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Introduction

In the opening chapter ofhe Psychology of Invention in thdathematical
Field, the mathematicianJacquesHadamard highlighted the fundamental
difficulty in discussing the nature of the psychology of advanced mathematical
thinking:

... that the subjectnvolves two disciplines, psychology amdathematics, and

would require, in order to beeatedadequatelythat one be both a psychologist

and a mathematician. Owing to tlaek of this composite equipmenthe subject

hasbeen investigated by mathematicians onaheside, by psychologists on the
other ... [Hadamard 1945, page 1.]

Exponents of the two disciplines are likely to view the subjeadtifferent
ways - the psychologist to extend psychological theories to thinkiogesses

in @ more complex knowledge domain - the mathematician to seek inmsight

the creative thinking process, perhaps with the hope of improving the quality
of teaching or research. Although we will consider the cognitive fsaa a
technical point of view as waealiscussthe most useful concepts in the
psychology of advanced mathematical thinkingr main aim will be toseek
insights of value to the mathematician in his professional work.

Different kinds of mathematical mind

Writing in the first decade of this century, the celebrated mathematician Henri
Poincaré asserted:

It is impossible to study the works of the great mathematicians, or even those of the
lesser,without noticing and distinguishintyvo opposite tendencies, mather two
entirely different kinds of minds. The one sort are above all preoccupiedogith

to read their works, one is tempted to believe they have advanced only step by
after the manner of a VauBawho pushes on higrenches against thplace
besieged|eaving nothing tachance.The othersortare guided by intuition and at

the first stroke make quick but sometimes precariousonquests,like bold
cavalrymen of the advanced guard. [Poincaré, 1913 page 210]

He supported his arguments by contrasting the work of various
mathematicians, including the famous German analysts, Weierstrass and
Riemann, relating this to the work of students:

1 Sebastien de Vauban (1633-1707) was a French military engineer who revolutionized the art
of siege craft and defensive fortifications.
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Weierstrass leads everything backthie consideration o$eries andheir analytic
transformations; to express it better, he reduces analysis to a sort of prolongation of
arithmetic; you may turthroughall his books without finding a figure. Riemann,

on thecontrary, atonce calls geometry this aid; each ofhis conceptions is an
image that no one can forget, once he has caught its meaning.

... Among our students waotice the same differencesgyme prefer tdreat their

problems 'by analysis,' others 'by geometffé first are incapable okeeing in

space',the othersare quickly tired oflong calculations andbecomeperplexed.
[Poincaré, 1913, page 212.]

Of course, there are not just two different kinds of mathematical mind, but
many. At the turn of the century (at least) three strandsnathematical
thinking may be distinguished: the intuitionist view representetrmnecker,

who asserted that ‘God gave us th&egers, the rest is the work of man’, the
formalist view of Hilbert that mathematics was the meaningful manipulation of
meaninglessnarks written on paper, and the logicist view Riissell, that
mathematics consisted of deductions using the laws of logic. Kronecker’s view
was such that he caused Cantor’s 1873 paper on the existence of transcendental
numbers to be refused publication in Crelle's Journal. His objection was that if
one asserts something exists, then it must be exhibited, say by showing how it
can be constructed. Cantor’s proof, howewesis based on a non-constructive
counting argument using cardinal infinities: there are strictly "mae=l
numbers than algebraic numbers (solutions of polynomial equations with
integer coefficients), so there must exist a transcendental (non-algedagic
number. He did nosay specifically what such a transcendentahber might

be. Even today there are divergences of opinion between mathematicians on
what constitutes @roof. Whilst most pragmatic mathematicians allgnoof

by contradiction, some only allow proof by direct construction (Bighop
[1977]) andothers may dispute to what extent logical principles such as the
axiom of choice may be permitted

The point about raising these differences at jinture is that the reader is
also part of life's rich tapestry, with a personal viewrathematics that will
differ in many ways from the conceptions of others. It may comesaspaise

the first time one realizes that other people have radically different thinking
processes. It first happened to the author when using pictures tstuddpts
visualize ideas in mathematical analysis, at a time when he did not question the
implicit belief that such an approaaetas universallyvalid. Whilst writing a

text book on complex analysis, a colleague in the next rvais1 engaged on a
similar enterprise, yet the latter's book had almost no pictures at all. He only
included a diagram illustrating the argument of a complex number after a
great deal of heart searching. To him a real numib&s an element of a
complete ordered field (satisfying specific axioms) and a complex number was
an ordered pair of real numbers. The argument ocbraplex number(x,y)

was defined as areal number a such that cos@)=x/V(x2+y2),
sin(a)=y/V(x2+y?); it did not require a geometrical meaning. He took kzisd
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line to make sure that his arguments were the product of logical deduction and
not dependent anywhere on geometric intuition. At the time ainéhor
sympathized with his philosophical viewpoint, but considered it the product of
a sophisticated development that few students might shakeasltnotuntil

later that the realization dawned that there were a numbetudénts who
genuinely preferred such a formal approach.

