Reflections

David Tall

The production of this book is a firstage in gourney which sixteemuthors

and a wider group of co-workers #dvanced Mathematical Thinkingave
shared. It is pertinent, given the nature of the thinking processes thtvere
unfolded, to reflect upon what we have done with the spiratooiceptual
development in mind. First one begins with a problem which may not be well-
defined. Then oneiseswhat tools are available to attack the problem as it
progressivelybecomesclearer, with all thefalse starts and hard-waminor
advances thaare inevitable ingredients of the struggle. And now there is a
calm after the storm to reflect, seewhat gains have been made and what
remains to be done.

It would be good to be able to look back on the definitive bookdvanced
Mathematical Thinkingwith all the resolutions of all the problems tbatur

and a coherent theory that explains what it is and how to help dcibbisve

it. This task is not yet complete, certainly not in a definition-theorem-
application format that a mathematician migbguire of a theoryWhat has
been done is to set out on a journey, on which the rdaaebeen encouraged

to participate, to consider the way in which advanced mathematical thinking
functions, to understand what makes some thinlserscessful and to help
others on their journey to greatsuccess.The journey is the reward”. And

at this time we can look back on the pathways we have takeeetovhat
problems have been well-formulated and what solutions have appeared as we
move on to the next stage of the journey.

For me, as editor, ihas been a fascinating study to $ee development of
various parts of a theory, wee consonancesd dissonances, some of which
have been resolved whilst others remauspended in thesther. At the
beginning of the journey | saw through a glass darkly. | have ysgddace to
face.

But now there are clear@avenues tdollow, beginning with a mordocused
picture of the nature of the advanced mathematical thinking and moving
towards pertinent questions and partial answerst we must highlight the
different ways in which individual mathematicians may think successfully. In
particular, the need for all of us, successful in our various ways, tcspace

to others to help them udheir own particular talents to build uiheir
mathematical thinking processes. Then there is the realization dahaoney
nature of the full path of mathematical thinking, so much more demanding and
rewarding than the undoubteatsthetic beauty of the final edifice fafrmal
definition, theorem and proof.

This is the final chapter of the bosklvanced Mathematical Thinkinged. David Tall), Kluwer:
Holland, 251-259 (1991).



It is clear that the formal presentation of materialstodents inuniversity
mathematics courses — including mathematics majors, but evenfonoi@se

who take mathematics as a service subject — involves conceptual obstacles that
make the pathway very difficultor them to travelsuccessfully. And the
changes in technology, that render routine tasks less needful of Isbhggest

that the time for turning outstudents whosemajor achievement is in
reproducing algorithms in appropriate circumstances ispassing anduch

an approach needs to move to one which attempts to develop mmoich
productive thinking.

It is therefore no longer viable, if indeed it ever was, to lay the burden of
failure of our students ortheir supposed stupidity, when now the reasons
behind their difficulties may beseen to be inpart to be due to the
epistemological nature of mathematics and part to misconceptions by
mathematicians of how students learn. We often teach certain skills because we
know that these wilbring visible, albeit limitedsuccessbut we now know,
somewhatfurtively, that the acquiring of thossgkills may develop concept
imagery that contains theeeds offuture conflict. We haveevidence that a
formal approach, which appeals to the sophisticated expert may be cognitively
totally inappropriate for the naive learner and demands new forreaciing

to pasghrough the transition from elementamyathematics to a poiwhere

the economy and structure of modamathematics is seen as a meaningful
goal.

It seemdancredible that our list of references is largely dominated by papers
written in the lastdecade with only a few honourable exceptibe$ore the
early eighties. Whahas emergedrom a meeting ofindividuals over a five
year period, to reflect on this newly developing area of concerncisaaer
understanding of the full cycle of mathematical thinking: the need to begin
with conjectures and debate, the need to construct meaning, the nedédb

on formal definitions to construct the abstract objebibse properties are
those, and only those, which can be deducenh the definition. Advanced
mathematicsby its very naturgincludes concepts which are subtly at variance
with naive experience.Such ideasrequire an immense personal re-
construction to build the cognitive apparatus to handle them effectively. It
involves a struggle which virtually every author in this book, both severally
and individually,sees interms of a reflection on personal knowledge and a
direct confrontation with the inevitable conflicts whigdquire resolution and
reconstruction.

