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Reflections

David Tall

The production of this book is a first stage in a journey which sixteen authors
and a wider group of co-workers in Advanced Mathematical Thinking have
shared. It is pertinent, given the nature of the thinking processes that we have
unfolded, to reflect upon what we have done with the spiral of conceptual
development in mind. First one begins with a problem which may not be well-
defined. Then one uses what tools are available to attack the problem as it
progressively becomes clearer, with all the false starts and hard-won minor
advances that are inevitable ingredients of the struggle. And now there is a
calm after the storm to reflect, to see what gains have been made and what
remains to be done.

It would be good to be able to look back on the definitive book on Advanced
Mathematical Thinking, with all the resolutions of all the problems that occur
and a coherent theory that explains what it is and how to help others achieve
it. This task is not yet complete, certainly not in a definition-theorem-
application format that a mathematician might require of a theory. What has
been done is to set out on a journey, on which the reader has been encouraged
to participate, to consider the way in which advanced mathematical thinking
functions, to understand what makes some thinkers successful and to help
others on their journey to greater success. “The journey is the reward”. And
at this time we can look back on the pathways we have taken to see what
problems have been well-formulated and what solutions have appeared as we
move on to the next stage of the journey.

For me, as editor, it has been a fascinating study to see the development of
various parts of a theory, to see consonances and dissonances, some of which
have been resolved whilst others remain suspended in the ether. At the
beginning of the journey I saw through a glass darkly. I have yet to see face to
face.

But now there are clearer avenues to follow, beginning with a more focused
picture of the nature of the advanced mathematical thinking and moving
towards pertinent questions and partial answers. First we must highlight the
different ways in which individual mathematicians may think successfully. In
particular, the need for all of us, successful in our various ways, to give space
to others to help them use their own particular talents to build up their
mathematical thinking processes. Then there is the realization of the thorny
nature of the full path of mathematical thinking, so much more demanding and
rewarding than the undoubted aesthetic beauty of the final edifice of formal
definition, theorem and proof.
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It is clear that the formal presentation of material to students in university
mathematics courses – including mathematics majors, but even more for those
who take mathematics as a service subject – involves conceptual obstacles that
make the pathway very difficult for them to travel successfully. And the
changes in technology, that render routine tasks less needful of labour, suggest
that the time for turning out students whose major achievement is in
reproducing algorithms in appropriate circumstances is fast passing and such
an approach needs to move to one which attempts to develop much more
productive thinking.

It is therefore no longer viable, if indeed it ever was, to lay the burden of
failure of our students on their supposed stupidity, when now the reasons
behind their difficulties may be seen to be in part to be due to the
epistemological nature of mathematics and in part to misconceptions by
mathematicians of how students learn. We often teach certain skills because we
know that these will bring visible, albeit limited, success, but we now know,
somewhat furtively, that the acquiring of those skills may develop concept
imagery that contains the seeds of future conflict. We have evidence that a
formal approach, which appeals to the sophisticated expert may be cognitively
totally inappropriate for the naïve learner and demands new forms of teaching
to pass through the transition from elementary mathematics to a point where
the economy and structure of modern mathematics is seen as a meaningful
goal.

It seems incredible that our list of references is largely dominated by papers
written in the last decade with only a few honourable exceptions before the
early eighties. What has emerged from a meeting of individuals over a five
year period, to reflect on this newly developing area of concern, is a clearer
understanding of the full cycle of mathematical thinking: the need to begin
with conjectures and debate, the need to construct meaning, the need to reflect
on formal definitions to construct the abstract object whose properties are
those, and only those, which can be deduced from the definition. Advanced
mathematics, by its very nature, includes concepts which are subtly at variance
with naïve experience. Such ideas require an immense personal re-
construction to build the cognitive apparatus to handle them effectively. It
involves a struggle which virtually every author in this book, both severally
and individually, sees in terms of a reflection on personal knowledge and a
direct confrontation with the inevitable conflicts which require resolution and
reconstruction.