Meta-theoretical considerations

The discussion of the precedisgssion is &alutary reminder that artheory

of the psychology of learning mathematics must take into account not only the
growing conceptions of the students, but the conceptionsmature
mathematicians. Mathematics is a shacetture and there araspects which

are context dependent. For example, an analyst's view of a differential may be
very different from that of aapplied mathematician, and a given individual
may strike up different attitudes to this concept depending on whether it is in
an analytic or applied context.

At a far deeperpsychological level we all have subtly differemtays of
viewing a given mathematical concept, depending on our previous experiences.
For example, thécompleteness axiomfor the real numbers igsiewed by
some as "filling in all the gaps between the rational numbers to give all the
points on the number line". Thus there is "no room" to fit in amyre
numbers: the line is now "complete"”. But, to others, the "completion” is only a
technical axiom to adjoin the limit points of cauchgquences ofational
numbers. In thicase it isperfectly possible to embed theal numbers in a
variety of larger numbesystems, which include infinitesimals and infinite
numbers. The latter idea, however, is anathema to many mathematicians,
including Cantor, who denied thexistence of infinitesimals on thgrounds

that a full arithmetic (including divisionyvas not possible in hitheory of
cardinal infinities. Even today many mathematicians are troubled by the
infinitesimal ideas of non-standard analysis; often they do not detygits

but they may sense a deep seated psychological unease as to its validity.

Thus any theory of the psychology of mathematical thinking mustebka in
the wider context of human mental and cultural activity. There is notrare
absolute way of thinking about mathematics, but diverse cultudeNgloped
ways of thinking in which various aspects are relative to the context.

Concept image and Concept Definition

In Tall & Vinner [1981], the distinction is made between the individual's way
of thinking of a concept and its formal definition, thus distinguistbatyveen
mathematics as a mental activity and mathematics fagnaal system. This
theory applies to expert mathematicians as well as developing students:

The human brain is not a purdlygical entity. The complex manner iwhich it
functions is often atariance withthe logic of mathematics. It is natways pure
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logic that gives us insight, nor is it chance that makes us maktakes... Weshall

use the ternconcept imagéo describe the total cognitive structure that is associated
with the concept, which includesll the mentalpictures and associated properties
and processes. It iduilt up overthe years through experiences all kinds,
changing as the individual meets new stimuli and matures. theAsonceptmage
develops it need not be coherentalitimes. The braindoes notwork that way.
Sensoryinput excites certain neuronphthways and inhibitethers. In this way
different stimuli caractivatedifferent parts othe conceptmage, developinghem

in a way which need not make a coherent whole. [Tall & Vinner 1981]

In this way it is possible for conflicting views to be held in the mind of a given
individual and to be evoked at different times without the indivichehg
aware of the conflict until they are evoked simultaneously.

The mature mathematician is not immuinem internal conflicts, but he or

she has been able to litdgether large portions of knowledge irdequences

of deductive argument. At this stageséems sanuch easier to categorise this
knowledge in a logically structured way. Thus it is more likely to fonadure
mathematician to consider it helpful to present material to students in a way
which highlights the logic of the subject. However, a student without the
experience of the teacher may find this approach initially difficult. &asy
interpretation of the student difficulties is that S$tadents lack the necessary
intellect. It is a comforting viewpoint to takespecially when one is amongst
those who share the mathematical understanding. But it is not realistic in the
wider context of the needs of the students.

This can easily lead to an impasse between mathematicians and mathematics
educators. The mathematicians are concerned with the higher levels of
mathematics and may consider that educators have litdfewo at this level.

The first task therefore is teensitize the mathematician to ttiéferent types

of mathematical mind that occur, operating in quite different ways, and to use
this knowledge to highlight the differentays that the developing mind may
need appropriate experiences to gain insight into highm@&thematical
processes.

