of the two ideas are also possible, often with
strikingly nonsensical results. (Davis and Vinner,1986, page 284)

This is particularly applicable to the transition to advanoathematicathinking when
the mind simultaneouslizas concept imagedased orearlier experiences interacting
with new ideas based on definitions am@ductions.The very idea of defining a
concept in asentence, as opposed describingit, is at first very difficult to
comprehend - particularly when there are bound to be words in the defwltion are
not themselveslefined. It is impossible tonake abeginning without making some
assumptionsand these arbased uporthe individual’s conceptmage, not in any
logically formulated concept definition!

Mathematical foundations and cognitive roots

Burrow a while and build, broad on the roots of things.
(Robert Browning, 1812-1889, Abt Vogler)

In building a curriculum it is natural tattempt tostart from simple ideas anuove
steadily to more complex concepts as the studemivs in experience.What better
foundations to buildupon than the definitionsvhich have been evolved ovenany
generations? The problem is that these definitionbaite subtle and generativehilst
the experiences of students aeesed orthe evident angbarticular, withthe resultthat
the generative quality of the definitions abscured bythe students’specific concept
image. For example, function may be defined asmocess which assigns &ach
element inone set (the domain) a uniqeéement inanother (therange). It is not
possible to give the full range of possibilities embedded in this definitidre atutset -
that the sets involved may Isets of numbers, or of points mRdimensionalspace, or
geometrical shapes, or matrices, or any other type of object, including other functions -
that the method oéssignment might béhrough a formula, aiterative orrecursive
process, aeometricakransformation, dist of values, orany serendipity combination
one desires, provided that it satisfies the criterion of assigning elements uniquely.

When students are first confronted wittathematicatefinitions it is almostnevitable
that they willmeetonly a restricted range of possibilitifsat colours their concept
images in a way that will cause future cognitive conflict.

Rather than deal initiallyith formal definitions whiclcontain elements unfamiliar to
thelearner, it is preferable tattempt tofind an approach which builds on concepts
which have the dual role of being familiar to the students and also pthetasis for
later mathematicalevelopment. Such @ncept | term @ognitive root These are not
easy to find - they require a combination evhpirical research (to find out what is
appropriate to the student at the current stage of developmentmathematical
knowledge (to beertain of the long-terrmathematicatelevance). A cognitive root is
different from amathematicalfoundation. Whilst a mathematicalfoundation is an
appropriate starting poitior alogical development of theubject, acognitive root is
more appropriate for curriculum development.

For example, the limit concept is a good example wlathematicafoundation - honed

and made preciseover the centuries by the combineefforts of many great
mathematicians. But proves to bdifficult for students to use as a basis tio¢ir
thinking and may not be a sound cognitive root for the beginning statjesaaiflculus.

On the other hand, the idea that certain graphs look less curved as they are more highly
magnified is intuitively appealing and can be discovered by any student plamng
graph plotter.The fact that this can grow into the formal theory of differential manifolds
which are locally liken-dimensional space suggesat “local straightnessimay prove

to be a suitable cognitive rodor the calculus. The casefor local straightness is
enhancedvhen it isrealized that thesolving of a (first-orderifferential equation is
essentially theeverse problem: to find a (locally straight) functiwhich has agiven

4
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gradient. It is possible, with software, boild a picture of an approximate solution
enactively just by placing short line segments of the appropriate gradient end to end.

The function concept

The keynote of Western culture is the function concept, a notion not even
remotely hinted at by any earlier culture. And the function concept is anything but
an extension or elaboration of previous number concepts — it is rather a complete
emancipation from such notions. Schaaf (1930), p.500

The functionconcept, according to Kleingfl989), “goesback 4000 years; 3700 of
these consist of anticipationsfits evolution has led to a complexnetwork of
conceptions: the geometric image of a graph, the algetxpiession as a formula, the
relationship between dependent and independent variables, an inputioatgubhe
allowing more general relationships, through to the modern set-theoretic defisémn
for example, Buck, 1970).

In the“New Math” therewas avaliant attempt tdouild the function concegdrom a
formal definition in terms of the cartesian product of seasdB:

Let A and B be sets, and let AxB denote the cartesian product of A and B. A
subset f of AxBis a function if whenever (x,y;1) and (x,,),) are elements of f and

X1=Xo, then y;=y,.

However,there is much empirical evidencedbow that, thouglthis definition is an
excellent mathematicafoundation, it may not be agood cognitive root. The
“emancipation”from previous concepts suggestedesaquently by Schaaf over sixty
years ago is mirrored in the total cognitive reconstruction which is necessasg the
new set-theoretic definition in place of earligrocess-relatechotions. It is a
reconstruction which students seem to find extremely difficult.

Malik (1980) highlighted the manner in which this definition represents a very different
frame of thought fronthat experienced in traditional calculamphasisingthe rule-
based relationship between a dependent and independent variable.

Sierpinska focussed on the latter use of the function concept and asserted:

The most fundamental conception of a function is that of a relationship between
variable magnitudes. If this is not developed, representations such as equations
and graphs lose their meaning and become isolated from one another...
Introducing functions to young students by their elaborate modern definition is a
didactical error - an antididactical inversion. (Sierpin ska, 1988, p. 572)

Empirical research shows that, ewghen studentare givensuch aformal definition,

their overwhelming experience from examples of functions witplicit common
properties causethem to develop gersonal concepimage of afunction which
implicitly hastheseproperties. For instance, tifie functions encounteredre given

mainly in terms of formulae, this causes many students to believe that the existence of a
formula is essential for a function.

Dreyfus & Vinner (1982, 1989) askled cross-section of 27dollegestudents and 36
teachers a number of conceptual questions about functions (figure 1).

Theresponses tthe notion of function(question 5) included not onlhe standard
definition (each value of corresponds tprecisely one value of), but also variants
such as:

1The original questions were in Hebrew.
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Does there exist a function whose graph is:

BN -

4. Does there exist a function which assigns to every number different from

zero its square and to O it assigns 1?

5. What in your opinion is a function?

Figure 1 : What do students think about functions?

a correspondence between two variables

a rule of correspondence

a manipulation or operation (on one number to obtain another)
a formula, algebraic term, or equation

a graph, y=f(x), etc.

However, the responses to the first four questions were not always in accord with these
notions. Table 1showsthe percentage dftudents whose responses wearudged
correct:

Mathematical Level:l Low | Intermediate | High | Math Majors | Teachers
Question: 1 55% 66% 64% 74% 97%

2 27% 48% 67% 86% 94%

3 36% 40% 53% 72% 94%

4 9% 22% 50% 60% 75%

Table 1 : Student Responses to function questions

The percentages improwdth ability and experience, but non-mathematics majors in
particular have a high percentage of incorrect responses.