 College professors see this conflict daily in individual students as they
struggle to come to terms with new ideas. In the past they have often tried to
help by providing clearer lectures, making the transitions as simple as
possible, presenting the ideas in a way which reduces the strain. This may even
lead to the successful professor being lauded by his or her students for the
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clarity of their exposition, but the acid test is what do the students learn? And
this needs to be assessed in a wider sense than just which algorithms closely
related to their course they can carry out, or which definitions and proofs can
they correctly reproduce.

Our cognitive studies have shown the manifold differences between the formal
definitions of concepts and the images we use in our minds to work with these
concepts. They show how the complexity of the subject demands a “chunking”
of information in an efficient way so that it can be easily handled, and this is
linked to the appropriate use of symbolism for a given context and the
appropriate meaning which the individual links to that symbolism.

We have seen a divergence between the visualisers and verbalisers amongst us,
just as there appears to be a time-honoured difference between the mental
processes of the mathematical giants of the past. In recent months, as I have
interacted with the various authors in an attempt to either come to an
agreement or to hone our differences into explicit focus, I have been
privileged to gain some additional insights.

It is clear that mathematics without process to give results is of little value, in
other words, visualising an idea without being able to bring it to fruition is
virtually useless. I emphasise this fact even though a major thrust of my work
is in the use of visualisation. On the other hand, simply to be able to carry out
procedures in a narrow way, without being able to see the overall connections,
is also grossly limiting. For me this has led to a belief in a versatile form of
thinking which complements the procedural with the global overview.
However, we have evidence of mathematicians, such as Hermite, steeped in the
logic of their subject who develop a powerful intuition of the processes and
their symbolism in such a way as to render visualisation – for them –
redundant. We also have evidence of successful students (such as the case of
Terence Tao, Clements, 1984) who vastly prefer the power of logical
deduction. We therefore need to cater for different types of minds.

Recently, however, in a very different context, I was able to obtain an insight
which may prove helpful in this apparent dichotomy. Mathematics – according
to the Oxford Dictionary – is said to be “the Science of Space and Number”.
In recent months I have been reflecting on the fundamental differences
between these two different forms of mathematics and the manner in which
they develop cognitively. Space, through the study of geometry, begins with
gestalts – “that is a triangle”, “this is a straight line”, “that there is a rectangle”
and “this is a square”. The child learns to recognise these visual gestalts from
examples and non-examples. “Yes, that is a square, but don’t think it is not a
rectangle, because a square is a special kind of rectangle”. Through
exploration and interaction with others, the child learns to discriminate
between these various gestalts and to isolate some of their properties: “a
rectangle has four right-angles and opposite pairs of sides equal”, “a square
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has four right-angles and all four sides equal” and to begin to see relationships
“an isosceles triangle has two equal angles and two equal sides”. From here the
relationships begin to build into deductions “if a figure is a square, then it is a
rectangle”, “if a triangle has two equal sides, then it has two equal angles”,
definitions begin to be isolated and, finally, these can be formulated in an
axiomatic way to give the framework for logical deduction. Indeed, what I
have just described in outline was formulated about the development of
geometry more clearly as a hierarchy over thirty years ago by Van Hiele
(1959).  

Number on the other hand is a very different animal. It begins with imitation
of the number names recited in sequence, “one, two, three, ...”, perhaps
imperfectly at first, “... four, five, nine, seven, ...”, then with more
confidence, until the routine of pointing at objects and reciting the number
names in proper sequence leads to the concept of counting. This is an
encapsulation. The process of counting leads to the concept of number. By
various further strategies of process, “counting all” of two sets (a coordination
of two processes), or “counting on” (combining the concept of number of the
first set with the process of counting the second) leads from the process of
counting to the concept of “sum”. A vital phenomenon occurs here in that the
symbolism 4+3 represents to the user both the process of counting and the
product of that process, the sum. The rest of the “number” part of
mathematics proceeds, in the same way, by encapsulating processes as
concepts, often using the same symbolism for both process and concept. Thus
the process of “repeated addition”, “five threes” becomes the concept of
“product”, “5 times 3” – both written as 5x3. The process of “repeated
multiplication” becomes the concept of “power” and so on. Of course this
prescription is exactly parallel to the discussion of Dubinsky on reflective
abstraction. It is a phenomenon known to Piaget and to many an observant
teacher since time began – except that there is an amazing simplicity about
what is being done. In the number side of mathematics the mathematician
makes progress by being ambiguous about notation. (S)he uses the same
notation for process and product deliberately, so that (s)he can powerfully use
whichever is appropriate for a given task. To calculate means to use the
process, to manipulate  is easier with a single object which involves using the
product.