Cognitive Development

There are many competing theories in psychology. Behaviourist theory, built
on external observation of stimulus and response, refusgsetalate about

the internal workings of the mind. It provides observable and repeatable
evidence of the behaviour of animals, including humans, under repeated
stimuli, but it has limited application to mathematical thinking beyond the
mechanics of routine algorithms. Constructivist psychology, on the other hand,
attempts to discuskiow mental ideasare created in the mind oéach
individual. Though this may pose a dialeghmblem for themathematician

with a Platonic ideal of mathematics existing independently of the human
mind, this approach to the psychology of advanced mathematical thinking can



give significant insight into the creative processes of reseaathematicians
as well as the difficulties experienced by mathematics students.

The greatSwiss psychologist Piaget attempted to underpin his theories of
genetic epistemology with mathematical ideas. He savinttigidual's need to

be in dynamic equilibrium with his environment as an underlying theme in his
work. To bestable meant that any divergenftem equilibrium could be
reversed, so that any operation needed a corresponding inverse operation. This
triggered off in his mind the metaphor gfoup theory to model stable
mental operations, for a mathematical group has an identity elemepivand
element in the groupas an inverse element whichuses it taeturn to the
identity.

Piaget saw the childgrow into the adult through a series efages of
equilibrium, each onericher than the one before. He identified fourain
stages. Thdiirst is the sensori-motorstage prior to the development of
meaningful speech, followed bypse-operationalstage when the young child
realises the permanence of objects, which continue to exist even if they are
temporarily out of sight. The child thegoesthrough a transition into the
period of concrete operationsvhere he or she can stably considencepts
which are linked to physical objects, thermassing into geriod of formal
operationsin the earlyteens when the kind of hypotheticdtthen' becomes
possible.

Piagetian stageéheory has been extended thigher levels. Forinstance,
Ellerton [1985] suggestshat cognitive development proceeds via a series of
levels, Level | being Piaget's sensori-motor, pre-operational and concrete
stages, Levell, the first of the formal levels, repeating tlsensori-motor,
pre-operational and concrete stages at a first level of abstraction. Development
is pictured as a continuous movement along a spiral. Biggs & JbddB2]
suggest aepetition of formal operations accessivelyhigher levels,each
repeating the learning cycle: unistructural, multistructural, relational.

However, this should be seen in fight of research whiclshows that many
college studentsre not able toperform atthe abstract level offormal

operations, which Piaget reported occurring in children during thaity

teens. For example, the Americasychologist Ausubel criticizes thg&age
theory:

... because oPiaget'stendency to underestimate the abstract thinkingoafng
children and becausich a higlpercentage of Americamgh school anctollege
students fail to reach this abstract level of cognitive logical operations. [Ausubel et
al. 1968, page 230]

Representative studies have indicated dmdy 15% of junior high school students
... 13.2% ofhigh school students. and 22% ofcollege students were at this
level. [ibid. page 238]



The concrete/formal distinction proved to be a useful starting point in
developing local hierarchies of difficulty in extensive studies such as(etht
[1981] in the 11 to 16 age range, and in the study of early calcahcepts by
Orton [1980]. But it is characteristic of Piagettwiginal theory that he
asserted that the movement from ostage to another cannot lgreatly
accelerated by the affects of teaching. Differences of cognitive deheamed
often been used inreegative sense to describe students difficulties, tarely

to providepositivecriteria for designing new approaches to the subject. This
aspect of Piagetian stage theory was summed up by Papert [1980]:

The Piaget of stage theory is essentialynservative, almost reactionary, in
emphasising what children canrabd. | strive to uncover a more revolutionary
Piaget, onavhoseepistemological ideas might expand #rmown bounds of the
human mind.

Although one might attempt to develop some kind of stHgeory for
advanced mathematical thinking, in the hope of applying this to the teaching of
students, such an approach is limited for several reasons:

(1) Stage theoryhas rarely provedeffective in developing positive teaching
strategies,

(2) The kind of knowledge in highemathematicalthinking may have several
different viable routes in its development, so that a single description of stages may
simply be inaccurate,

(3) Few universitymathematics teachers may be interested in teadl@ingd on
such a strategy.

There is also a mathematical metaphor wltsgfgests why stagdeory may

be inappropriate as a curriculum building strategy for maxvanced
mathematics. Piaget usedyeoup theoretic metaphor to underpin b&nse of

the dynamic equilibrium of cognitive growth. This even led him to postulate a
system called &grouping" which had only some of the axioms of a group to
explain the cognitive operations available in the transition between stages. This
has not been very helpful.

