Chapter 14

Advanced Mathematical Thinking
and the Computer

Ed Dubinsky and David Tall
1. Introduction

The computer can be used as a tool to complement advanced mathematical
thinking in a variety of ways. In researchhiéis been used frovide data to
suggest possible theorems,sieek counter-examples anddarry out onerous
computations to prove theorems involving only a finite number of algorithmic
cases. In education it can be us$ed the same objectives, anidr one other

major purpose: to helptudents conceptualize, and constriget themselves,
mathematics that has already been formulated by others.

There are already many computer tools availdbtegeneral useSymbolic
manipulators have been used nesearch, but witHess initial success in
education. We hypothesize thsiticcessusing the computer in education is
enhanced by using the compufter explicit conceptual purposes amdport
empirical research which supports this hypothesis. New software
environments are being developed which enable the studergxpéore
concepts in a directed and meaningful way, and which suggest new approaches
to mathematics more appropriate for the learner.

Programming can be used to support both mathematicasearch and
mathematics teaching. But when it is simply added toctireiculum without
very specific aims in mind ihas not always been successful. We whficuss
the way in which a computer language, designed so thaprihgramming
constructsmirror mathematical constructs, cassist students tearry out
mathematical processes and encapsulate them as mathematical concepts.

2. The computer in mathematical research

Mathematicakesearchpasseshrough several distintages of development,
from the germ of an idea to the formalities of proof:

In Mathematics, as in the Natui@tiencesthere are severatages involved in a
discovery,and formalproof is onlythe last. The earliest stageonsists in the
identification of significant facts, their arrangement into meaningful patterns and the
plausible extraction of some law @rmula. Next isthe process oftesting this
proposed formula against new experimental facts, and onlydibes one consider

the question of proof. (Atiyah, 1984)

Computers have proved useful in evestage of this development. In the
initial exploration phasecomputer generated dalteas led tosurprising new

intuitions and new theory. The famous example is that of Lorenz, studying the
outcome of differential equations to predict the weather, who wishesptat

Published in Tall D. O. (ed.Advanced Mathematical Thinkingluwer: Holland,
231-248 (1991).

a cycle of events to analyse it greater detaillnstead of startingrom the
beginning of a run, he took numbers occuring peaty through a previous
run and found, to his amazement, that thésequentpattern diverged
enormously fromhis previous data. He then realized that the output of the
previous run had given numbers only to thmdaces: 0.506 instead of the
internally stored number 0.506127. The small variation in ing@iditions
had given a large variation in long term behaviour — knowing initial
conditions in a practicadensecannot be used to predict the eventual outcome
andchaos theorywas born (Lorenz, 1963).

Sincethat time, sensiblprogrammed environmentsave proved increasingly
valuable to produce data smggest possible conjectures. Recent developments
in the theory of iteration of functions, leading to the beautiful fractal pictures
that have become well known even to the general public, &@seresearch
begun, but abandoned, in tlearlier part ofthis century because of the
massive computations involved. It was only with treival of the computer

that the results of the computations could be represented graphically, leading
to surprising pictures and nelwypotheses to be testédst by drawing,then

by a search for formal proof. Likewise, in the theorydghamical systems,
computer graphics have exhibited phenomena that might not have otherwise
come to light. Softwardor the investigation of such phenomena is now
generally available. For instance, figure 1 shows a model of a possible orbit of
a tiny satellite round twolarger bodies, alternately oscillatingpetween
revolving round one then moving into a position of superior gravitational pull
of the other and moving, for a time, to revolve round the other (Kocak,
1986). It is interesting to note that this book features a significant number of
research problems fowhich there is a clear visual idea of possistdutions

but for which no formal proofwas available at the time of publication. The
theory of dynamicabystems and chaos isparadigmatic example of a new
branch of mathematics in which the complementary rolescahputer
generated experiments to suggest theoremda@anthl mathematical proof to
establish them with logical precision go hand in hand.

Chaos has become not just a theory but also a method, notcasbra of beliefs
but also a way of doing science. Chaos tr@ated itsown technique ofusing
computers, @chnique thatloes notrequire thevast speed of Crays and Cybers
but insteadfavours modesterminals that allow flexibleinteraction. To chaos
researchergnathematicsiasbecome an experimentatience, withthe computer
replacing laboratories full of test tubes amitroscopes. Graphitnages are the
key. “It's masochism for anathematician to davithout pictures,” one chaos
specialist wouldsay. “How can they see the relationship betw#gst motion and
this, how can the develop intuition?”. (Gleick, 1987, pp. 38-39)

Go

Clear
Dimension
Algorithm
|Step size
T ime
Xtend
Equation
Parame tex
InitConds

WindoSize
Jumps /Pl t
INTILITIES

TSUALAI D,
Quit

[Computinag. . . GG |

figure 1 : chaotic movement of a satellite round two larger bodies

FHMSE + IPCHR T

In the second stage of mathematical thinking, where conjecturesbleane
made more precise and serious attempts are being made to test them,
computers may be used sometimes to genespiopriate examples or
counter-examples. Nearly two centuries ago, after a prodigious number of
calculations, Euler formulated the conjecture that a sum lefast n positive

nth powers of integers are required to producentanpower. So forbidding

were the calculations required to investigate this that it stood without proof or
refutation until a computer search in 1969 by Lander and Parkin produced the
counter-example:

275+ 84+ 110 + 133 = 144.