The reasons for the responsedude not onlythe standard definition anthe variants
above, but also evoked concept images such as:

The graph is “continuous” or changes its character (e.g. two different straight lines),
the domain of the function “splits”,
there is an exceptional point.

Although the original questiorere somewhat out ofhe ordinary, similar resultshave
been replicated in othetudies(e.g. Vinner 1983, Barnes 1988, MarkovitEylon &
Bruckheimer 1986, 1988).
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Markovits et al (1986, 1988)conclude that the complexity of thmodern definition
causes problems becausetttd number of different componenigomain, range and
rule), yet little emphasis igplaced on domain and rangesahool level, resulting in
stressbeing placed on the rule or relationsfwhich is usually given as formula).

Early emphasis on straiglme graphs seems tause students to evokeear graphs
when asked to consider possible functions through give points (figure 2).

In the given coordinate system, draw the graph of a function such that the
coordinates of each of the points A,B, [C, D, E, F] represent a pre-image and

the corresponding image of the function:

y y

s
(] X
B

We
[ ]

The number of different such functions that can be drawn is -

<0
o1

2

» more than 2 but fewer than 10
» more than 10 but not infinite

* infinite.

Explain your answer.

Figure 2 : More function questions

Thefirst figure often evoked a straighme allowing only one function because “two
points can be connected bgnly one straight line”.The second causegroblems,
perhaps because of the disposition of the points seemingly odiffer@nt lines : “If |
draw a function such that all the poimt® onit, whatwill happen isfor everyx there
will be twoy, and it will not be a function”.

The authors observe (page 54):
Their conception of functions as linear would seem to be influenced by geometry
(which they learn simultaneously with algebra) and also by the time spent in the

curriculum exclusively on linear functions.

Barnes (1988) asked questionsgofde 11 school students and university students
about different representations, for instance, whether expressions such as

y=4,
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HO if x< O
y=1Ux if O<x< 1
H2-x if x>1

definey as a function ok. A majority decided that therst did not, because the value

of y does not depend o) many decided that theecondis a function (because it is a

circle, which isfamiliar to them), whilstthe third presented difficulties because it
appeared to define nohefunction butseveral

When asked which graphs represented a function of, including those in figure 3,

Ay Ay

- - -

y
’KX X X

Figure 3 : Are these graphs of functions?

students responded invariety ofways. Thefirst graph evoked imagesich as “It's

more likex is a function ofy” or “It's a rotated function” or “That'sy=x2 so it's a
function”. The second waslmost universally regarded as not beinguaction, not
because it has vertical line segments, but because “it looks strange”, or "it's not smooth
and continuous”, or “It's too hard to define it". The last one, in contrattet@lgebraic
expressiory=4 was regarded as being a functionatiythe universitystudents, though
some of the school students were concethatly was alwayshe same. Some of the
university students, who saw therizontal line as éunction, had asserteghrlier that

y=4 was not a function, bunow realized theravas a conflict. Somebut not all,
wanted to go back to the earlier question to modify their response.

At this stage, it would be ahterestfor the reader tdook back at some of these
questions to sethe creases irthe mind that wall share. Foexample the questions
related to figure 1 assume thats being considered as a (possible) functior.othe

first picture could so easily be what is often described gsammetricgraph” — the
image of a function from an interval to thane.The cartoon-likeblobs inthe second
picture are a convention to represent a discontinuitypdf think aboutit, you will
realize that itdoes nottruly represent the orderegairs on the graph in the
neighbourhood ofthe discontinuity. In fact a physicalgraph is only a rough
representation of &nction, with subtleconceptual difficultiessuch asthe fact that
younger children see the graph as a curve and not as a set of points (Kerslake 1977).

Could the middle graph of figure 3 represent a function? It seemget it could do if
the “vertical lines” were actually very steep but not vertical, say in the form:

y=-1 if Kz 14K,

1K
y= Tk if 1k << 1,

y=1 ifkK<1lk
wherek is very small (sak=1/1000).
Few students would be aware safch possibilities. Howevehey indicate themplicit

creases in our minds that present students with a minefield through which widyust
will choose a consistent path. Is it any wonder that so many fail?
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Even greater difficulties witthe function concept are encounteweith the variety of
different representations (graph, arrow diagram, formula, table, v@ebatiption etc)
and the relationships betwedhem (Thomas 1975, Dorofeev 1978, Dreyfus &
Eisenberg 1982, Janvier 1987). For instance, Dreyfus and Eisenberg (1987)hitund
studentshave considerable difficulties relating the algebratrahsformations (such
shifts f(x) - f(x)+k, f(x) - f(x+k) and stretches %j - kf(x), f(x) - f(kx)) to their
correspondinggraphicalrepresentations. Of thesthe transformations irthe domain
f(x) - f(x+k), f(x) - f(kx) naturally proved to be the more difficult.

Even (1988) studiedhe concept of function in prospective mathemateghers. She
found similar difficulties with student teachers ihe final year of their mathematics
studies.

... Many of them ignored the arbitrary nature of the relationship between the two

sets on which the function is defined ... Some expected functions to always be

representable by an expression. Others expected all functions to be continuous.

Still others accepted only “reasonable” graphs, etc. (Even, 1988 page 216)

... Can we expect teachers to be able to teach according to a modern definition of
function, as it now appears in modern texts, while their conception of function is
more restricted, more primitive? The participants’ incomplete conception of
function is problematic and may contribute to the cycle of discrepancies between
concept definition and concept image of functions in students ... keeping the
students’ concept image of functions similar to the one from the 18th century.

(ibid page 217-8)

Given the creases in tmeinds of prospective teachers, is it any worttet it proves
continually difficult to address the deep problems with the function concept in students?

In recentyearsthe computethasbeenharnessed to introduce functionconcept.
Many of the initialmoves havdocussed orthe graphical representation fafnctions
(Demana & Waits1988, Dugdale, 1982, Goldenberg et all988, Schwartz1990,
Yerushalmy, 1990, 1991). Thesshniques change the conception of a function from
a rule-based pointwise process tglabal visualization of overalbehaviour.Entirely
new approachearepossible, for example, to viethe qualitativeshape of graphs to
suggest algebraic or trigonometric relationships (Dugdale, 1989, Schwartz 1990).

This brings onthe onehand a great increase potentialpower and, orthe other,

greater potential for misinterpretations of the graphical representatonnstance, the
graphmay look very differentwhen drawn ovedifferent range{Demana & Waits
1988) andhere may be visuallusions created by the changing scaleseachaxis

(Goldenberg et al 1988)The technology placeenormous power irthe hands of
students but serious research is necessarydanently inprogress) tagain insights
into student conceptions generated by its use.