College professorsee thisconflict daily in individual students as they
struggle to come to terms with new ideas. In the past they have often tried to
help by providing clearer lectures, making the transitions as simple as
possible, presenting the ideas in a way which reduces the strain. Theveray
lead to the successfprofessor being lauded by his or h&tudentsfor the
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clarity of their exposition, but the acid testwhat do the students ledmnd

this needs to bassessed in wider sensethan just which algorithmslosely
related to their course they can carry out, or which definitions and proofs can
they correctly reproduce.

Our cognitive studies have shown the manifold differences betwedarthal
definitions of concepts and the images we use in our minds to workthesk
concepts. They show how the complexity of the subject demands a “chunking”
of information in an efficient way so that it can be easily handled, and this is
linked to the appropriatause of symbolismfor a given context and the
appropriate meaning which the individual links to that symbolism.

We have seen a divergence between the visualisers and verbalisers amongst us,
just as there appears to be a time-honoured difference between the mental
processes of the mathematical giants of the past. In recent monthbawas |
interacted with the various authors in an attempt to either come to an
agreement or to hone our differences into explicit focus, | hasen
privileged to gain some additional insights.

It is clear that mathematics without process to give results is of little value, in
other words, visualising an idea without being able to bring itradion is
virtually useless. | emphasise this fact even though a major thrust ofomky

Is in the use of visualisation. On the other hand, simply to be alok@rtp out
procedures in a narrow way, without being able to see the overall connections,
Is also grossly limitingFor me thishas led to a belief in a versatiferm of
thinking which complements therocedural with the globaloverview.
However, we have evidence of mathematicians, such as Hermite, steeped in the
logic of their subject who develop a powerful intuition of the processes and
their symbolism insuch a way as teender visualisation —for them -
redundant. We also have evidencesatcessful students (such as tase of
Terence Tao, Clements, 1984) who vagpisefer the power of logical
deduction. We therefore need to cater for different types of minds.

Recently, however, in a very different contextyds able to obtain an insight
which may prove helpful in this apparent dichotomy. Mathematics — according
to the Oxford Dictionary — is said to be “tlseience of Spacand Number”.

In recent months | have been reflecting on the fundamental differences
between these twdifferent forms ofmathematics and the manner wich

they develop cognitively. Spacthrough the study of geometry, begins with
gestalts — “that is a triangle”, “this is a straight line”, “that there is a rectangle”
and “this is a square”. The child learns to recognise these visual gastaits
examples and non-examples. “Yes, that is a square, but don’t think it is not a
rectangle, because asquare is a special kind of rectangleThrough
exploration and interaction with others, the child learns to discriminate
between these various gestalts and to isolate somihedf properties: “a
rectangle hagour right-angles anapposite pairs okides equal’, “asquare
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has four right-angles and all four sides equal” and to begsedcelationships

“an isosceles triangle has two equal angles and two equal sides”. From here the
relationships begin to build into deductionkd figure is a squarehenit is a
rectangle”, if a trianglehas two equal sideshenit has two equal angles”,
definitions begin to be isolated and, finally, these carfdomulated in an
axiomatic way to give théramework for logical deduction. Indeed, what |
have just described in outline wdermulated about the development of
geometry more clearly as a hierarchy over thirty years ago byHiea
(1959).

Number on the other hand is a very different animal. It begins with imitation
of the numbernames recited in sequence, “one, twree, ...”, perhaps
imperfectly at first, “... four, five, nineseven, ...”, then withmore
confidence, until the routine of pointing at objects and reciting nilnaber
names inproper sequence leads to the concept adunting. This is an
encapsulation. Therocessof counting leads to theonceptof number. By
various further strategies of process, “counting all” of two sets (a coordination
of two processes), or “counting on” (combining the concept of number of the
first set with the process of counting the secdedjisfrom the process of
counting to the concept of “sum”. A vital phenomenon occurs here in that the
symbolism 4+3 represents to the user both the process of counting and the
product of that process, the sum. The rest of the “number’” part of
mathematics proceeds, in the same way, by encapsulating processes as
conceptspften using the sanm®ymbolism for botlprocess anatoncept Thus