As whole number generalizes to signed integer, the symbols +2 and –7 also
have dual roles as process and the product: “shift two units right on the
number line”, “the integer plus two”, “shift seven units left”, “the number
minus two”. The same happens with fractions: “3/4” is both “divide three by
four” and the product of the process: “three-quarters”. It is the same with
trigonometry, where
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sine = opposite/hypotenuse

is both an instruction to calculate and a symbolism for the result.

Algebra too exhibits this same dualism of notation where 2+3x means both the
process of adding two to the product of three and x and also the result of that
process.

In chapter 4 Hanna remarks on the irony that in a “discipline touted as precise,
the student must develop a tolerance for ambiguity”. Instead of being
defensive about this state of affairs, it is more appropriate to note that the
successful mathematician is the individual who sees the duality of this kind of
notation as process and product and who uses the ambiguity in a flexible way.
Given the importance of a concept which is both process and product, I find it
somewhat amazing that it has no name. So I coined the portmanteau term
“procept” for a process which is symbolized by the same symbols as the
product. It seems that the whole of number and algebra is built on procepts, so
a theory of procepts and their use in mathematics has a vast potential domain
of application.

Yet space and geometry are different. They seem to be built on gestalts whose
properties are only slowly teased out and put into coherent relationships, then
definitions and deductions.

There are therefore (at least) two different kinds of mathematics. One builds
from gestalts, through identification of properties and their coherence, on to
definition and deduction at advanced levels of mathematical thinking. The
other continually encapsulates processes as concepts, to build up arithmetic,
then generalizes these ideas in algebra before formalizing them as definitions
and deductive theorems in the advanced mathematics of abstract algebra.

If we look at the discussion of Vinner in chapter 5, we find his theories
originally began with geometry, and his examples include “car”, “table”,
“house”, “green”, “nice”, etc. None of these are procepts. However, if we look
at the discussion of Dubinsky in chapter 7, we find his examples include
“commutativity of addition”, “number”, “trajectory” (as a coordination of
successive displacements), “see-saw” (as the balancing of two objects),
“multiplication”, “fluid levels” (as a ‘variation of variations’). All these are
processes which become encapsulated as concepts. As they stand, they are not
all procepts within the narrow meaning of the term just defined. However,
they all involve manipulation of quantities, or balancing of quantities, or
variation of quantities, and this in turn involves number, which brings us back
to proceptual ideas where symbolism is used both to represent a process of
manipulation and the result of that process.

The fascinating thing is that, by the time we reach the level of formalism in
advanced mathematics, these two different strands move to a similar
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formulation: the definition of concepts and the deduction of properties of
those concepts.

I believe that the major catastrophe of the new mathematics movement was
due to the unproven assumption that “if only the concepts are properly
defined, then everything will be OK”. The need for clear definitions and
deductions caused mathematicians to be covert about the power of their
ambiguous use of procepts. This move served our students badly because it
failed to acknowledge the methods of the working mathematician. The power
in mathematics is not given through unique and precise meaning to symbolism
– “a function is a set of ordered pairs such that …” – but through a duality
which gains flexibility through ambiguity1 – a function is both a process (to be
able to calculate) and a concept (which can be manipulated). It is as simple as
that. We cheated our students because we did not tell the truth about the way
mathematics works, possibly because we sought the Holy Grail of
mathematical precision, possibly because we rarely reflected on, and therefore
never realised, the true ways in which mathematicians operate.