For example, most of the graph-plotting softwaigally available on microcomputers
only acceptedfunctions given by formulaejmplicitly reinforcing the student’s
restricted concept image offanction as a formula. Aexception iISANUGraph from
the Australian NationdUniversity, which allows functions to baefined by different
formulae on several domains.

Only recently havegraph-drawing programs appeatédt allow thefunction notation
f(x). For instancethe School Mathematics ProjectFunction Analyser” inBritain,

allows functions to be typed in terms éfpressions such astg{t+sint, f(u)=eY, and
these in turn may be used in expressions to draw graphs syely@s+1, y=g(x+1)
or y=f(g(x)). But this is still limited to functions given by formulae.

The “Triple Representation Model” (Schwarz & Bruckheirh®B8), offersfacilities to
draw the graphs of functionscgalculateand plot numerical values d@inctions, and
step-search over an interval to fiqmbints which satisfy a specifiedquality or
inequality. Herethe functionsare sums, differences, productsd compositions of

9
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rational, absolute value, square root amdger parfunctions,defined on continuous
or discrete domains. The software can be used for problem-solvingactivities,
revealing, for example, how students d#éerent representations to find solutions of
equalities and inequalities, by “zooming in” paints where graphsross, or using a
combination of numerical evaluation astkp-search strategies. Schwatzal (1988)
report that the softwar&nablesstudents taeach higher cognitive levels in functional
reasoning”. For instancehe experienceswith more generalgraphs significantly
diminishes the'linear graph”’response to questions asking fowaiety of function
graphs through aiven set ofpoints. The use of the software leads tomore
sophisticated strategies for solving equations using the facilities provided.

There is a veritablexplosion ofthe use ofgraphic calculators and graphicsbftware

on computers fothe drawing of graphs of functions, some of whichndicated in a
broad-ranging review of the relationships between functions and graphs by Leinhardt et
al (1990). Indeed, this is axcellentsource of information and referendes further

study of empirical research into the function concemeneral,indicating the depth of
complexity and difficulty of the topic.

In emphasizing the many representations of the function conimeptula, graph,
variable relationship and son, the central idea ofunction as aprocessis often
overlooked. For example, although graphs are often representeceasebentway to
think of a function, very few studentseem to relate thgraph tothe underlying
functional process (take a point on #axis, trace aertical line to thegraph andhen

a horizontal line to thg-axis to findthe value ofy=f(x)). Instead students see a graph
simply as an object: a static curve (Dubinsky 1990).

To considerthe concept of functioras a process Dubinsky and his co-workers
introduced students to the function concept via programming Ayea1988). Using
the Unix operating system a number of commands were prepared for stsegtume
operating on numbers and some on text. The intention was tthieedfudents think of
a function both dynamically as a process and encapsulate it staticallyexseh object
on which operations such as function compositioay be performed. Though the
number of students involvaslas smalltherewas evidence tasupportthe hypothesis
that the computer experiencesre moreeffective for the experimentastudentsthan
traditional paper and pencil exercises carried out by a control group.

From this experiment, Dubinsky progressedthe idea ofprogramming the more
general notion of function on finiteets usinghe language ISETL(Schwartzet al

1986). This programming language allows students to handle functions as arbitrary sets
of ordered pairs as well ggoceduresand to construct operations suchfasction
composition in anathematicalvay. More recent implementations of ISETL allow the
user to graph the functions so constructed.

Empirical research shows that students can learn to think of a functiopraseas by
programming a procedure on the computer to carry oyprieess (Breidenbacht al

to appear). At dater stage, dunction defined in thisvay can beused as arnput to
another procedure, hence encapsulating the prasems objectThis suggestthat the

act of programming function proceduresay provide a cognitiveoot from which the
formal concept maygrow. The ISETL languagealso provides a programming
environment in which the learner may reflect on the difficult transition from function as
process to function as object.

The researchliscussed in thisectionshows awide variety of approaches to the
complexity of the functionconcept. Somegain can be made inmproving
understanding and problem-solviagilities in specific areas of the functi@oncept,

but there is no appears to be no universal pandteaidea offunction as a process

may prove to be a suitable cognitive rdot the formalconcept, but alonthe line of
cognitive development there are obstacles touscome, includinghe encapsulation

of the process as a single concept and the relating of this concept to its many and varied

10
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alternative representations. It remains a large and complex schema of ideas requiring a
broad range of experience to grasp in any generality.

The notion of a limit

Est modus in rebus, sunt certi denique fines,
Quos Ultra citraque nequit consistere rectum,
(Things have their due measure; there are ultimately fixed limits,
beyond which, or short of which, something must be wrong.)
(Horace 65-8 B.C. Satires)

Although the function concept is central to modern mathematics, it is the concept of a
limit which signifies a move to a highetane of mathematicahinking. As Cornu
observed (1983}this is the first mathematical concept thatudentsmeetwhere one

does not findthe result by astraightforwardmathematicacomputation. Instead it is
“surrounded with mystery”, in whicHone must arrive abone’s destination by a
circuitous route”.

Limits occur in many different mathematical contexts, including the limit sécuence,
of a series, of a function (ofXd(asx - a, or asx - ®), in the notion ofcontinuity, of

differentiability, of integration. In anathematicalsense it would beppropriate to
distinguish between these various different types of limit, for example, the disorete

of a sequenceaf) asn- o and thecontinuouslimit of f(x) as x - a. However,

empirical researchshows common difficulties for beginners acrosshe various
mathematical categories.

For example, the wordimit” itself hasmany connotations in everydéife which are

at variance withthe mathematicaldea. An everydayimit is often something which
cannot or should not to be passed, such as a “speed [liiné"terminology associated
with mathematical limiting processes includes phrases such as “tetals
“approaches”, or “gets cloge” which again have colloquial meanings differing from
the mathematicaheanings. Fomstancewhenthesephrasesareused inrelation to a
sequenceapproachinga limit, they invariably carry the implication that the terms of the
sequenceannot equathe limit (Schwarzenberger & Tall, 1977).

The problem of handling limits is exacerbated by restricted concept images of
sequences and functions, fxamplestudentsare often introduced to the notion of a
sequence wherte terms are given asfarmula. If one wished tehow that some
terms of a sequence might equal the limit , one might try to consider the sequegce 1,0,

, 0,%, 0, ... but students who view the terms of a sequence as a formula mathansist

) 3 )
this is notonesequence, butvo; the odd terms form a harmonic sequencé 1 , ...

which tends down taero and the even terms arenstants, whichare zero (Tall
1980b).