the process of “repeated addition”, “five threes” becomes the concept of
“product”, “5 times 3” — both written asx3. The process of “repeated
multiplication” becomes the concept of “power” and @o. Of coursethis
prescription is exactly parallel to thdiscussion of Dubinsky omeflective
abstraction. It is a phenomenon known to Piaget and to many an observant
teacher since time began — except tin@re is an amazing simplicity about
what is being done. In the number side of mathematics the mathematician
makes progressby being ambiguousbout notation. (S)heisesthe same
notation for process and produliliberately so that (s)he can powerfully use
whichever is appropriate for a given task. Talculate means to use the
processto manipulate is easier with a single object which involves using the
product.

As whole number generalizes to signed integer,sgmabols +2 and —also

have dual roles as process and the product: “shift two units right on the
number line”, “the integer plus two”, “shifseven units left”, “thenumber
minus two”. The same happens witlctions: “3/4” is both “divide three by
four” and the product of the process: “three-quarters”. It isstdm@e with
trigonometry, where



sine = opposite/hypotenuse
is both an instruction to calculate and a symbolism for the result.

Algebra too exhibits this same dualism of notation wherexawn&ans both the
process of adding two to the product of three xarahd also the result of that
process.

In chapter 4 Hanna remarks on the irony that in a “discipline touted as precise,
the student must develop a toleranfor ambiguity”. Instead of being
defensive about this state affairs, it is more appropriate to note that the
successful mathematician is the individual vdeesthe duality of this kind of
notation as process and product and wkesthe ambiguity in a flexible way.
Given the importance of a concept which is both process and product, | find it
somewhat amazing that it has no name. So | coined the portmdeteau
“procept” for a processvhich is symbolized by the same symbols as the
product. It seems that the whole of number and algebra is built on procepts, so
a theory of procepts and thaise in mathematics has a vast potential domain
of application.

Yet space and geometry are different. They seem to be built on geftads
properties are only slowlteased out and put inttbherent relationships, then
definitions and deductions.

There are therefore (at least) two different kinds of mathematics.bGifuks

from gestalts, through identification of properties and their coherence, on to
definition and deduction at advanced levels of mathematical thinking. The
other continuallyencapsulates processes as concepts, to buildrithpmetic,

then generalizes these ideas in algddwfore formalizing them as definitions
and deductive theorems in the advanced mathematics of abstract algebra.

If we look at the discussion d¥inner in chapter 5, we find his theories
originally began withgeometry and his examples include “car’, “table”,
“house”, “green”, “nice”, etcNone of these are proceptdowever, if we look
at the discussion of Dubinsky ichapter 7, we find his examples include
“commutativity of addition”, “number”, “trajectory” (as a coordination of
successivedisplacements), “see-sawfas the balancing of two objects),
“multiplication”, “fluid levels” (as a ‘variation of variations’). All these are
processesvhich become encapsulatedascepts As they stand, they are not
all procepts within thenarrow meaning of the term just defined. However,
they all involve manipulation of quantities, or balancing of quantities, or
variation of quantities, and this in turn involves number, which bringsaok

to proceptual ideas where symbolism is used bothepoesent a process of
manipulation and the result of that process.

The fascinating thing is that, by the time we reach the level of formalism in
advanced mathematics, these twiifferent strands move to a&imilar



formulation: thedefinition of concepts and thdeduction of properties of
those concepts.

| believe that the major catastrophe of the maathematics movement was
due to the unproven assumption that “if only the concepés properly
defined, then everything will be OK”. The nedor clear definitions and
deductions caused mathematicians to coeert about the power ofheir
ambiguous use of procepts. This move served students badly because it
failed to acknowledge the methods of the working mathematicianpdwer

in mathematics is not given through unique and precise meaning to symbolism
— “a function is a set obrdered pairssuch that ...” — buthrough aduality
which gainsflexibility throughambiguity — a function is both arocess(to be
able to calculate) and @ncept(which can be manipulated). It is as simple as
that. We cheatedur students because wigd not tell the truth about the way
mathematics works, possiblypecause we sought théloly Grail of
mathematical precision, possibly because we rarely reflected ontharefore
never realised, the true ways in which mathematicians operate.