This case was fortunate, in that the discovery of a counter-example showed the
conjecture to be false. On the othe'r side of the coin, the inability tostiod

a counter-example will not show a conjecture to toee. Goldbach’'s
conjecture, that any even numbgreater than two is a sum of twwimes,
remains unproven, even though computers have foundaropriate
decompositions into two primes for all even numbers up to a formidable size.

In 1916 Bieberbach conjectured that an analytic function

Z+ a2+ ... a2+ ...

which was 1-1 on the unit disc satisfied

lan| < n.

Bieberbach proved theasen=2, but by the early 1980s, only thases up to
and includingn=6 had been proved, by a variety of different methods. Louis
de Branges worked foseven years and in 1984 developed a technique which
proved the Bieberbach conjecture subject to a condition that coudeoked
algorithmically. A colleague, Walter Gautschi, ran the method orPtirelue
university super-computer — one of only three in the UnBtdes athe time
— and verified the method as far as the 25th coefficient. The conpatesd
a vital confirmation at a difficult time for de Branges who had previously

—3_

twice published erroneous proofs of theorems and found his latesh@std
complex deductions considered suspect by the mathematoahunity. He
was subsequently vindicated when the fisigps in higroof wereestablished
by other means (Kolata,1984).

In the final stage of mathematical thinking, wherfoamal proof isbeing
sought, the computer may prove decisive when the question can be reduced to
a finite number ofcases, each which can be investigatiggrithmically. The

most famous example is tHeur colour problem, which Appel &Haken
(1976) reduced to a finite (but large) number of alternatives winvehe
resolved by computer. Now the computer is being widelsed in
combinatorial problems in group theory, algebraic geometry, and other areas
with an algorithmic content that can peogrammedJeaving the computer to

carry out the complex calculations.

The proof of the four colour theorem raises a signifidastie in advanced
mathematical thinkingFor, although there is an apparently impeccable logic
in the listing of the possibilities antheir checking by computer, theroof

itself seems to shed ndight as to why the theorem is true.Some
mathematicians are happy with the situation. For them the process of proof is
a mechanistic sequence of deductitmesn axioms and it is important that, in

the actual proof process itself, there are no intuiaps thatre notsubject

to logical scrutiny. The logic of the computer is for them an acid test.

However, others involved with mathematical reseasehsehe need not only

for the security of logicadeductionfrom a proof, butalso some kind of
insight as to how the concepts fit witther known results. Withouduch
insight there isalwaysfor them the insecurity thagome small logicakerror

may be found which renders the argument fallacious. Without sl

view of the pattern there may be a distinct lack of vision as tgadssible
direction of future research. And, given the ever growing complexity of
computer software, there may berors inthe programming which, if the
principles are not fully understood, may lead to precisely the weak links that
those requiring only a logical approach may fear.

Thus there is value in using the computer to complement the human creative
thinking process both in providing environments for exploration jpaussible

new theorems and also tcarry out algorithmiccalculations toprovide
mathematical proof, but it is necessary to acknowledge that such méatheds
weaknesses as well as strengths.

3. The computer in mathematics education — generalities

All the various ways that computerse used inresearch are potentially
available for teaching and learning advanced mathematies example,
students may learn to program in ordertdokle certain types of problem, or
they may use general purpose software as an environment to explore ideas.

—4—

The main difference between the activities of undergradsatdents and
mathematical research is that tteemer usually covers knowledge domains
which are known to the more experienced members ofnththematical
community, whereas research is attempting to break new groundoutse,

to the studenthe mathematics is new, and here there may be stoalggies

with research, but the far greater portion o$tadent'swork is concerned

with mathematics that is already part of an organized knowledge system. This
opens up durther possibility for the use of thecomputer in mathematical
education, through the development of computer software designed to help the
student conceptualize mathematical ideas.

Recentresearch into concept developmehbws consistently the complexity

of an individual's mental imagery: students can give the “right” answers for
the wrong reasons, whilst “wrong” answers may have a ratiorigin. In
particular, many researchelmave realized that studeatrors areoften the
product of misconceptionbrought about using old knowledge in a new
context where it no longer holds good. Théads to the hypothesis that
learning may be improved by helping studecdsmstructknowledge intheir

own minds in a context which is designed to aid, or even stimulate, that
construction. One way of doing this is through providing riclkelydowed
computer software which embodies powerful mathemaid=ds so that the
student can manipulate and reflect on them. Another is to havetutent
program mathematical constructions in a computer language designed so that
the act of programming parallels the construction of the underlying
mathematical processes.