Davis and Vinnef1986) suggedthat there are seeminglynavoidablemisconception
stages with the notion of a limit. One is the influence of languagationed earlier, in
which the terms remind us of ideas that intrude into the mathematics. In addition to the
words, there are th&leasthat thesewvords conjure up, which havetheir origins in
earlier experiences. Although the authors attempted to teach a course irthghicrd
“limit” was not used inthe initial stages,they eventually concluded that “avoiding
appeals tosuch pre-mathematical mentaépresentation fragments masgry well be
futile”. Another source of misconceptions tise sheercomplexityof the ideas, which
cannot appear “instantaneouslycompleteand maturdorm”, so that “someparts of
the idea will get adequate representations before other partsSp#icific exampleare
likely to dominate thdearning, forinstance theyfound that monotonicsequences
dominated their earlyexamples, so it wasot surprisingthat they dominated the
student’s conceptimages. Thiscould lead to amisinterpretation of one’s own
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experiencefor instance the fact thatudentsdealtwith many examples of sequences
whose terms were given by a formula cautbenn to mistakenlyassumehat a simple
algebraic formula for theth terma, is an essential part of the theory.

Most of the informal ideas dfmit carry with them a dynamic feeling cdomething
approaching the limiting value, for instance, as n increases, the sum

N

1+5 + ..

ton

approaches thiamit 2. This has annevitable cognitive consequenagich | term the
“generic limit property” (Tall 1986): the belief that any property commoalltterms of
a sequence also holdstok limit. It is a beliefwith worthy historical precursors, for
example in Leibniz’s “Principle of continuity” (stated in a letter to Bayle), that

In any supposed transition, ending in any terminus, it is permissible to institute a
general reasoning, in which the final terminus may also be included.

It permeates the history of mathematics, for instance, in Cauchy’s belief thietithof
continuous functions must again be continuous. And it remains as a créasemimd
of today, in such ideas that the limit of the sequence

0.9, 0.99, 0.999, ....

must bdessthan one - because all the terms are less than one. Thus “poirghtine

recurring” is “justlessthanone”. (see, foexample, Schwarzenberger & Tall977,

Tall & Vinner, 1981, Cornu 1983 etc). Cornu (1983) studied thigréater detail and
found a wholearray ofbeliefs, forinstance that0.9, 0.99, ...tendsto nought point
nine recurring, but hadimit one” (because it “tends” to have ttgoperty of

0.99999..., but cannot pass the “limit” one).

It will come as nosurprisethat attempting to “simplify” thdimit notion by using
everyday language can leadseriousconceptuaproblems.Orton (1980) investigated
students concepts of limit using a “staircase with treads” where extra half-size treads are
inserted between each tread, then the process repeated successively with treads half this
size again. (Figure 4.)

Figure 4 : A limiting staircase
In an interview he posed the questions:
(a) If this procedure is repeated indefinitely, what is the final result?

(b) How many times will extra steps have to be placed before this “final result” is
reached?

(c) What is the area of the final shape in terms of “a”, i.e. what is the area below the
“final staircase”?

If a formula was given in (c) he asked:

Can you use this formula to obtain the ‘final term’ or limit of the sequence ?
12
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He justified the use of this terminology by stating:

The expression “final term” was again used in an attempt to help the students
understand the meaning of limits.

He is surely not alone in his attempt to help the student by an informal presentation. But
a phrase such as “the final staircase” is likelgreate a generiimit concept in which

the student imagines a staircase with an “infinite numbstegfs”,and this is precisely

the response that it evoked.

Faced with such difficulties in the dynamic notion of a limit, it wdime as naurprise
that the formal definition islso fraught with cognitivgoroblems.Even thephrase
“given an epsilon greater thaero... "may be interpreted as taking epsilon to be
“arbitrarily small” andthis in turncan lead to thesymbol generically representing an
“arbitrarily small” number:

Everything occurs as if there exist very small numbers, smaller than “real”
numbers, but nevertheless not zero. The symbol € represents for many students

a symbol of this type: € is smaller than all real numbers, but not zero. (Cornu 1983)

In the same way, in the calculus, the introduction of symiol@ised inthe UK for a

small finite increment ix) and & (as part of theyddx notation) leads generically to the
idea that there exist numbers that are arbitrarily, or “infinitesimally”, small (19&0,
Tall 1980, Cornu 1983).

The introduction of the formal notion dimit does notobliterate more primitive
dynamic notions, indeed, we often continue to nurture dynamic imagery teamining
to give an intuitive flavour to rigorous proofs.

Robert (1982) studied the notion of limit of a sequence as perceived by 1380 students at
various levels in school and university. She adked the studentsnight explain the

notion of a convergent sequence to a pupil of 14 or 15 years old (a questiomibi is

likely to evoke a concept image than the formal definition). She classifieg@gpenses

into four main categories:

1. Monotonic & Dynamic Monotonic (12%)

“a convergent sequence is an increasing sequence bounded above (or
decreasing bounded below)

“a convergent sequence is an increasing (or decreasing) sequence which
approaches a limit”

2. Dynamic (35%)
“Up tends to | 7, “Up approaches | 7, “the distance from Upto | becomes small”
“The values approach a number more and more closely”

3. Static (13%)
“The Up are in an interval near | ”, “The Up, are grouped round | 7,

“Un is as close as you like to |

4. Mixed (14%)
A mixture of those above.

In addition, 4%gave the formabefinition, 5% did notattempt thequestion and the
remainder gave incomplete or fas@atements, such as,’doesn’t go past” or “up
stays below .

The fact that atudent evokes particular imagedoes notmean the absence of other
images:

13
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The presentation by a student of an old (and incorrect) idea cannot be taken as
evidence that the student does NOT know the correct idea. In many cases the
student knows both but has retrieved the old idea. (Davis & Vinner 1986, p.284)

In particular, Robert’s request for an explanation suitable for a 14 or 15 year-old seems
to exclude the formal definition because of its difficulty. This difficulty is confirmed by
Tall & Vinner (1981) who asked seventlighly qualified first year university
mathematicstudents to writelown adefinition of Xlirr{!‘ f(x) = c (if they knew one).

They had just arrived from school and would be expected to have been given a dynamic
definition (f(x) gets close t@ asx gets close t@), though somenight have been
shown the formal definition. Those who replied did so as follows:

correct incorrect
[ formal 4 14
| dynamic 27 4 |

Table 2 : Student definitions of the limit concept

Thusthe majority ofthose whorecalled the (easier) dynamic definition could state it
correctly, whilst the majority of those who chose to giwe formal definitionwere not
able to recall it in a satisfactory way, mis-stating it in various ways such as:

[f(X)-c| < € for all positive values of € with X sufficiently close to a
As X-a, C-€ < f(X) < c+¢ for all N> g
[f(n)-f(n+1)| <€ for all n > given No.