The evidence which we are collecting with a wide range of ability of much
younger children is that the most able naturale this flexibility (Gray,
1991). In arithmetic they soon learn a few facts then, when they are faced with
a new arithmetic problem, they are often able to relate it to one they know and
derive new facts from old. The more able therefore taabeilt-in knowledge
generatorthat develops new arithmetical knowled§em old. Once they
grasp this, they realise that they do not needetnoember so muchecause

they can soon derive what they want to know. They have a flepibleeptual
knowledge in which number problemsch as 4+5 can be decomposed as the
process 4+5, which might seen as 4+4+1 and they know 4+4=8) can be
reassembled as 8+1=9. Thus the procept 4+5 is decomposed into process and
parts of this are recomposed back to derive the concept, or result, 4+5=9.

Meanwhile the lower ability children remember féacts and continue to use
the process of counting to add numbers togetheasked8+4, they faithfully
count on four to get “nine, ten, eleven, twelve” but thisaiely remember as
a known fact and, instead of having a knowledgmerator,they have an
unencapsulated processhich produces answers which are moanipulable
objects Thus there grows a “proceptual divide” between the more abieg
proceptual flexibility, and the less able, locked in process.

The same proceptual divide occurs with algebra. The child sebealgebraic
notation only as process, is faced with a nightmare, for how candgspiceive
of 2+3x as a process when, without knowixagt is a process which cannot be
carried out. And ifx is known, why is it necessary to use algeargway?

11 am grateful to my colleague Eddie Gray for this phrase, which comes the title of a joint paper (Gray & Tall,
1991) based on his work with the number processes of younger children.
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Only the child who can give meaning to the symbolism as a conceptual entity
can begin to manipulate more complex expressions meaningfully isetise
of Harel and Kaput in chapter 6.

This same division between those who conceptualise procgssdsct and
those locked in process occurs again at higher levels. The diomctept

rlIimooan IS again gprocept The same notatiorepresents both thprocessof

tending to the limit, and also thealue of the limit. But this phenomenon is
very different from procepts met in elementanyathematics. There the
process could be used talculatethe product. Now we have tihenomenon
that Cornu identified as an obstacle in chapter 10 understandimyribenics
of the process does not lead directly to the calculation of the lingtead
indirect alternative methods of computation must be devised.

Just as witharithmetic, the theory of limithas astructure fordevising new
facts from old. But in arithmetic the new facts are derifredh old using the
calculation processes of arithmetic and the new facts havsathe status as
the old: they can be calculated by the processes of arithmetic gaitine way.
In the case ofthe theory of limits, the “known facts” are one or two

“elementary” deductionfrom the definition: thatnlimoo 1/nis zero, or that a

constant function and the identity function are continuous. All threthesfe
“elementary” facts are derived from the definitions in singularly pecuars
which can causanitial confusion. The fact that A/tends to zero might be
deducedrom Archimedes axiom, or perhaps bgme heuristic appeal to the
fact that :”I can make b/smaller thane-1 by makingn bigger than the
integer part of plus one”, both of which are strangeys of asserting @/
gets small as gets large — the studekhowsthat anyway! To establish the
fact that a constant function is continuous is just “tellevand | will tell you

9, in fact you can take any>0 you like, sayd=1066". It is a joke that few
students have the experience to find funny. The continuity of the identity
function is equally enigmatic “OK, tak&=e, then, whenxx|<d, we have
[f(x)—f(xo)|<€, because=f(x), can’t you see, you dummy?” Unlilkeithmetic,
once these few “elementary facts” are deduced, few, if any, etlor “facts”

are calculated directly. Instead the “algebra of limits’preved, using the
coordination of the‘unencapsulated definition of the limit” agported in
chapter 10, which is at, or beyond, the zone of competence of most students.
The result is that the derived facts are “proved” (any polynomial is
“continuous” by an induction argument combinisgms and products of
constant functions and the identity) yet the actual definition is no longedl
because the calculations become horrendous.