A computer can also give much-needed meaning to mathematical concepts that
students may feel are “not of the physical world” but in the mind, @ome

ideal world. It is generally agreed thaeasare easier to understamvdhen

they are made more “concrete” aless “abstract”. When an abstract idea is
implemented or represented in a computer, then it is concrete in the mind, at
least in thesensethat it exists(electro-magnetically, if not physically). Not

only can the computer construct be usegeaoform processes represented by

the abstract idea, but it can itself be manipulated, things can be done to it. This
tends to make it more concretspeciallyfor the person who constructed it.
Indeed, it is in general true that whenever a person constructs something on a
computer, a corresponding construction is made in the person’s mind. It is
possible to orchestrate this correspondenceioyiding programmingtasks

in an appropriate programming language designed so that the resulting mental
constructions are powerfuldeas that enhance th&udent's mathematical
knowledge and understanding. Moreovence the various constructioegist

on the computer, it is very useful to reflect on what they are (in terms of how
the computer makes them) and what processes they can engage in.

4. Symbolic Manipulators

The use of symbolic manipulators haswerful advocacy from several
guarters. Lanet al (1986) suggests ways in which symbolic systems can be
used to discover mathematical principles and Setall (1986) reports the
effect of using a computer algebra system in college mathematics. lattere
casethe activities often consist of encouraging students to apply a technique
already understood in simpleases tomore complicatedcaseswhere the
symbolic manipulator can cope with the difficult symbolic manipulations.

However, in the initialstages of use of symbolmanipulators in education,
Hodgson observed:

In spite of the fact thatymbolic manipulatiorsystemsare now widely available,
they seem to have hditle effect on the actuaieaching of mathematics in the
classroom. (Hodgson, 1987, p.59)

He quoted areport of Charet al (1986) on the experiences of using the
symbolic system Maple in anndergraduate course in whictudentswere
given freeaccess tdhe symbolic manipulator to experiment on their own or
to do voluntary symbolic problems which they could elect to céantredit.

He noted a “somewhat limited acceptance of Maple by the students”:

While many explanations can be put forward for such a rea(ititen free time, no

immediate payoff, weaknesses dhe symbolic calculatofor certain types of

problems, absence of numerical or graphical interflack, of user-friendliness), it
Is clear that therux of the problemconcernghe full integration of the symbolic
system tathe course in such a wathat it does notremainjust an extra activity.
This callsfor a revision ofthe curriculum, identifying which topicshould be

emphasized, de-emphasized or even eliminated, fandthe development of
appropriate instruction materials. (ibid.)

Subsequent developments have seen Maple extended to includeubwhcal

and graphical facilities and improved radically in user-friendliness.tivate

is an underlying reason why there may be a major problem symhbolic
manipulators in mathematical education which is more than a question of
interface, available facilities, and the need for integration in the curriculum. A
symbol manipulator is ol — a very powerful tool — but any tool can only be
used to its fullest capabilities by those who know how to use it. The situation is
parallel to the use of simple calculators: they do not teach a child how to add
(or divide), but they areiseful toolsfor adding or dividingwhen oneknows

what arithmetic is all about. Once one knows how to cope with smalbers,
perhaps the calculator can be used to investigate facts with maunghr
numbers. Likewise, symbolic manipulators are likely to prove more useful —
as they have proved useful in mathematical research — once the student has
progressed to the stage of knowing what the tool is being used for.

The later generation of symbolic manipulators, particulstffthematica have
made a step in helping the user come to terms with the nature obribepts
by including word-processing facilities as well as symbol manipulation. This

allows the development of teaching material in toem of electronic
notebooks, in which symbols present may be manipulated or edited at will by
the user. In this way it ipossible to introduce the user to new concepts in a
cybernetic environment which responds to the users needs in manipulating the
symbols which appear. It promises to be an exciting development which has
been met with more enthusiasm than the environment whiphires theuser

to type in the complete command in the idiosyncratic syntax opainecular
manipulator. Here words can tell the user the meaning of a command and the
user may just select it and instruct the computer to carry it out. However, our
experience in all the earlier chapters tells us to beware of the simple solution.
It is likely to contain seeds for misconceptions and cognitive conflicbrdier

that students cane-construct their knowledge faced with the radical new
concepts of advanced mathematics, they need to gain experience of how the
ideaswork and actively reflect on the cognitichangesequired to integrate

this new knowledge into a more appropriate mestalcture. Twothousand

years ago Euclid is reported to have told Ptolemy that there is no Rogdl

to Geometry, given the nature of the human animal, even in collaboration with
the computer, we should not be deluded into believing that the computer will
provide an entirely smooth path to mathematical knowledge.