On the other hand, a more obvious mathematical metaphor for the disturbance
of dynamic equilibrium lies in catastrophe theory. Here a systattrolled by
continuously varying parameters can suddenly lgapn one position of
equilibrium to another when the firftecomes untenable. Depending on the
history of the varying parameters, the transition may be smooth, or it may be
discontinuous. Such a metaphor suggests that g8tagey may just be anear
trivialization of a far more complegystem of change, at least this may be so
when the possible routeésrough a network oideas becomenore numerous,

as happens in more advanced mathematical thinking.

Transition and mental reconstruction

A far more valuablaspect ofPiaget's theory is the processtadnsitionfrom
one stage t@another. Duringsuch a transition, unstable behaviour is possible,
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with the experience of previous ideas conflicting with new elements. Piaget
uses the termassimilationo describe the process by which the individiakies

in new data andaccommodationthe process by which the individual's
cognitive structure must be modified. Beesassimilation and accommodation

as complementary. During a transition much accommodatioreqgsiired.
Skemp [1979)uts similarideas in adifferent way by distinguishingpetween

the casewhere the learning processauses asimple expansionof the
individual's cognitive structure and tleasewhere there is cognitive conflict,
requiring a mentafteconstruction It is this process of reconstructiavhich
provokes the difficulties that occur during a transition phase.

Thus students meeting ndarmal mathematicaideasfor the first time may

face difficulties in cognitive reconstruction to adapt to the new way of thinking
and may need help in this transition phase. Dubirjékg5] hasproduced
valuable insight into Piagetian theory applied to college level mathematics, not
by concentrating on the stagbeory, but by looking at the process of
reflective abstraction.The interest here is the way in which the individual
reflects on new knowledge and, through the process of accommodation,
modifies his or her existing cognitive structures to be able to make sense of it.

Obstacles

The most serious problem occurs when the m#masare not satisfactorily
accommodated. In thisase itmay be possibldor conflicting ideas to be
present in an individual at one and the same time:

New knowledge often contradicts th&l, and effective learningequires strategies

to dealwith such conflict.Sometimes the conflicting pieces kfiowledgecan be
reconciled, sometimes one or the other must be abandonespraetimes the two
can both be "kept around" if safely maintained in separate compartments.[Papert,
1980, page 121]

The thesis ofCornu [1983] studiesthe conceptual development of thmit
process from school to university and underlines how the colloquial use of the
term "limit" effects the mathematical usage. #iscusseghe notion of an
"obstacle”, introduced by Gaston Bachelard in "La Formationl'Eeprit
Scientifique”, and further discussed by the mathematical educator:

An obstacle is a piece of knowledge,; it is part of the knowledge dfttltkent.This
knowledge was at ortéme generally satisfactory igolving certainproblems. It is
precisely this satisfactory aspect whitéis anchorethe concept in the mind and
made it an obstacle. The knowledgter proves to benadequatevhenfaced with
new problems and this inadequacy may not be obvious.[C2888, (original in
French)]

The obstacles found b@ornu include the problems student face when the
determination of limits no longer reduces to simple numerical and algebraic
calculations. Hediscusseshow infinity intervenes and is surrounded in
mystery, yet the methods "work" without teidents understanding why. He
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demonstrates how students' experiences can lead to belief in the infisuitgdy

and the infinitely small, with "nought point nimecurring” being anumber

"just less than one" and the symlsalepresenting to manstudents a quantity
that is smaller than any positive real number, but not zero. There are implicit
assumptions that the limiting process "goesfarever"”, that the limit "can
never be attained".

In Tall [1986], an explanation is givefor these phenomena as tgeneric
extension principle

If an individualworks in arestricted context invhich all the examples considered
have a certaimproperty, then, inthe absence of counteexamples,the mind
assumes the known properties to be implicit in other contexts.

For example, most converges¢quenceslescribed to beginning students are

of a simple kind given by a formulsuch as 1/n, which tends to the limit (in
this casezero), but the terms never equal the limit. In Hiesence of any
counter-examples students begin to believe that this is always saichhe
experience of colloquial language supports this belief (Schwarzenberger and
Tall 1978), with phrases like "gets close to" suggesting thatettmes of a
sequence canever be coincident with the limit. Thus the implicit belief is
slowly formed that asequence oferms converging to a limit gets closer and
closer, but never actually gets there.

Furthermore, ifall the terms of asequence have eertain property, it is
natural to believe that the limit has the sgmeperty. Thughe sequenc8.9,

0.99, ...hasterms alllessthan 1, so the limit "nought point nirrecurring”

must also be less than one... This leads to the mental image of a limiting object
that is termed aenericlimit in Tall [1986]. A generic limit need not be a
limit in the mathematical sense, but it is the concept of the limit that the
individual holds in his or her mind as a result of extrapolating the common
properties of the terms of the sequence.