The evidence which we are collecting with a wide range of ability of much
younger children is that the most able naturally use this flexibility (Gray,
1991). In arithmetic they soon learn a few facts then, when they are faced with
a new arithmetic problem, they are often able to relate it to one they know and
derive new facts from old. The more able therefore have a built-in knowledge
generator that develops new arithmetical knowledge from old. Once they
grasp this, they realise that they do not need to remember so much because
they can soon derive what they want to know. They have a flexible proceptual
knowledge in which number problems such as 4+5 can be decomposed as the
process 4+5, which might be seen as 4+4+1 and (if they know 4+4=8) can be
reassembled as 8+1=9. Thus the procept 4+5 is decomposed into process and
parts of this are recomposed back to derive the concept, or result, 4+5=9.

Meanwhile the lower ability children remember few facts and continue to use
the process of counting to add numbers together. If asked 8+4, they faithfully
count on four to get “nine, ten, eleven, twelve” but this is rarely remember as
a known fact and, instead of having a knowledge generator, they have an
unencapsulated process which produces answers which are not manipulable
objects. Thus there grows a “proceptual divide” between the more able, using
proceptual flexibility, and the less able, locked in process.

The same proceptual divide occurs with algebra. The child who sees algebraic
notation only as process, is faced with a nightmare, for how can (s)he conceive
of 2+3x as a process when, without knowing x, it is a process which cannot be
carried out. And if x is known, why is it necessary to use algebra anyway?

                                                
1 I am grateful to my colleague Eddie Gray for this phrase, which comes the title of a joint paper (Gray & Tall,
1991) based on his work with the number processes of younger children.
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Only the child who can give meaning to the symbolism as a conceptual entity
can begin to manipulate more complex expressions meaningfully in the sense
of Harel and Kaput in chapter 6.

This same division between those who conceptualise process as product and
those locked in process occurs again at higher levels. The limit concept
lim

n→∞
an is again a procept. The same notation represents both the process of

tending to the limit, and also the value of the limit. But this phenomenon is
very different from procepts met in elementary mathematics. There the
process could be used to calculate the product. Now we have the phenomenon
that Cornu identified as an obstacle in chapter 10 understanding the dynamics
of the process does not lead directly to the calculation of the limit. Instead
indirect alternative methods of computation must be devised.

Just as with arithmetic, the theory of limits has a structure for devising new
facts from old. But in arithmetic the new facts are derived from old using the
calculation processes of arithmetic and the new facts have the same status as
the old: they can be calculated by the processes of arithmetic in the same way.
In the case of the theory of limits, the “known facts” are one or two
“elementary” deductions from the definition: that lim

n→∞
 1/n is zero, or that a

constant function and the identity function are continuous. All three of these
“elementary” facts are derived from the definitions in singularly peculiar ways
which can cause initial confusion. The fact that 1/n tends to zero might be
deduced from Archimedes axiom, or perhaps by some heuristic appeal to the
fact that :”I can make 1/n smaller than ε−1 by making n bigger than the
integer part of ε plus one”, both of which are strange ways of asserting 1/n
gets small as n gets large – the student knows that anyway! To establish the
fact that a constant function is continuous is just “tell me ε and I will tell you
δ, in fact you can take any δ>0 you like, say δ=1066”. It is a joke that few
students have the experience to find funny. The continuity of the identity
function is equally enigmatic “OK, take δ=ε, then, when |x–x0|<δ, we have
|f(x)–f(x0)|<ε, because x=f(x), can’t you see, you dummy?” Unlike arithmetic,
once these few “elementary facts” are deduced, few, if any, other such “facts”
are calculated directly. Instead the “algebra of limits” is proved, using the
coordination of the “unencapsulated definition of the limit” as reported in
chapter 10, which is at, or beyond, the zone of competence of most students.
The result is that the derived facts are “proved” (any polynomial is
“continuous” by an induction argument combining sums and products of
constant functions and the identity) yet the actual definition is no longer used
because the calculations become horrendous.