Having a computer to performthe algorithms, even to show hothose
algorithms work is one thing, being able to cope wiliese concepts
meaningfully is anotherSome symbolicmanipulators include facilities to
allow the user to step through the manipulatiseeing what is done a&ach
stage. This can be very helpful to the student who is trying to learn how to
reproduce the algorithm, but knowing how to differentiate symbolically is
very different from knowing what the derivativeeans. Likewise, knowing
routines for solving differential equations symbolically by reversitigis
symbolic differentiation process is a very different process from ety to
visualize a solution or a family of solutions. What may help to broaden the
student’sunderstanding is to set the use of the symbolic manipulator in an
appropriate conceptual environment.

5. Conceptual development using a computer

Heid (1985,1988) spent the first twelwseeks of afifteen week applied
calculus course studying fundamental concepts using graphic and symbol-
manipulation software tperform routinecalculations whilst she focussed the
students on the underlying concepts. Only in the last thweeks did they
practice any routine algorithms for differentiation and integrat&efound
the learning of fundamentatoncepts wasgreatly improved in the
experimental class:

Students showed deep and broad understanding of course concepts and performed

almost as well on a final exam of routiskills as a group whdad studied the
skills for the entire fifteen weeks. (Heid, 1985, p.2)

In the classes the experimental students were encouraged tdange &ariety
of concept representations and to reason with thim, instance using
computer generated graphs and tables of values to sedVavorld problems
and make conclusions about applications:

One student, for example, located the sales level for maximum profit by finding the
x-valuefor the greatest vertical difference between the revemae costcurves.
Another formulatedconsumers’ surplus athe sum of the areas of rectangles
without the typical first translation to a Riemasum formula. Athird gave a new
integration formulafor the area betweenurves by conjuring up aalternative
geometric explanation and translating it directly into a statement attegjrals.
Reasoning in non-algebraic modes of representatbaracterized concept
development in experimental classes.

(Heid, 1988, p.10)

By encouraging the students to think for themselves and to construct their own
ways of handling the concepts, it became apparent that they had integrated the
ideas into their own knowledge structure:

.. whenthe studentgealized that thejxad made misstatements abaancepts...
on many of theseoccasions, ontheir own initiative, the students in the
experimental classes reconstructed factdy returning to basic principle¥Vhen
[they] spokeabout limits,functions,derivatives and Riemarsums, the wording
was often clearly their own.

(ibid p.15, 16)

In contrast:

When the students in the comparison class verbalized that theydus&rroneous
statements about concepts, there was no evidence of attemgaisda from basic
principles. They often alluded to having been taught the relevatetialbut being
unable to recall what had been said in class. (ibid p. 16)

ThusHeid's researchshowsclear evidence of the value of givimgeaningto

the basic concepts, evéefore thestudents have had any extended practice
with the algorithmic techniques.

6. The computer as an environment for exploration
of fundamental ideas

In her researchHeid used existing softwarefor graphs andsymbolic
manipulation to build conceptual insights. This software is built on
mathematicalprinciples: to draw graphs, tarry outmathematical processes,
and so on. Another possibility is to design software whigds acombination

of mathematical andognitiveprinciples — building on what studerdatready
know in a way which is consistent with their cognitive development.

Students meeting advanced mathematical concepts such as infinite processes,
limits, continuity and differentiability for the first time are known have
serious cognitive difficulties (see chapters 10, 11). The matheneahicsator,

with a knowledge of both the mathematics and the cognitive development, can
play a fundamental role by identifying powerful ideas in the theory that can be
presented in a meaningful way to the studentshair current point in

—-8—

development, yet play a fundamental role throughout the theory. To illustrate
this wereturn tothe cognitive approach to the calculus illustratecthapter
11 and concentrate on the computer environment which it uses.

Graphic CalculugTall, 1986, Tallet al, 1990) was conceived as an example of
software designed to provide students with a cognitive approach talthaus

and differential equation®8ecause of student&nown conceptual difficulties

in understanding the limit concept, it was decided to found the approach on the
notion oflocal straightnessHere the possibility of computer magnification of
graphs allows the Ilimiting process to be implicit in thremputer
magnification, ratherthan explicit in the limit conceptStudentstherefore
begin the calculus by exploring the magnification of graphs of functions of
one variable. They camseethat most of the familiar graphs (polynomials,
trigonometric, exponential, logarithmic and their combinations) are all locally
straight, but somesuch as %)=|sinx| have points where left andght
gradients differ. Thegan be guided to look at graphs such a&g=ksin(1k)

(with f(0)=0) which oscillates so wildly that ihever looks straight at the
origin, whilst f(x)=(x+[x|)sin(1k) looks straight to the lefrom the origin,

but not to the right. Other functions aawailablefor exploration,including
fractal functions that are so wrinkled that they never look straigiter
magnification, giving students mental images of differentiability aadous
ways in whichnon-differentiability may arise. Thus the local straightness of
differentiable functions, and non-straightness of non-differentiable functions
allows the student to gain a fundamental insight into the notion of
differentiability from the very beginning,instead of founding their
understanding on simpler ideas concerned only with polynomials.