Teaching the notion of limit using the computer has, on the whole, fared badly. Regular
computing languages, such as BASIC, Pascal or C, hold numbers in a fixed number of
memory locations whiclkean lead teserious problems adccuracywhen calculating a

limit such as

_ sin(x+h)-sinx
im —x ———
h-0

Whenh is small both numerator and denominadce tinynumbers whoseguotient is
likely to be highly inaccurate. For instance, #1173, the limit ash tends to 0 should

bez, but on a typical micro, taking=1/10" for n=1 to 10 gives the sequence:

0.455901884
0.495661539
0.499954913
0.499980524
0.499654561
0.500585884
0.465661287
0.232830644
0

which hardly gets close to 0.5.

Numerical ideas of limits in such contexts must therefore be combinedlisihssion
of accuracy of computer arithmetic.

Symbolic treatments of limits do not always fare better. The expression
((x+h)yr2-x72)/h
14
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typed into Derive (Rich et al 1989) is prettily printed as

and may be automatically simplified to
2x+h
but there is no warning about the chs®.

The more general expression

Derive’s limit option applied to this expression aends to 0, gives noix™1, but

N LN(X)-LN(x/n)
é

which may be suitabléor sophisticated investigation, but is hardly approprfatea
beginnet. It illustrates the difficulties encounteradthen onetries to program symbol
manipulation. It is hard enough ¢iw, but far harder to get thexpressiorinto a form
that may be desired.

All the evidence points once more to the fact that, although the limit concept (in a formal
sense) is a good mathematical foundation, it fails to be an appropriate cogrotivé

it is difficult to start withthe limit process in subjects such # calculus, what
alternatives are availabléf?stead of introducingexplicit limit ideas in differentiation,

Tall (1986) begins by magnifying graphs. This builds on the thesis that a cognitive root
for the calculus is the idea that a differentiable funckiae a graph whichagnifies to

“look straight”. Togive a rich concepimage,the software (Tall, Blokland & Kok
1990) includes not only standard functions, but also functions veneclsowrinkled,

that no mattehow highly magnified, theyneverlook straight. Thusn the very first
lessonin the calculus it ispossible to explore functions whicre locally straight
everywhere, functions whichave different leftand right gradients at certapoints
(because thgraph magnifies toeveal acorner) and functionthat are locally straight
nowhere (because theye toowrinkled). This allows students twiild a much richer
concept image including examples of differentiabilenctions, functionshaving
different left and right derivatives, and non-differentiable functions — providing
cognitive roots on which formal theories may later be grafted.

It is not an easy path. But this is truelitd itself. There is no royatoad, astuclid is
said to have remarked Rtolemy. Giverthe complexity of thdimit conceptthe road
ahead issurely not anattempt toease thestudent’s path by attempting to avoid
difficulties, for the over-simplificationproduces inappropriateoncept images which
only store up problems for later. A more helpful route is to prothderich experience

1 In Derive version 2.0 this has been changed to miJ&.
15
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necessary to enable the studenattempt to taconfrontthe difficulties and negotiate a
more stable concept, mindful of the possible pitfalls.

Thinking about infinity

To see a World in a Grain of Sand,
And Heaven in a wild flower,
Hold Infinity in the palm of your hand
And Eternity in an hour.
William Blake 1757-1827 (Auguries of Innocence)

Thoughts ofinfinity touch usall at sometime or other as we contemplate tpeny
nature of our finite existence in the vastness of the universe. Reseatrttie intdure of
students’ concepts of infinity is probably more cloudedh®creases inhe minds of
the researcher than anther. For what do wenean by “infinity”? Itwould be useful
for the reader tpause anoment and thinkvhat infinity means tdiim or her before
reading on.

Historically, philosophers distinguished betwestual infinity (“there are an infinite
number of whole numbers”) ambtential infinity (“for any whole numberthere is
always one bigger”). In modertimes actual infinity is interpretedsing Cantor’'s
theory of cardinahumbers in terms of one-one correspondences betaetsn An
infinite set is one whicltcan be put in one-one correspondendth a propersubset.
Thusthe naturahumbers{1,2,3,..., n, ...} form an infinite set because thegn be
put into one-one correspondence with the even nurgBets6,...,n, ...} in whichn
corresponds tor2 It is this cardinal form of infinitywhich is prominent in modern
mathematics.

But there are properties of cardinal infinithich many find difficult tocome to terms
with, for instance that a set can have “as many” elements as a pulyzet. Incardinal
number terms there are as many natural numbers as rationalangygoints on anit
real line segment as on a real line segment lemgth or on areal line as in &quare,
yet there are far more real numbers than rationals. Where is the consistency?

A number of research studiese based onthe inconsistency between tlwardinal

infinity of Cantor and ouintuitions. Here therearecreases in our minds born of our
experiences comparing infiniwets which children, witltheir different experiences,

may not share. Such research on infinity is likely to say as much about the nature of our
own conceptions as it does about the conflicts in the minds of children. For this reason
it is essential that we brieflgonsiderthe nature ofvarious conceptions ohfinity

before we proceed.

In Tall (1981) | suggestethat experiences of infinity that children encounter rarely
relate to the action afomparingsets,which meanghat they rarely lay the cognitive
roots for the cardinal concept of infinitifor instance, when ehild thinks of a“point

on a line”, itmay be in the manner of a pencil m&ok it may be somethingntirely
different, forexample the “point” on aword). Apencil markhasfinite size. Achild

who views a point has having a tiny finite size is likely to develop a generic concept of
a point which has an extremely small size.

If a line segment is made up sdich pointsthen there will be a finiteumber, say a
hundred, points to make it up. A line segment of tvifee length will require twice the
number, say two hundred@he only way that thedouble lengthline segmentas the

same number of points is if the points are twice the size! In extrapolating these ideas to
the infinite case, anatural generic conceptould be tohave a kind of infinity with an
infinite number of infinitesimally small points in a unit segment and twice as many in a
segment twice thdength. | once suggested this to emathematical colleague who
laughed at the naivety of it all and said, yes, there were twice as many relteinfa
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twice the length - one had, elements int, the other had 2, elements, and by
cardinal arithmeticlJ, = 20, ! He thought it was extremely naive to think otherwise.