Thus it is that the procepts in advanced mathematics work in a totally different
and completely enigmatic way compared with the procepts in elementary
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mathematics. It is no wonder that, faced with this confusion, so many students
end up conceiving the limit either as an (unencapsulated) process or in terms
of meaningless rote-learned symbol pushing.

Likewise the gestalt geometric concepts work differently in advanced
mathematics too. Instead of being “described” and having coherent
relationships, they are “defined” and other properties must be “deduced” from
the definitions. Again, given the conflict between the elementary ideas where
the facts are known and the abstract ideas where they need to be deduced,
confusion as discussed by Vinner (chapter 5), is almost inevitable.

So what is the solution? First it should be noted that the chapters of this book
nowhere give methods that will produce guarantied success. There is no
dispute that, for the most able, a formal presentation may be sufficient to show
the structure of the subject which they may appreciate and build into a
deductive system. But for the vast majority of students, the way ahead is stony
and littered with cognitive obstacles which, if not addressed, will only be
isolated in the mind in such a way that they lie there ready to cause conflict in
future times – if they do not cause outright confusion already.

The evidence is that students of a wide range of abilities prosper when they
can give meaning to the ideas. This does not mean that they must always relate
the concepts back to some concrete foundation that has physical meaning. Just
as the child who counts objects successfully moves on at a very early age to
mentally manipulate number symbols in arithmetic, so successive layers of
encapsulation of process into procept only need refer to the level of the
previous proceptual layer. In fact, once the encapsulation has occurred, the use
of the same symbolism causes the process and concept to coalesce into a single
level. Thus the so-called hierarchy of concepts, which is an obstacle to
learning, becomes, to the successful encapsulator, a single level in which
process and concept are dually represented, with the complexity disguised by
the simplicity of the symbolism.

The question to be addressed is: if this is the way of success for the more able,
what should we do with, or for, or to, the vast majority of our students? The
evidence in this book is, that to give them a sense of the full range of advanced
mathematical thinking, it is essential to help them reflect on the nature of the
concepts and the need for mental reconstruction in an overt and explicit way,
and to give them opportunities in which they can learn to conjecture and
debate, so that they may participate in mathematical thinking, not just learn to
reproduce mathematical thought.

This is not going to be an easy task. What stands against it is, in many cases,
fear. Fear of professional mathematicians for the unknown when they leave
their neatly planned course structures of theorem-proof-application and give
open-ended opportunities for problem-solving. Fear of the increased time that
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this will take and that they will not “get through the course”. Fear that
“standards will drop” because students will not be able to exhibit the ability to
carry out all the processes that need to be taught in an “honours degree”. Fear
that they dare not make any changes whilst other institutions maintain the
traditional standards.

In recent years the fast changes in society are causing all of the well-
established truths to be reassessed. In Britain through the Institute of Physics,
university departments of physics have mutually agreed to reduce the content
of the three year physics course by one third to give more room for
understanding what is actually taught. In mathematics a step in similar
direction might not be out of place. It is not necessary to change the whole of
the approach in a single step. Given a modest reduction in content, a new
flexibility could allow, say, a single course in problem-solving, of a general
nature, to be introduced early in the course, to encourage creativity in
mathematical thinking, even though it introduced no new content, but
compensated in terms of reflection on higher processes. For ten years I have
run such a problem-solving course and I know the way it changes students’
perceptions of themselves and builds up confidence through success in small
things that steadily grow more complex. They learn to talk to each other, to
verbalise mathematics, to speak coherently. They even learn to enjoy
interchanging information and helping each other, whereas before they had
often believed that good students only do mathematics for themselves, on their
own.

Given a modest reduction in content, it might be possible to allow time for
students to explore their own conjectures in a specific subject area. In my own
analysis lectures I regularly set up a problem scenario and leave the students to
work in groups to try to solve the problem. “OK, so the intermediate value
theorem seems obvious, but suppose you knew f was continuous between a, b
and that f(a) and f(b) had opposite signs – how would you prove that it is zero
in between?” Setting this as homework does not have the same effect as
encouraging students to talk together in class time, and the best way to do this
is for the instructor to make sure that there is a good topic for investigation
and then leave the room. Some of my best teaching occurs when I am
somewhere else drinking coffee and getting paid for it! A return to the
classroom after an appropriate passage of time may find that the students have
not solved the problem, but they often have experiences on which a proof can
then be constructed through a mutual dialogue. In this way they learn to
participate in the construction of mathematical knowledge rather than just
remembering and repeating it.