Local straightness also links naturally to tideas ofdifferential equations
(building locally straight curves, knowing their gradient) and to the general
study of differentiable manifolds (locally flat substructures tgher
dimensional spaces). The idea is also enshrined in non-standard afelysis
Keisler, 1976) where it is proved that under an infinite magnification (the
standard part of) an infinitesimal portion of a graph is precisely straight.

As discussed ichapter 11, a student with the mental ability to viesnaall
part of a displayed graph and s$eeits gradient, can then conceptualize the

f(x+h)—f(x)
numerical gradient h for variablex and fixedh. By investigating

the numerical gradient in simpl@sesusing the computer, it is found that
students can conjecture thermula for the stabilized numericalgradient,
which is the derivative, before they have the ability to derive ftmmula
algebraically from first principles (Tall, 1986).

Furthermore,the pictorial idea can lead to the notion of a differential. If a
graph is locally straight, then a small portion of the tangent at a given point

—9—

(x,y) will closely approximate theurve. Denoting the components of the

dy

tangent vector by>ddy then f(x)= & and visually, one can see that the point

(x+dx, y+dy) is on the tangent, closely approximating the curve wheisd
small.

This leads naturally into the notion of a first order differential equation

dy

dx = F&.Y)

where the gradient at any poimty(is given as B(,y). The Solution Sketcher
(Tall, 1989) allows the user to specify a fister differentialequation, then
move a pointer round a screen window representingxtiiedlane, drawing a
small line-segment througk,y) with gradient FX,y). By a simple key stroke

the line-segment may be left as a permanent mark,sacckssive segments
may be placed end to end tmonstruct an approximate solution to the
differential equation. Thus the student can gain a physical idea of what the
solution of a first order differential equation actuatigans

It is a simple matter to show that a higher order differential equation

ax

dax o
—F(t,x,d)

a2
can be written as two simultaneous differential equations by the substitution
v=dx/dt to get

dv £ dx
— =F(t,X, V), = =V.
d () dt

This too has a (locally straight) solution ix(v) spacewith tangent direction
given by

(dt, dx, dv) = (dt, v dt, Ft,x,v) dt)

which is in the direction (1ly, F(t,x,v)). Thus the simple idea that a solution
“follows the gradient direction” is true not onfpr first order differential
equations, butfor higher order (simultaneous) differential equations in a
suitable solution space.

Hubbard & West (1985) developed eomputer graphics approach to
differential equations. They found that, without computer graplstsjents

had difficulty appreciating the notions of existence and uniqueness of
solutions. When so much of their work had involved routsembolic

—-10 -

manipulation to produce an answer, many students found it difficult to
comprehend how a solution could exist if it could not be expressed as a
familiar formula. The computer graphics helped thensde existence as the
ability to draw a solution — a solution that existed visually even though they
were unable to provide a formular it. This links closely to theformal
theory — the solution exists, and is unique, provided thatdtfferential
equation properly specifies a direction to follow at each point. Solutions fail to
exist where the differential equation fails to specify a unique direction.

The fact that there are symbolic differential equations which gkbolic
solutions shows the need to incorporate numerical and graphic representations
with symbolic manipulations. A computer is able to process a vast amount of
numerical data and to present it in graphicatm. Even wherehe symbolic
methods are available, they may need geometric interpretation. Tall (1986c¢)
guotes the following example from a national examination in the U.K.:

y%i sec X = 172,

It is easily solved by separating the variables:

Y -
1-y2 dy = cos X oK, -

and integrating to give:
1 o 1
5 In [1-y~] =5 sin 2x +c.
But what does thisnear? Regarding (*) as specifying the direction of the
tangent vector (ldy), to the solution curve through any pointy) enables a

“direction field” of short line segments to bealrawn in the appropriate
directions through an array of points in the plane (figure 2).

-11 -

2
dursdx=cos2x{l-y »ry

It can be seen that some soluticare closed loops whilst others may be
conceived as functions in the foymf(x). The symbolic solution is in thisase

of little value without a graphical representation of its meaning, whilst the
graphical interpretation alone lacks the precision of the symbolism.

We thus sedhat the graphic approach afforded by the computer can give
genuine mathematical insight which complements and enhances symbolic
manipulation and deductive proof.

7. Programming

In recent years moves have been made to introduce sfuadgmamming into
mathematics courses. Initially this tended to be in the form of enhareany
existing mathematics courses by introducing computers and calculators to
carry out numerical algorithmand perhaps represent the results graphically.
It has met with mixedsuccessWith younger children there is considerable
evidence that ifprogramming is simplyattached to a course without any
thought about conceptual integration, then there is no reason to expect an
improvement in conceptualization of the course content (Menial, 1980;
Cheshire, 1981)Someresearch projects have shown that wpeomgramming

Is introduced as an extra into the tradtional curriculum it may reduce the time
spent on traditional skills, causing lawer level of performance in them
(Reding, 1981; Robitailleet al, 1977). However, Thomas and Tall (1988)
found that teaching algebraic concepts in a module inclygiogramming at

first gave the usual initialosses intraditional skills to balance gains in
conceptual understanding, but after a brief review of skills at a later tbste,
was changed into a gain on both skills and concepts.