Let us imagineN intervals in a unit lengtreach of length . If N is very large, I
is very small. A line twice the length will havdl intervals of the samsize, where

is even larger, and certainly not equaNtdNon-standard analysis allows uslé¢bN to
be an element in an ordered field bigger than the real numbers, BogHatger (in the
given order) than any real number. In this technical séhise’infinite”. It follows by
manipulating the order relation thal\lis smaller than any positiveal andso, inthis
technical sense, it is “infinitesimal” (see Tall 1980a, 1981). Thus non-standard analysis
allows a line to be made up of an infinite number of ting segments oinfinitesimal
size. A line of twice the length will have twice the numbepaoihts ofthe samesize.
Unlike cardinalinfinity, the non-standardnfinite numbers & andN are not equal -
one is bigger than the otherjust as inthe intuition of achild. Thus,although the
child’s concept of infinity conflicts with cardinahfinity, it has properties which are
consonant with non-standard infinity.

As we considethe concept of infinityduring the transition to advancadathematical
thinking, we nowbecome aware ofiider possibilities.There is morghan one notion

of infinity. The symbol o, used in phrases such &he limit as n tends too”,

represents the idea pbtential infinity. Studentsare usually told not to think of it as a
genuine number, yet they may be confused to find it verbalized in many contexts as if it
were. Inaddition there are at least threetions of“actual infinity”: cardinal infinity
(extending the notion of counting via the comparisorseits —the favoured form of
infinity by mathematicians)prdinal infinity (the concepproposed by Cantor iterms

of comparison obrderedsets),and the notion ohon-standard infinitygeneralizing
the notion ofmeasuringfrom real numbers to a larger orderéeld). For simplicity |
term this non-standard infinitpeasuring infinityAll these kinds ofinfinity are logical
entities appropriatéor study inadvanced mathematics. In judging the intuitions of a
child we should not make the mistake of considering only one kind of inficiydinal
infinity - as the only true mathematical notion.

For examplethe “infinite staircaseresponse tdhe question athe end of the last
section is a perfectly reasonabt®n-standard response, though itregected by
standard analysis. Similarlyhe idea tha0.999.. to annfinite number ofplaces, say
N, is infinitesimally smaller than 1 (by the infinitesimal quantity ¥)10

Tall (1980b) asked students to compute various limits, including the limits of

n? d n°
m+1 a.1)n

as n tends to infinity. A student who wrote

n2

o0
n+1

=1

was shown that a similar argument would give

n°

N, = :1
)" " o

but replied firmly
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“no it wouldn’t, because in this case the denominator is a bigger infinity, and the
result would be zero”.

This sense of infinities of different sizes is not a cardinal concept - it is an extrapolation
of experiences in arithmetic closemi@asuringnfinity, thancardinal infinity.

Fischbein et al (1979) give another clear example of measuring infinity where

I+i+1 +1 + .
is stated to be

s=2- ES , because there is no end to the sum of segments.
[o0)

Here it is the potential infinity of the limitingrocesshat leads to a generic concept of
measuring infinity. The suggested limittigical of all theterms: justiessthan 2. The
arithmetic fits nicelywith non-standard analysibut not with cardinahumbers where
infinities cannot be divided.

Most experiences with limits relate to things getting large, or small, or close to one
another. All of these extrapolate experience from arithmetic rather than
comparisons between sets and are more likely to evoke measuring infinity, rather
that cardinal infinity. It follows that the ideas of limits and infinity, which are often
considered together, relate to two different and conflicting paradigms.

Many different ideas of infinity can occur in different students in a gilass.Sierpin
ska (1987) analysed the concept images of 31 sixteen year-old pre-catetigsnatics
and physics students, and classified the studetatgroups which shéabelledwith a
single name for each group:

Michael and Christopher are unconscious infinitists (at least at the beginning):
they say “infinite”, but think “very big”. ... For both of them the limit should be the
last value of the term ... for Michael this last value is either plus infinity (a very big
positive number) or minus infinity. ... It is not so for Christopher who is more
receptive to the dynamic changes of values of the terms. The last value is not
always tending to infinity, it may tend to some small and known number.

George is a conscious infinitist. Infinity is about something metaphysical, difficult
to grasp with precise definitions. If mathematics is to be an exact science then
one should avoid speaking about infinity and speak about finite nhumbers only. In
formulating general laws one can use letters denoting concrete but arbitrary finite
numbers. In describing the behaviour of sequences the most important thing is to
characterize the nth term by writing the general formula. For a given n one can
then compute the exact value of the term or one can give an approximation of
this value.

Paul and Robert are kinetic infinitists: the idea of infinity in them is connected with
the idea of time. ... Paul is a potentialist. To think of some whole, a set or a
sequence, one has to run in thought through every element of it. It is impossible
to think this way of an infinite number of elements. The construction of an infinite
set or sequence can never be completed. Infinity exists potentially only. Robert is
a potential actualist. it is possible [for him] to make a “jump to infinity” in thought:
the infinity can potentially be ultimately actualized. For both, Paul and Robert, the
important thing is to see how the terms of the sequence change, if there is a
tendency to approach some fixed value. For Paul, even if the terms of a
sequence come closer and closer so as to differ less than any given value they
will never reach it. Robert thinks theoretically the terms will reach it in the infinity.

Fischbein ¢t a) (1978, 1979, 1981)nvestigated a number of conflicts inherent
between the different conceptions iafinity, for instance,the conflict between the
intuition of the single potential infinity and the many infinities of cardinal number
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theory, orthe conflict between the finite number pbints that may be marked
physically on a line comparealith the infinite number ofpoints that are theoretically
possible. He distinguishebetween “primary intuitions” whichare our common
heritage and “secondary intuitiong/hich come from more specialize@xperiences.
Thusthe idea of potential infinity is a primanytuition, but it takes considerable
experience of cardinal infinity to develop appropriagzondary intuitions as these
conflict with deeply held convictions (such as “the whole is greater than the part”).

Tirosh (1985)continued thevork of Fischbein et al by designingeaching program
on “finite and infinite sets” for grade 10 students, taking tmeiitive backgroundnto
account(for example the fact that they might appeal to the “part-whole” principle to
declare that aetwas bigger than a propesubset).The pupils were presented with
guotations frommathematicians on the puzzliagpects of infinitesets, toencourage
them to feel that itvas legitimate to facesuch conflicts. It was foundhat it was
possible to improveheir understanding ofhe Cantorian theory bwsing dynamic
teaching methods, including the open discussion of intuitive conflicts.

Other research has address#te alternative paradigm ofon-standard analysis.
Sullivan (1976) studied the effectiveness of teaching the calculus at deNetjrom a
non-standard viewpoint which combined axiofosthe realnumbers and a larger set
of hyperreal numbers containing infinite and infinitesimal elements (K&iSlé8). The
approach is given atronggeometric flavourusing apictorial interpretation of these
elements using “microscopes” and “telescopes”. She fthatdhestudents following
the experimentatourse scored &ast as well as a contrgroup inregular analysis

problems -0 definitions, calculating limits, proofs, and applications) but were better at

aspects of thecourse which hadalternative interpretationaising infinitesimal
arguments. Théatter tend to seermaasier partly because they do not involve as many
guantifiers as thestandard definitions, angbartly because they extend intuitive
experiences of “getting small” in the limit process.