Viewing the third part of this book – the review of the literature – we see
authors adopting very different stances. Robert and Schwarzenberger
highlight the difficulties of the transition from school to university. Eisenberg
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begins with a catalogue of failure in the teaching of the function concept.
Cornu is fascinated by the processes of knowledge creation and the parallel
between the epistemological obstacles in the past and the cognitive obstacles of
students. Artigue continues the study to further levels of mathematical analysis
and certain avenues of hope begin to appear. Tirosh reviews the cognitive
conflicts inherent in contemplating the infinite and gives a detailed report of a
single experiment exemplifying how students may be taught to reflect on their
knowledge and actively participate in its reconstruction. Alibert and Thomas
look at the process of proof and show the difficulties of the formalism and
how it might be tackled through debate. Finally Dubinsky and I look forward
to the use of the computer and the way in which this may change the nature of
mathematics and provide an environment for learning. Despite the different
tone of some chapters, the message of hope for reflective reconstruction of
knowledge is there in all of them.

My recent thinking has led me to realise that the computer can be used in a
very special way in learning – to carry out the processes, so that the user can
concentrate on the product. This is the essence of a spread-sheet, a graph-
plotter, a symbol manipulator, and so on. In other words, the computer allows
a change in the encapsulation procedure from process to object. Instead, of
forcing the student first to learn and interiorise the process, the computer can
carry out the process and allow the user to focus on the properties of the
product. In this way there can be a shift of attention away from the process (in
which the less able may become trapped) and towards the mathematical
objects, and their relationships at a higher level. Instead of just learning the
processes of solving differential equations, students may first appreciate the
existence and uniqueness of solutions, and construct them in a meaningful,
quasi-physical way, building an approximate solution curve by putting
together short straight-line segments of the appropriate gradient.

Thus the final plank in the new charter of advanced mathematical thinking in
the information age is what I have termed the principle of selective
construction of knowledge, in which the learner is allowed, even encouraged,
to separately focus on the processes of mathematics and the procepts produced
by those processes. It is now possible to get a computer to carry out the
algorithms so that the student can concentrate on the properties of the product.
In this way the student can be encouraged to construct the properties and
relationships enjoyed by the product whilst supressing consideration of the
process which is constructed internally by the computer. The student may at
one time selectively concentrate purely on the process and at another on the
higher level relationships. Both activities remain essential, for the process is
needed to be able to do mathematics and the higher level relationships are
essential to fit it together in a meaningful way. The interesting factor is that
the focus on the process need not always precede the construction of the
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properties of the product. The intuitive idea of existence and uniqueness of
differential equations can be investigated before formulating any symbolic
solution. In this way the use of the computer gives new teaching and learning
strategies in advanced mathematics.

We therefore arrive at a possible new synthesis in teaching and learning
advanced mathematics which offers a more complete cycle of advanced
mathematical thinking to students, even those of more modest abilities. The
active participation in thinking is essential for the personal construction of
meaningful concepts. Students need to be challenged to face the cognitive
reconstruction explicitly, through conjecture and debate, through problem-
solving, and they may be assisted in the acquisition of insights at higher levels
by selectively sharing the construction with the computer. This does not
remove the need to pass on information in the theorem-proof-application
mode, for this is the crowning glory of advanced mathematics. But students
need to be assisted through a transition to a stage where they see the necessity
and economy of such an approach. Therefore, step by step, through professors
being given a little space to experiment, initially as part of a traditional
curriculum, a new balance may be struck,  between the shining edifice of
advanced mathematics that is the rightful pride of the mathematical
community and the fuller range of advanced mathematical thinking that gave
rise to its construction.