This phenomenon happens not just vadguences ohumbers, busequences
of functions and other mathematical objects that share a conpmoperty.
Historically this is enshrined in the "principle of continuity" of Leibniz:

In any supposed transitiornding in any terminus, it is permissibleibstitute a
general reasoning, in which the final terminus may also be included.
[Leibniz in a letter to Bayle, January 1687.]

It arises everearlier in the work ofNicholas of Cusa(1401-1464) who
regarded the circle as a polygon with an infinite number of sides, and inspired
Kepler (1571-1630) to formulate a metaphysitiatidge of continuity” in
which normal and limiting forms of a figure are characterized undsanghe
definition. Thus Kepler Qpera Omnia |} page 595) saw naessential
difference between a polygon and a circle, between an ellipse aidla
between the finite and the infinite, and between an infinitesimal area and a
line.



The generic extension principle arises time and again in history. For example,
Cauchy's assertion that the limit of continuous functions is continuous and
Peacock's "Principle of Algebraic Permanence”, in which the properties of
extended numbesystems, such as theal and complex numbers, welbased

on the principle that the any algebraic law which held in the smsyetem

also held in the extension. The latter held sway for some time in the nineteenth
century until Hamilton invented (discovered?) the quaternions, an extension of
the complex numbers whose multiplication is hot commutative.

Obstaclesarising from deeply held convictions about mathematics aeely

easy toerase from the mind. We atlarry with us amental rag-bag ofuch
beliefs, many of which we suppress, but do not eliminate, when faced with the
logic of mathematics. Often the only trace of such an obstadlerdagh a
sense of unease when there is a logical deduction that does not "feel right".

Intuition and rigour

Mathematicians ofterregard the terms "intuition"” andrigour” as being
mutually exclusive by suggesting that an "intuitive" explanation is one that
necessarily lackagour. There is a grain of truth this statement, in that an
intuition may arrivewhole in the mind and it may be difficult to separate the
components into a logical deductive order. But the opposition between the two
concepts is a false dichotomy as we shall soon see.

In a sense we have not one, but two brains. In attemptiagsist patients who
had serious epileptic fits, Sperry and badleagues took the drastic action of
partial or total severance of the corpus collosum that links the two
hemispheres of the brain and found that each cadsentially operate
independently, though carrying out totally different functions:

Though predominantlynute and generally inferior irall performances involving
language or linguistic omathematicalreasoning, the minor hemisphere is
nevertheless clearly triperiorcerebral membeior certaintypes of tasks. If we
remember that in the great majoritytests it isthe disconnected left hemisphere
that is superior and dominant, wean review quicklynow some ofthe kids of
exceptional activities inwhich it is the minor hemisphere thaxcels. First, of
course, asone would predict,these areall non-linguistic non-mathematical
functions, largely as they involve thepprehension and processing spgatial
patterns, relations and transformations. They seem to be holistic and cetitery
than analyticand fragmentary, andrientational more thafocal, and toinvolve
concrete perceptual insight rather thapstract, symbolicsequentialreasoning.
[Sperry, 1974]

Glennon[1980] summarizes the findings of the activities of the two halves of
the brain taken "from many research studies"” in the following form:



Left Hemisphere Right Hemisphere

Verbal Visuospatialincluding
gestural communication)
Logical Analogical, intuitive
Analytic Synthetic
Linear Gestalt, holist
Sequential Simultaneous
& multiple processing
Conceptual similarity Structural similarity

He prefaces the table with the caveat that "we wiook in the instructional
psychology of mathematics must not presume to be neurologists" and warns of
the differences between individugfer example those who are left-handed).
Perhaps we shouldefer not to the "left" and "right" brains but to the
metaphorical activities involving these twbfferent processing modes.It is
also pertinent to notice that the left brain is actasgentially as a sequential
processor and the right braatts inparallel, processing visual imagery in a
powerful simultaneous way. If there is any basis in facttliese twaodifferent
kinds of activity then the two columns suggest a possible neurolagiaabn
underlying the two different kinds of mathematical mulidcussecearlier in
guotation from Poincareé.