Despitethis empirical proof for the success of an approach using infinitesimals, the
approach to calculus in higher education has hardly changed. There are geasomes

for this, including the intrinsic sophistication of tlen-standard ideas which depend
on Iogic of the depth of the axiom of choice. Bugre arealso prejudices arising from
traditional mathematical analysis and its links with the theorganitor. The creases of
the mind run deep.

It is important to complement thetudy of studendifficulties with possible sources of
difficulty in the mind of theteacher. Evidence from pre-servieeementary teachers
enrolled in an upper-division course mathematicsmethods at a large university
revealedwidespread inconsistenci€gVheeler and Martin, 1987, 1988).Questions

asking for explanations dhe symbolo and the final threeots inthe expression “1,

5, 25, 125, 625, ...” showed thatore than half theubjects were unfamiliar with the
symbolism. Responses twhat is infinity?” referred either to annending process -
“the numbers go on without stopping”, or to a recursive process -niaiber what
number you say, there is always one greater simply by adding one toetthén case
the predominant notion of infinity evokedpstential infinity

The question:
TRUE or FALSE: Every line segment contains an infinite number of points,

(which could evokeeither potential, cardinal or measuring infinity) had 39 true
responses, 24 false, and 7 without a reply, whilst:

TRUE or FALSE: There exists a smallest fraction greater than zero,
yielded 28 true, 29 false, and 13 not responding.
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When cross-referencetie responsesevealed the great majority students “holding
incomplete and inconsistent concepts of infinity” and individual writtegponses
showed a widevariety of evoked concept images riddled with conflicts and
inconsistencies. However, it &@so interesting task whetheithe concept of infinity
provoked by asking the meaning of “...” (potential infinitythe samekind of infinity

as the number gboints in aline segment (cardinahfinity). In order to researcimto

the beliefs held by students and to classify those beliefsinifpgrtant first to analyse
the concepts concerned and tkind of concept images generated larious
experiences without imbuing them with a classical mathematical prejudice.

Mathematical proof

For nothing worthy proving can be proven
Nor yet disproven: wherefore thou be wise.
Cleave ever to the sunnier side of doubt.
(Alfred Lord Tennyson, 1809-1892, The Ancient Sage)

Traditionally the introduction tgroof in school hadeen via Euclideageometry.
However, this disappeared frorthe syllabus inBritain with the arrival of the new
mathematics, and the NCTM standards suggest a change in emplilasigd A, with
increased attention recommended for:

« the development of short sequences of theorems

« deductive arguments expressed orally and in sentence or paragraph form
and decreased attention to

« Euclidean geometry as a complete axiomatic system

« Two column proofs.

The reasons for this are not hardital. Senk (1985) showeithat only thirty percent
of students in full-yeageometrycoursesreach a seventy five percent mastery on a
selection of six geometric proof problems.

Not only is Euclidean proof hard, itfails to satisfy stringent tests of modern
mathematical rigour because it depends on subtle intmititiens of space. Allilbert
put it most succinctly:

One must be able to say at all times - instead of points, straight lines and planes -
tables, chairs and beer mugs.

But proof in terms of tables, chairs andeer mugs requires areat deal of
sophistication which is noavailable toyounger studentsMathematicalproof as a
human activityrequires not only an understandingtbé concept definitions and the
logical processes, but also insighito how andwhy it works. Tall (1979) asked first
year university students to comment on their preferencebdatandard proofhatv2

is irrational by contradiction, dior an alternativeproof that showedthe square of a
whole number always had an even numbeprofe factors,hence thesquare of any

fraction could not bé , because the prime 2 appeareddd number of times. The
students significantly preferrethe second proof,because it gave some kind of
explanationas to whythe resultwas true (even though ivas expressed islightly
loose mathematicaterminology). Inthe transition to advancenathematicathinking,
mathematical insight in proof may be more important than mathematical precision.

Yet it does not take long before creases in the mind bedorro Vinner (1988) gave
students two proofs of the mean value theorem (if a function f is differentiable between
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aandb and continuous & andb, then there is a poirt betweena and b suchthat

f'(&)=(f(b)-f(a))/(b-a)).

(1) the standard algebraic proof (applying Rolle’s theorem to f(x) N bb-;a X-a))
(2) avisual proof moving the secant AB in figure 5 parallel to itself until it becomes
a tangent.

Figure 5 : A visual “proof” of the Mean Value Theorem

29 students founthe visualproof more convincing, 28the algebraigroof, and 17
consideredthem equal. It would be pleasing to see soewirlence that thetudents
criticized the geometriproof on somevalid ground, forinstance that it fails to give a
proper algorithm to find to any degree of accuracy. But almaktof those preferring
the visual proof mentioned that it is‘clear”, “evident”, “simple”, etc whilst those
preferring the algebraic proof tendednake generalemarksthat something isvrong
or illegal with the visual approach. Vinner considers that students develafpeabraic
bias” not because of improved understandinghefalgebra, but because dfabits,
routines, convenience and metacognitive ideahich are ‘environmental’, not
‘cognitive™. In particular he citeghe current teaching of Euclidean geometry for
sowing the seeds that a visual proof is unsatisfactory.

In mathematical analysis the need for a formal proof so often seems to arisdeaut of
that something might go wrong rather than confidegheesomething igight. To have

a good intuition of what is righpne needs appropriate experiences to gigenaplete
range of possible concept images and these are generally absedéeigraduates. On

the otherhand, studentwith experiences of magnifying a graphight realize that a
graph may have tiny wrinkles on it — a positive reason why the smooth picture in figure
5 may not tell the full story — thus leading to the need for the formal proof.

Proof is concerned:

.. hot simply with the formal presentation of arguments, but with the student’s
own activity of arriving at conviction, of making verification, and of communicating
convictions about results to others. Bell (1978)

In the last decade or so there has been a growing change of emphasis from teaching the
form of proof, toencouraging th@rocess including the earliestages of assembling
information, specializing, generalizing and making and testing conjectures. leglaglon
(1982) have developed a problem-solving approach in whingh studentouilds up
confidence by growing levels of conviction in a conjecture they have formulated:

convince yourself
convince a friend
convince an enemy.
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The first of these requires the student to state a conjecture in a way which seems to him
or her to betrue, the second requires it to barticulated in avay which it can be
meaningfully conveyed to someorése, and the thirdrequiresthe argument to be
clarified and organized in a way which will satisfy the meanestiti€s. Nevertheless,

this sequence of events stops short at what most professiatte@maticians mean by
proof: the logical deduction of theorems from carefully formulated concept definitions.