At university level, Simons (1986) reported on the use of hand-held computers
to be programmed in BASIC to supplement the traditional teachiglofilus
in these terms:

—-12 —

... the introduction of gersonal computer into a course of thature, whilst
enhancing teaching and presentation in many areas, raises profound problems.
(Simons, 1986, p.552)

There were evident gains in the immediatefulness of thewvork, but a
substantial number of staff, long experienced in mathematics teaching yet new
to the computer and numerical analysis, did not like the cou8seons
suggestghat the aversion displayed by some members of staff lies in the
feeling of uncertainty in applying a numerical method:

The traditional mathematician ... is clearly aware thaet@ry numerical method a

function exists for whiclthe methodproduces a wrong answer. The statement

that nothing is believed until it igproved isthe starting pointfor teaching

mathematicsand introducing the computdorces the teacheraway from this

starting point. (ibid. p.552)
A recurring observation is the difficulty experienced by teachers, both at
university and in school, to come to terms with the new technology. We are at
present in the throes of a paradigmatic upheaval and cultural forces operate to
preserve what is known and comfortable, and to resist new ideas until they are
proven better beyond doubt.

On the other hand, there is also evidence that whegramming isused for
conceptual purposes, such as solving problems whereptbgramming
parallels the underlying mathematical processes, or using conguiteities

to foster specific mental constructions that can lead to mathematical
understanding, then there is a much higher level of success.

Several universities in the U.K.now include mathematical problem-solving
through programming dsually in structuredBASIC — as arelement of the
undergraduate mathematics course. The problem-solving ofgnires
program construction tgive numerical or graphical data and experience
shows that the students gain considerably from the task.

Various programminglanguagesare becoming available which amdmost
certainly more appropriate formathematics than BASIC. Some are
specifically designed to make concepts in mathematics eagsotmam. For
example Mathematica as well as providing a symbolic manipulatisystem
within a word-processing package that will draw graphs, also gives a complete
programming system that allows a powerful blend of functionalsancttural
programming constructs. Such developments within a multi-purpose computer
environment are likely to prove of increasinge in advanced mathematical
thinking in the future. It should be noted, however, that the principal aim of
the programming system of Mathematica is predominantly for doing
mathematics, rather thdearning mathematics. It is therefore betw@esigned

for the expert than the novice.

A language specifically designefor mathematics learning IdSETL
(Interactive SET Language). Dubinsky and kislleagues have found that

- 13 -

having students make certain constructions in the ISETL can le#deio
making parallel mathematical constructions in their minds and theveime

to understand various mathematical concepts (Ageral, 1987; Dubinsky,
1986, 1990a, 1990b; Dubinslet al, 1988; Dubinskyet al 1989; Dubinsky &
Schwingendorf 1990a, 1990b). The specific use of computers irwtris is
driven by the theoretical analysis laid out in Chapter 7 and a brief description
of the language is given in an appendix to this chapter.

These experiences, both positive and negative, tell us that the issue in using
programming to helstudents learn mathematiaancepts is not whether it
should be done, nor is it the particular language that is used. The main
consideration is how the instructional treatmeseésthe language, that is, the
design of the programing tasks that are set before the students.

Although the nature of the computer language is not préanary
consideration, it is an important one. The inconvenience of working with
Fortran orPascal syntax introduces difficultiésr students and teachers that
have nothing to do with mathematical issues. The sanraas but to a lesser
extent, of LISP, APL and PROLOMASIC is easier to use and esdequate

for carrying out numerical algorithms and representing numedatd in a
graphical form, but it is inappropriate for arithmetic with large integers, for
symbol manipulation and for most higher-level mathematical thinking. LISP is
particularly powerful forsymbol manipulation and LOGO is almost as good
(for the purposes of mathematics) with muelss syntacticoverhead. APL
makesworking with vectors and matricesspecially easy while PROLOG is
designedfor programming systems of complex logicahferences.ISETL
supports most of the standard mathematical constructs with a syntaglessy

to mathematical notation. It is the only one of these languagestrdss
functions as data. The only languages in timsup which supports graphics
conveniently at the present time @ASIC and LOGO although ISETL may
have graphics by the time this book appears.

To ask which kind ofprogramming language is most beneficial to help
students learn mathematics, one must fast what it is one ifying to teach
and how:

Is mathematics a bag of tricks that may be useful to later life? Is mathematics taught
because it is an important partair culture, obecause it helpgoungpeople to

teach logically and abstractly? These questions fomathematicgdeachers. In the

long run, computer software can be adjusted to their requirements.(Grogono,
1989)

Grogono shows howdifferent kinds oflanguages may be used to model
different kinds of thinking processes. The question is equally applicable at
more advanced levels of mathematics. If its answer is that wiskes to

encourage students to think mathematically about mathematical concepts, then
a computer language is required that supports these requirements.