However, this is not the whole story, for are we to deny the role of intuition in
the mind of a mathematician who is more logical in his way of thinkingut
mathematical concepts? Surely not. Poincaré, speaking of Hermite, said:

... his eyesseem tashuncontactwith the world; it is notwithout, it is within he
seeks the vision of truth. [Poincaré, 1913, page 212]

... When one talked to MHermite, he never evoked sensuous imagend yet
you soonperceived that thenost abstract entitiesere forhim like living beings.
He did not see them, but he perceitieat they arenot anartificial assemblage and
that they have some principle of internal unity. [ibid page 220]

The conclusion is inescapable. Intuition is the product of the concept images of
the individual. The more educated the individual in logical thinking,ntloee

likely his concept imagery will resonate with a logical response. This is
evident in the growth of thinking of students, wbassfrom initial intuitions
based ortheir pre-formalmathematics, to more refined formal intuitions as
their experience grows:

We then have mankinds of intuition; first, the appeal to theensesand the
imagination; next, generalization byinduction, copied, so to speakiom the
procedures ofthe experimental sciences; finally we have the intuition of pure
number... [Poincaré, 1913, page 215.]

From a psychological viewpoint, Fischbeirf1978] comes to similar
conclusions, citing two different types of intuition:

Primary intuitions refer to those cognitive beliefs which develop themselves in
human beings, in anatural way, before and independently of systematic
instruction.
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Secondary intuitionsare those whichare developed as a result of systematic

intellectual training... In the samemeaning, Felix Klein(1898) usedthe term

"refined intution": and F. Severi wrote about "second degree intuition” (1951).

[Fischbein, 1978, page 161]

Thus one may view the usual mathematician's dichotomy between intuition and
rigour asone between the holistic, visual thinking characteristic ofriglet
brain, and theigour of the sequential, logical thinking characteristic of the
left. But the psychologist sees the possibility of mesphisticated (secondary)
intuitions arising from refinecconcept images which can include the mental
imagery of logic and deduction. Thaspects oflogic too can be honed to
become more "intuitive" to the mathematical mind. The developmetii®f
refined logical intuition should be one of the major aims of mameanced
mathematical education.

Curriculum Design in Advanced Mathematics Teaching

During the difficult transition from pre-formahathematics to anore formal
understanding of mathematical processes there is a genuine need to help
students gain insight into the concepts. A mathematician's logic mayfdiere

him (or her) indesigning a teaching schedule. A mathematician often takes a
complex mathematical idea and "simplifies" it by breaking it into smaller
components ready to teach each component in a logical seql&noe.the
expert's viewpoint theomponents may be seen @ats of a whole. But the
student mayseethe pieces as thegre presented, in isolation, like separate
pieces of a jigsaw puzzle for which no total picture is available.

For example, amathematical analysis of the notion of ttHerivative f'(x)
requires the notion of the limit of (f(x+h)-f(x))/h as tends to zero, so
mathematically the derivative must be preceded by the discussion of the notion
of a limit. To make the process mathematically easier the limit process is
initially carried out with x fixed; only at a latestage is x allowed twary to

give the notion of a function. Thus theequence suggested by farmal
mathematical analysis is:

(1) notion of a limit
(2) for fixedx, consider the limit of (§+h)-f(x))/h ash tends to zero
(3) call the limit '), then allow x to vary to give the derived function.

However, when the learner is atage (1), the limit notion is mysterious
because it seems “pluckedt of the air”, without any real reason. There are
already cognitive obstaclé®re, as observed by Corfil083], andothers. At

stage (2) the limiting process introduces further obstacles, as detailed in Tall &
Vinner [1981].Nor is thepassagdrom (2) to (3) aseasy cognitively as it
seems mathematically. Many students see (2) as a purely symbolic activity, and
do not see the derivative xX)( as a function, with a graph. Given the graph of
f(x), they do not relate it to the graph ok¥'(Tall [1986]).
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The purpose of Tal[1986] is todevelop a more appropriate approach that
“uses both sides of thébrain”, complementing a numerical and algebraic
approach to the derivative with a global, visual appreciation of the gradient of
a graph generated on a computer. More generally, it mgyobsgible to use

the complementary power of visualization to give a global ge$talta
mathematical concept, to show its strengths wedknesses, ifgroperties and
non-properties, in a way thahakes it a logical necessity formulate the
theory clearly. But now the theory is built up in a way that the stulesnta
global framework within which to develop the formal deductions.