Alibert (1987, 1988a, 1988band his colleagues at Grenoble Universityave
developed a course ofnalysis, whichinclude this final stepthrough “scientific
debate” in theclassroom. This is based ¢ime idea thastudents construdheir own
knowledge through “interactions, conflicts and re-equilibrations”taatithe need for

proof is besemphasized through makiriige contradictions explicénd involving the
students in their resolution (Balacheff 1982). Rather than simply present a sequence of
lectures in a logicatequence, followed by stereotyped exerciiesstudents (in a

class of aboutl00) are encouraged to makeonjectures. For instancafter the
introduction of the notion of integral, the teacher might say:

If Iis an interval on the reals, a a fixed element of /, and x an element of /, we set,
for fintegrable over |,

F(x)= J; f(t) dt .

Can you make some conjectures of the form:
iff..thenF ...

About twenty conjectures were formulated by the students, such as:
“if f is increasing then F is too.”

(which happens to be falsaje then considerddr debate. Arguments insupport or
against these conjectures are then addressibe ttherstudents in a way which must
convince everyone (including the speaker).

75% of students responding to a questionnaire preféneednethod of incorporating
debates whilstL0% rejected it as being inaccessitdad not sufficiently organized.
Many find debates helpful particularlyhen newideas arantroduced, but prefer the
teacher to round off the debate by summarizing the knowledge gained.

Thus successful methods are being developedaitihematics education to improve the
students participation in the processes of mathemdticeling, including the necessity
for precise definitions antbgical deduction. But these methods dependraxtically
different approaches on the part of teachersaagtime will tell if they will become
more widely accepted.

Reflections

Looking back over the evidenessembledthere is a great deal of datasiepport the
existence okeriouscognitive conflict in the learning of more advanaedthematical
processes and concepts suchuagtions, limits,infinity and proof. Whatalso seems
to be clear is that the formalefinitions of mathematicsthat are such effective
foundations forthe logic of thesubject,are less appropriate as cognitiveoots for
curriculum development. Their subtlety and generality too greafor the growing
mind to accommodatall at once without a highisk of conflict caused by inadvertent
regularities in the particular experienaescounteredThere arecreases otthe mind
everywhere: in teachers, in professional mathematiciamaaithematiceducators, as
well as in students. Given such a catalogue of difficulties, is there a way ahead?
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We should not be too downhearted. The mathematical culture of which we speak is the
product of three thousand, or is it three million, years of corporate htlmoaght. It is

asking a great deal to compress such diverse richness of experienceéntma or so

of an individual's schoolingWhat is certain is that if wéry to teachthese ideas
without taking account of the cognitive development of the student then wsuvely/

fail with all but themostintelligent -and even these will have subtle creasethair

minds as a result of their experiences. It is essential thetbfdréhe expert be willing

to re-examine his or her beliefs in the naturenathematicatoncepts and be prepared

to see them also from the viewpoint of the learner.

So much of the research quotedthis chapterhasbeen built on implicitunspoken
assumptions abouhe nature of the concepts beiognsidered.The first step on a
research agenda &ssist students itihe transition to advanceaathematicathinking

must therefore be the clarification of these unspoken assumptions and the sensitizing of
researchers and teachers to tresirstence.One source ofevidencefor them is in
clinical interviews with students and a careful reflection on whaaid, not just to see

how it conflicts with formal mathematics, but also fitace formal mathematics itself
into perspective as a human activithich attempts to organize the complexities of
human thought into dogical system. A theory of cognitive development of
mathematicathought in thandividual, fromelementanbeginnings through téormal
abstractions, requires a cognitive understanding of the formal abstractions themselves.

The second stage fer more detailed clinicabbservations ofhe transitionprocess as
the massiverocess ofcognitive restructuring takgslace. This transition involves a
number of difficult cognitive changes:

» from the concept considered apmcesgthe function as g@rocess,
tending to a limit, potential infinity),

» to the concept encapsulated as a single object that is given a name (the
function as an object, the limit concept, actual infinity),

* via the abstraction of properties to the concept given in terms of a
definition (function as a set of ordered pairs, the epsilon-delta limit),

» to the construction of the properties of the defined oljexiugh
logical deduction,

* and the relationships betweearious different representations of the
concept (including verbal, procedural, symbolic, numeric, graphic).

These are not intended to represent a hierarchgestlopment, in particular the
relationships between various representations permeate the whole system in a horizontal
manner whilsthe conceptuastrandsbecome moresophisticatedEmpirical evidence
traditionally suggestghat it is necessary tdecome familiarwith a processhefore
encapsulating it as an object. The computer is capable of carrying out pnattesses

(such as drawing graphs) which ngive the possibility ohew learning strategies in

which the objectsproduced bythe computer are théocus of attention before the
internal algorithms are studied.

The third stage is then tltesign and testing of learning sequermiesed atassisting
the cognitive reconstruction in the transition to advanced mathematical thinking.

Research talate aimed aimproving learning — aspposed to research whigmply
observes what is currently occurring — has a comtharad. This ighat trueprogress
in making the transition to more advanaadthematicathinking can be achieved by
helping students to reflect on their own thinking processes and to cotifeocbnflicts
that arise in moving to a richer contextere oldimplicit beliefs no longehold. Such
intellectual growth is stimulated by flexible environmentshich furnish appropriate
cognitive roots and help the student to build a broader comage.Over-simplified
23
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environments designed to protettidents from confusiomay only serve to provide
implicit regularities that students abstract, causing serious conflict at a later stage.

In taking students througihe transition to advancedathematicathinking we should
realize that the formalizingnd systematizing of themathematics is the final stage of
mathematicathinking, notthe totalactivity. As Skemp wrote ithe “Psychology of
Learning Mathematics” (1971):

Some reformers try to present mathematics as a logical development. This
approach is laudable in that it aims to show that mathematics is sensible
and not arbitrary, but it is mistaken in two ways. First it confuses the
logical and the psychological approaches. The main purpose of a logical
approach is to convince doubters; that of a psychological one is to bring
about understanding. Second, it gives only the end-product of
mathematical discovery (‘this is it, all you have to dois learn it'), and
fails to bring about in the learner those processes by which mathematical
discoveries are made. It teaches mathematical thought, not mathematical
thinking.

In like manner, athe advancedevel, teaching definitions and theorems only in a
logical development teaches tpeoduct of advancednathematicatthought, not the
process of advanced mathematical thinking.
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