Thus it is that the procepts in advanced mathematics work in a tdiH#yent
and completely enigmatic way compared with the procepts in elementary



mathematics. It is no wonder that, faced with this confusion, so stadgnts
end up conceiving the limit either as an (unencapsulated) processterms
of meaningless rote-learned symbol pushing.

Likewise the gestalt geometric conceptgrk differently in advanced
mathematics too. Instead of being “described” and having coherent
relationships, they are “defined” and other properties must be “dedficed”

the definitions. Again, given the conflict between the elementary base

the facts are known and the abstragtas where they need to be deduced,
confusion as discussed by Vinner (chapter 5), is almost inevitable.

So what is the solution? First it should be noted that the chapters of this book
nowhere give methods that will produce guarantsedcess.There is no
dispute that, for the most able, a formal presentation may be sufficisindwo

the structure of thesubject which they may appreciate and build into a
deductive system. But for the vast majority of students, the way ahead is stony
and littered with cognitiveobstacles which, if not addressed, will only be
isolated in the mind in such a way that they lie there readauseconflict in

future times — if they do not cause outright confusion already.

The evidence is that students of a wide range of abiliesper wherthey
can give meaning to the ideas. This deesmean that they must alwayslate
the concepts back to some concrete foundation that has physical mdasing.
as the child who counts objects successfully moves onvatyaearly age to
mentally manipulate number symbols in arithmetic, ssocessivdayers of
encapsulation of process into procept only neef@r to the level of the
previous proceptual layer. In fact, once the encapsulation has occurred, the use
of the same symbolism causes the process and concept to co@lescsingle
level. Thus the so-called hierarchy of concepts, which isobstacle to
learning, becomes, to thsuccessfulencapsulator, a single level in which
process and concept are dually represented, with the comptigguised by
the simplicity of the symbolism.

The question to be addressed is: if this is the way of submeske more able,
what should we do with, ofor, or to,the vast majority of oustudents? The
evidence in this book is, that to give them a sense of the full rangdvahced
mathematical thinking, it iessential to help themeflect on the nature of the
concepts and the neéol mental reconstruction in an overt and explicit way,
and to give them opportunities in which they can learn to conjecture and
debate, so that they may participate in mathematical thinking, not just learn to
reproduce mathematical thought.

This is not going to be an easy task. What stands agaisstint manycases,
fear. Fear of professionahathematiciangor the unknownwhen theyleave
their neatly planned course structures of theorem-proof-applicatiorgiaad
open-ended opportunities for problem-solving. Fear of the increased time that



this will take and that they will not “get through the course”. Fear that
“standards will drop” because students will not be able to exhibit the ability to
carry out all the processes that need to be taught in an “honours dégae”.
that they dare not make amhanges whilsbther institutions maintain the
traditional standards.

In recent years the fasthanges in societyare causing all of the well-
established truths to be reassessed. In Britain through the InstitBte/sits,
university departments of physics have mutually agreed to reduce the content
of the three yearphysics course by onéhird to give more room for
understanding what is actually taught. In mathematics a stepinmiar
direction might not be out of place. It is not necessary to change the whole of
the approach in a single step. Given a modest reduction in content, a new
flexibility could allow, say, a single course in problem-solving, of a general
nature, to be introduced early in the course, to encourage creativity in
mathematical thinking, even though it introduced no new content, but
compensated iterms of reflection on higher processes. For ten yediavé

run such a problem-solving course and | know the wagh@nges students’
perceptions of themselves and builds up confidehoeugh success in small
things that steadily grow more complex. They learrnialé& to eachother, to
verbalise mathematics, tospeak coherently. They even learn to enjoy
interchanging information and helping eaather, whereas before they had
often believed that good students only do mathemédicshemselves, otheir

own.

Given a modest reduction in content, it might be possible to allow time for
students to explore their own conjectures in a specific subject area. In my own
analysis lectures | regularly set up a problem scenario and leave the students to
work in groups to try tcsolve the problem. “OK, so the intermediatalue
theoremseemsobvious, but suppose you knew f was continuous betaglen

and that f&) and f() had opposite signs — how wouldu prove that it iszero

in between?” Setting this asomework does not have theame effect as
encouraging students to talk together in class time, and the best way to do this
is for the instructor tonake sure that there is a good tofmc investigation

and then leave theoom. Some of my best teachingccurs when | am
somewhere elsdrinking coffee and getting paid for it! Aeturn to the
classroom after an appropriate passage of time may find that the stualents

not solved the problem, but they often have experiences on which a proof can
then be constructed through a mutual dialogue. In this way they learn to
participate in the construction of mathematical knowledagher than just
remembering and repeating it.