Problem-solving

For many undergraduates, problem-solvinganslearning the contents of a
set of lecture notes and applying this knowledge to specific prolterasly
related to the material taught. For reseantiithematicians, problem-solving

IS a more creative activity, which includes the formulation of a likely
conjecture, asequence of activities testingyodifying and refining until it is
possible to produce #ormal proof of a well-specified theorem. Although
Polya's archetypal booK 945] has been availabfer some time, it is only
recently the work oimathematics educators suchMason et al [1980] and
Schoenfeld [1985] hamade problem-solving a really practioahdergraduate
activity. In particular, Mason et alconcentrate on the differenthases of
mathematical thinking, essentially built on those of Polyast there is an
entry phase, in which the problem is clarified and the possible tools that might
be used to attack it are assembled. Then comes the main attack phase in which
various techniques are used creatively to attempt to cracgrtifbem. Ifthis

leads to a mental block, ra-entry iscalledfor, otherwise asuccessful attack

will then lead into a review phase, first to check the steps of the solution, then
to attempt to refine it and make it logically satisfying. Finally the cycle may be
repeated once more gxtensions of th@roblem, with newphases ofentry,
attack and review.

Using this style of approach, i possible to get undergraduates to develop
original ways of solving problems. The solutions may not be found as quickly
as they might, given active teaching by teeturer but theactivities can help

the students gain in confidence and desire to attack problems that they might
previously have been unwilling to attempt. Such problem-solving activities can
also help to stimulate reflective thinking and to develop an intem@bitor

within the student's mind to help keep track on the progress of the solution
process and to ring warning bells when the solution may be leading up a blind
alley.

Analysis and Synthesis

Poincaréwas at pains to show the complementaojes of synthesis and
analysis in mathematical thinking. The former is is concerned with building up
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new ideas and is related to teetry and attaclphases of Mason atl., whilst
the latter is concerned with breaking down ready formaacepts and making
them precise, as in the review phase.

Hadamard considers Poincaré's description of his own persesahrch
activities and notes:

.. the very observations of Poincaghow us three kinds of inventive work
essentially different if considered from our standpoint, viz.,
a. fully conscious work
b. illumination preceded by incubation
c. the quite peculiar process of the sleepless night.
[Hadamard, 1945, page 35.]

Here Poincaré reports timecessity ofworking hard at a new problenthen
relaxing to allow thadeas to incubate in his subconciodsying which time
he had asleeplesaiight thinking vigorously about new ideas until suddenly,
some time later, audden illumination bursts into hisonsciousnessvith a
solution. After a further time had elapsed, at his leisure, he was ahlalyse
what had happened and build up a formal justification of his theory.

Once more weseethe two complementargides of thecoin. Synthesis begins

with the conscious act of aentry phase to begin to put idedsgether,
followed by a more intuitive activity, in whickubconsciousmterplay between
concept images takes place, until a powerful resonance forces the newly linked
concepts to erupt once more into consciousness. Analysis, on the other hand, is
a much more cool and logicabnscious activity which is oftefairly routine

and mechanical.

Teaching of younger children emphasizesdjnethesis of knowledge, starting
from simple concepts, building ufrom experience an@xamples tomore
general concepts. Now the accent at this level is changing to inolode
problem solving and open-ended investigations. Teaching at university often
emphasizes thether side of the coinanalysisof knowledge, beginning with
general abstractions and forming chains of deduction from them which may be
applied in a wide variety of specific concepts.

Working with much younger children, Dieng960] proposed a theory as to
how concepts may be built Uppom concreteexamples, yet Dienes &eeves
[1965] formulates a far more general 'deep-end' principle in which "there is a
preference for extrapolation bgaps andnterpolation, rathethan always by
step-by-step”. They respond to their own question 'When @osskible to
generalize from a simple case to a more germsdéand when is it better for
them to particularize from a mommplexcase tathe simple case?" with the
remark that "this is not likely to be answered by a simple positive or negative
statement”. They suggest that itn®re a question of 'the optimum degree of
complexity required to start with". This response may be just as valid for
teaching and learning at more advanced levels.
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Mathematical Proof

Viewed as a problem-solving activity, veeethat proof is actually the final
stage of activity in which ideagre made precise. Yet again, so much of the
teaching in university level mathematieginswith proof. In his preface to
The Psychology of Learning Mathemati&kemp succinctlyefers tothis as
showing the students the product of mathematical thought, inste¢adabing
them the process of mathematical thinking. The splendid tomes of Bourbaki
are a monument to the intellect of the mathematical mind, and may be used to
help the learner appreciate the formal structure of mathematicsoritet
again, Poincaré has pertinent observations to make:

To understand the demonstration of a theorem, is thataiminesuccessivelyeach

of the syllogisms composing it and to ascertain its correctness, its conformity to the

rules ofthe game?.. For someyes; wherthey have donehis, they will say: |

understand. For the majoritgp. Almost all aremuch more exacting thayish to

know not merely whetheall the syllogisms of a demonstratiorsse correct, but

why they link together in this order rather thanother. In so far as tinem they

seem engendered by caprice and not byt an intelligence always conscious of the end

to be attained, they do not believe that they understand.
[Poincaré, 1913, page 431.]