14 -

8. The future

Thus we seethe computer already proving a powerful tool @&lvanced
mathematical thinking, both in mathematical research anana&hematics
education at the higher levels. The empirical evidestvews that itproves

more successful in the educational process when it is used to enhance meaning,
either through programming in knguage embodying the mathematical
processes or through these ofcomputer environments for exploration and
construction of concepts.

Computers are likely to prove a profound influence over the Nexears,
where the reader may care to estimate the valie tifis possible, but it may
not be meaningful, to speculate on the changes that new technologyimgll
Already the promise of parallel processing may bring new possibilities, for
instance in the simultaneous processing of sewdifidrent representations.
Intelligent tutoring systems currently seem to promise more thandgiexer,

but it is conceivable that new techniques nhayng greatersuccessAlready

we have video discsarrying largeamounts of informatiorfor the user to
explore in new and unforseen ways.

However, it is our belief thatathematics is not a spectasport, and that
advanced mathematical thinking will continue to blossémough the
constructive actions of the human mind, albeit complemented by the enormous
processing power of the computer.

- 15—

Appendix to Chapter 14

ISETL : A computer language
for advanced mathematical thinking

ISETL is a computer language whitlas been designed and usedfdster
mathematical thinking at advanced levels. The language and its use will be
indicated by giving some examples of actual code along with indications of
how this relates to some specifics of the constructivist analysis given in
Chapter 7. We will usderminology such as process, objeatieriorize,
encapsulate, coordinate, and reverse which are explained fully in that chapter.

The interactive set language ISETL is designed to implement many
mathematical constructions ordinary mathematical languagé&etscan be
listed in the usual way within bracé}, either as a list of elements separated
by commas, or as a set defined byraperty. Square bracke{$ denote
sequences, and the notatian.b] for integersa,b denote all the integefsom
atob.

The following line entered into ISETL.:

P := {x : x in [2..2000] | not exists y in [2..(x-1)] | x mod y = 0}

assigns td® the set of numberg between 2 and 1000 which do not have a
smaller factory — in other word# is the set of primes less than 1000.

In full generality a set in ISETL can be specified as:

{ expr : x,y, ... In S, u,v, ... in T, ... | condition | condition ...}

where expr is an expression, generally involving variablesy, u, v, etc
whose domainsre previously constructesktsS, T, ... andeach condition is

an expression whose valuetige or false. It is important for th&tudent to
think about how the computer might handle this construction: by iterating the
variables through their domains, and feach value to evaluate the conditions
and, if it is true, placing the expression in the set.

The assumption made by those who use this language in education is that by
writing such code the student will interiorize the process of forming this set.

A set is not only a process of formation, it is an object with its exstence;

for instance, it has a cardinalipperator, itcan be itself a member of a set,

etc. One way to check that someone has an understanding of the process is to
ask her or him to calculate the number of elements in a set such as

{1+2, {1..4}, "cat", {1,2,3}, {{"house", "dog", 3}, 3}}
(in this case it is 5). ISETL does this with a single operation. Thus,

#({1+2, {1..4}, "cat", {1,2,3}, {{"house"”, "dog", 3}, 3}});

- 16 —

returns the value 5.

Again there is an assumption that if you write code that applies operttens,

you will tend to think of that to which an operatapplies as an object. In this
way, it is considered that students will come to encapsulate the process of set
formation and think of the resulting set as an object.

A function can be represented in ISETL as a dynamic prowdssh
transforms elements in one set to elements in another. For instance:

F := func(k);
return %+[i**2 : i in [2,4..K]]
end;

definesF as a function ok and returns the sum (denoted %+) of the
squares of all even numbers betw@eandk.

An important effect of writing procedures that express mathematical actions is
that, in the sense of Chapter 7, the students tend to interiorize these actions and
construct mental processes that contribute to their understanding the
underlying concepts.

As we pointed out in Chapter 7, it is importanteicapsulate functions that

are understood as processes and think of them as objects. The best way to
achieve this is to operate on functions and/or make new ones. Hassible

in ISETL because #dunction is treated as data. It is possiblefdom sets of
functions, have functions as parameters to other functions and also to have a
func construct and return a function. Consider the following example.

co := func(f,9);
return func(x);
return f(g(x));
end;
end;

co is an operation which will take two representations of functionsfkand
gl andreturn a representation of thesomposition. The composite function
co(fl,f2) may also be written using infix notation @ .co f2). Assuming
thatfl andf2 represent functions and the valueeapr is in the right set, the
computer will accept

(f1 .co gl) (expr);
and return the value of

f1(gl(expr)).