Viewing the third part of this book — the review of the literature — we see
authors adopting very differenstances. Robert andschwarzenberger
highlight the difficulties of the transition frormchool to university. Eisenberg
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begins with a catalogue of failure in the teaching of the function concept.
Cornu is fascinated by the processes of knowledge creation arghtakel
between the epistemological obstacles in the past and the cognitive obstacles of
students. Artigue continues the study to further levels of mathematiabisis

and certainavenues of hope begin tppear. Tirosh reviews the cognitive
conflicts inherent in contemplating the infinite and gives a detadpdrt of a
single experiment exemplifying how students may be taught to reflettteon
knowledge and actively participate in its reconstruction. Alibert and Thomas
look at the process of proof amthow the difficulties of the formalism and
how it might be tackled through debate. Finally Dubinsky and | fooward

to the use of the computer and the way in which this may change the nature of
mathematics and provide an environmént learning. Despite thedifferent

tone of some chapters, tlmessage of hopfor reflective reconstruction of
knowledge is there in all of them.

My recent thinking has led me to realise that teenputer can be used in a
very special way in learning — to carry dbe processes, so that the user can
concentrate on the product. This is tégsence of @&pread-sheet, graph-
plotter, a symbol manipulator, and so on. In other words, the comalides

a change in the encapsulatiprocedure from process to object. Instead, of
forcing the student first to learn and interiorise the process, the computer can
carry outthe process and allow the user to focus on the properties of the
product. In this way there can be a shift of attention away from the process (in
which the less ablemay become trapped) and towards the mathematical
objects, and their relationships at a higher level. Instead of just learning the
processes o$olving differential equationsstudents mayirst appreciate the
existenceand uniquenesf solutions, and construct them in a meaningful,
guasi-physical way, building an approximate solution curve by putting
together short straight-line segments of the appropriate gradient.

Thus the final plank in the new charter asfvanced mathematical thinking in

the information age is what | have termed thanciple of selective
construction ofknowledge in which the learner is allowedyen encouraged,

to separately focus on the processes of mathematics and the pmoeipised

by those processes. It is now possible to get a computearty out the
algorithms so that the student can concentrate on the propertiespbthect.

In this way the student can be encouraged to construct the properties and
relationships enjoyed by the product whilst supressing consideration of the
process which is constructed internally by the computer. The student may at
one time selectively concentrate purely on the process and at another on the
higher level relationship$Both activities remain essentidipr the process is
needed to be able o mathematics and the higher level relationships are
essential tdit it together in a meaningful way. The interesting factor is that
the focus on the process need not always precede the construction of the
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properties of the product. The intuitive idea efistence and uniqueness of
differential equations can be investigated before formulating symybolic
solution. In this way the use of tllemputer gives new teaching aledrning
strategies in advanced mathematics.

We therefore arrive at @ossible new synthesis in teaching dedrning
advanced mathematics whiabffers a more complete cycle advanced
mathematical thinking to students, even those of more modest abilities. The
active participation in thinking i®ssentialfor the personal construction of
meaningful concepts. Students need to be challenged to face the cognitive
reconstruction explicitly, through conjecture and debate, thropuigiblem-
solving, and they may be assisted in the acquisition of insights at heylets

by selectively sharing the construction with the computer. Tass not
remove the need tpass oninformation in the theorem-proof-application
mode, forthis is the crowning glory oadvanced mathematics. Bstiudents

need to be assisted through a transition to a stage wherseistne necessity

and economy of such an approach. Therefore, step by step, through professors
being given a littlespace toexperiment, initially as part of a traditional
curriculum, anew balance may be struck, between the shining edifice of
advanced mathematics that is theghtful pride of the mathematical
community and the fuller range aflvanced mathematical thinking thgdve

rise to its construction.
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