Perhaps you think | use tanany comparisonsgjet pardonstill another.You have

doubtless seen thosielicate assemblages of silicious needles which form the

skeleton of certairsponges.When the organiomatter has disappearedhere

remains only a frail and elegaiaice-work. True, nothing ithere excepsilica, but

what is interesting is the form thsdica has taken, and weould not understand it

if we did not know the living sponge which has given it precisely this form. Thus it

is that the old intuitive notions of our fathers, even when we have abanith@med

still imprint their form upon the logical constructions we have put in their place.

[ibid, p. 219.]

Thus it is that so many mathematicians demand that a proof should not only be
logical, but that there should be someer-riding principle that explaimgy
the proof works. Thus the proof of the four colour theoremexhaustion of
all possible configurations using a computer sea@dmdogical, yet many
professional mathematicians, though keesdethe theorem proved once and
for all, are nevertheless sceptical thiditere may be some subtle flaw in the
computer “proof”’, becausethere seemsstill to be no rhyme or reason to

illuminate why it works as it does.

Yet this is not alwaygpassed on to studentSawyer[1987] reports how he
tried to teach theorems in functional analysisréferring back to theorems in

real variables that he expected them to know, only to find that they had no
recollection of them.

The reason for this was that in their university lectures they had been given formal
lectures thathad not conveyed any intuitive meaning; they tdsedtheir
examinations by last-minute revision and by rote.

He tells how he was shocked lwarn of a lecturer whiwecame stuck in the
middle of a proof, turnedhis back on thelass todraw a picture to aidhim,
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then erased it and carried on with the formal proof without enlightening the
class how he had used his intuition to rebuild it. He observes:

... toteach calculus well is @ery demandindask. Threethings have to be done:
first to show by a drawinthat some result i€xtremely plausiblesecond, taive
counter-examples, which indicate the circumstanceghich the conjecturevould
fail; third, to extract from these considerations a formal proof of the result.

These remarks do not apply only to lectures bodks for undergraduat&elix

Klein pointed outhat inpapers for research journdtse suppression ointuitive

considerations was a common and highly undesirable practice.

[Sawyer, 1987]

Beginning students have evgreater difficulty with proof before thegttain
familiarity with the workings of the mathematical culture. Thus, in a
questionnaire, Tall 1979, investigating which proof of the irrationality/ »f
was more clear, students preferred a proof shaived that the square of any
rational must have an even number of prime factors, thacefore such a
square could not be Because th@rime 2 occurs an odd number tines
(namely once). They preferred this to the standard proof by contradiction and
another more general demonstration taken out of Hafly'e Mathematics
This was despite the fact that theof was in fact not dormal proof at all,
but a discursive explanation with examples demonstrating what form was taken
by the square of a typical rational.

Leron, in a series of papelms demonstrated hoproof can be madenore
understandable to studentturing this delicate initialphase before the
formalities are part of their cognitive structutdis method is, essentially, to
properly structure the proof, so that it is clear what is going on atgmen
time, and to make the proof as direct as possible. Thus contradprborfs

are re-written so that they are initially direct and constructive, with any
contradiction being introduced as late as is practicable in the proof.

It is a truism that we can only think with the cognitive structure thahave
available to us. Thus it comes as sarprise thatstudents findformal
mathematicsmore difficult than experiencednathematicians may feel is
reasonable. By the same token, when we look at the psycholoagvahced
mathematical thinking, it is no wonder that we each find it easierséoour

own knowledge structure to formulate our own theories. Asathematician
entering mathematics education it is swrprise that | first attempted to use
catastrophe theory to describe the discontinuities in learning. Likdhase

who begin mathematics education with a background of Piagetian theory are
likely to attempt to explain things in theserms, those with experience in
computer studiesare likely to use computer analogies, mathematicians are
likely to attempt to use mathematical constructs to aid theformulating a
viewpoint, and so on. In trying to formulate helpfwhys of looking at
advanced mathematical thinking, it is important that we take a broad view and
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try to see the illumination that various theories cdming, the useful
differences that arise and the common links that hold them together.
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