A powerful way touse this idea is to have students constagctand use it,
preferably to solve problems of interest to them. The student will tehdvi®

- 17 -

a number of important experiences as a result of constructingrirst, it is
necessary to think of functions as objectsonder toimagine applyingsome
process to two functions. Then these two objects must be unpackedet

their processes which can be coordinated by linking them sequentially. The
resulting process is then converted back to an object by the times
beginning withreturn func(x);. This code, which has the effect i@turning

a representation of a function whose domain variable will be denot&d iby

very difficult for students and having them struggle to construct it in order to
solve a problem can have a profound positive effect on twgiceptualization

of functions.

A second way ofepresenting functions in ISETL, which corresponds to one
way that mathematicians think of functions is to list trelered pairs, for
instance

H = {[x,x**2] : x in P}
assigns tahe variableH the set ofordered pairg[x,x**2], wherex is a
prime less than 1000 axd*2 denotesc.

Within ISETL a set ofordered pair works like a function, so arpression
such as

H(3);H(7);H(4);

will print on the screen the values 9, 49 and om, the last symbol beisggthe
that H(4) is not defined because 4 is not in P.

In a sense, this reverses the mental excursion. If a function is constructed as a
func which is then operated on, one is influencing students to think about a
function first as a process, then as an object. A serrdéred pairs, on the
other hand, is most likely to be considered to be an obgsgecially if
previous study of the language has treadets in thisway. Having students
write such code and then do evaluations tends to have themfitanhlof a
function as an object, and then as a process. Clearly, studkatdd
experience both excursions asdethem as twoaspects othe samenotion.

The fact that ISETL will treat sets of ordered pairs amtts in manysimilar

ways (for example,co will work just as well if its inputs arsets ofordered

pairs rather than funcs, or even a mixture) hstpglents unifytheir thoughts
about the two points of view.

An example of the inputs to a function being a combination of functions and
numbers is the following func to calculate a Riemann famthe functionf

from a to b usingn equal width strips whose height is the left endpoineath
subinterval:

- 18 —

RiemLeft := func(f,a,b,n);
x = far((b-a)imi-1) i in [L.n+1]]
return %o-+[f(x(1))*(x(i+1)-x(1)) = 1 in [1.n]};
end;

Students can also encapsulate the notiomtefgration as a function operating
on other functions by defining:

Int := func(f,a,n);
return func(x,a,n);
return RiemLeft(f,a,x,n);
end;
end;

HereInt(f,a,n) represents a function &fa andn wherelnt(f,a,n)(x) gives
the Riemann sum fdrfrom a to x usingn equal steps.

ISETL is also idealfor other mathematical concepts and the benefits to
learning can also be delineated in terms of the general theory presented in
Chapter 7. We mention briefly a few additional things one can dthign
language and how they relate to understanding mathematical concepts.

For instance, it is helpful for students to write programs to construdtutie
tablefor a given expression. With the firstrder calculus there is again the
dichotomy and synthesis of thinking of a logical expression as a process and as
an object. Thus, in an expression such as

(POQ D ((-QU(P LUR))
the expressionR [J Q) can represent, in the mind of the student, a process
consisting of putting togethd? andQ and evaluating the truth or falsity for
various values of the variables. But in order to combihél Q) with therest
of the expression, it must be treated as an object.

Once boolean expressions (having the value true or false) are considered as
objects, they can be collected as elements in a set. This is a critical step in the
transition to the secondrder predicatecalculus in which quantification is
involved. In order to interpret the logical statement

Ox O S OP(x)

one has to imagine a set of propositions indexed.bjhe existentiabperator
Is performed by iterating through the domai®, evaluating the proposition
valued functionP at x and, if once the result isue, declaringsuccess and
going home. This is exactly what the computer does when givelSHEL
command

exists x in S | P(x)

—-19 -

and thinking about the ISETL procedure helps the student think about the
corresponding mathematical process. Beginning with a funddoaf two
variables and applying two quantifiers (generally one existential and one
universal) leads to a secowdder quantification. Writinghe code helps the
student to coordinate two instances of the quantification process and make the
appropriate mental construction.

Formal definitions of mathematical structures astraightforward to
implement(for finite sets) INISETL. For instance, ifc is a finite set with
binary operationop, then the following ISETL fundestswhether it is a

group:

grouper := func(G,op);
return (forall x,y in G | x .op y in G)

and (forall x,y,z in G | (x .op y) .op z) = (X .op (y .0op 2))
and (exists e in G | (forall x in G | x .op e = X))
and (forall x in G | (exists y in G | x .op y = €));

end:;

Notice how closely this code resembles tbemal definition of a group. It
also fosters the psychological constructions necessary to understagradubpe
axioms. There are severigstances of processes and objdwse as well as
coordination of two processes. In addition, the axiominverses requires a
reversal of the process which arose in the axiom for identity.

It turns out that, whether or not the studesusceed inwriting such afunc,

once they have it and understand it, they can write funcs téotestibgroups

and even normal subgroups. Then, it is very effective to have them construct
the set of cosets, define thppropriate binary operation amde grouper to
decide whether it gives a group. This can dseried atleast up to the
fundamental theorem of homomorphisms.

- 20—

