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Introduction

What is a differential?=rom my investigations asking sixth-formers arriving at
university about concepts in tloalculus,the evidenceshows amanifestconfusion in

d
the meaning of notations sucl&s and[ f(x) dx. Many studentgepeat the received

d
wisdom thata% means the derivative of a functigrf(x) and should be thought of as

a single indivisiblesymbol, not as a quotient. Thoseho dogive dk a meaning as a
separate entity invariably talk of a “very tiny chang&’ior an “infinitely small change
in X" or even “the limit ofdx as it tends to zeroMeanwhile the & in [ f(xX) dx means

“with respect tox”, though studentsieed to be willing to make thesubstitution
du
du = gx dx, to compute the integral substitution. Alittle later they may be faced

with the problem to solve the differential equation

dy _ X

dx "y

d
(where they had been toltthatd—i is an indivisible symbol) by “separating the

variables” to get
y dy = —xdx

(what does thexdmean here?) then put an integral sign in front to get
Jydy=—[xdx

(where presumablyxchow means “with respect 1), to obtain the solution(s)

2 X2
5= g
Why is it that we seem tieachwhat should be #gical and clearly defined subject in
such a perverse andhystical way?Perhaps it is simplythat we belong to a

mathematical communitgnd have learned to repeat the litanieswf youththat gave
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us a passport to become fully fledged members. | confessalbiag, with most of my
colleagues, | learned to cope withe routines and gothe rightanswersuntil | ceased
to ask awkward questions about the meanings of the symbolism.

A perusal of calculus textbooks in curremée showssome veryneat ways of
sidesteppingthe fundamentalssues of meaningbut few seem to have a totally
coherent view of the meaning of differential that works throughout the calculus.

In an earlier article | discussedthe visual interpretation of the differential in
differentiation, but at théme had not yet appreciatedpassible analogous use of the
differential &k in the integral f(x) dx.

In this article I will show that there is indeed a simple meatfiag can be given toxd
which works inboth differentiation and integration — a meanthgt was given by
Leibniz in his first publications on the calcidds- a meaning that takes omaw and
vigorouslife in our moderncomputerage. Forthreehundred yeard.eibniz has been
maligned in theEnglish-speakingvorld, first as ananwho stole Newton’stheory of
the calculus, andhen as someone@ho invented an incredibly useful but curiously
mysticalnotation. He deservdsetter treatmentAll it requires is to look athe right
pictures.

1. The differential in differentiation

This is an easy matter to explain and has been well represented in the li{eesyuier
example, Quadlirff). The derivative of a function f at a poinis found by calculating

f(x+h)—f(x)
h

and considering what happenshagets small. If it tends to Emiting value, this is
denoted by'tx) and calledthe derivativeof f atx. It is, of coursethe gradient of the
tangent to the graph atlf dx is any real number, thety & defined as

dy = f'(x) dx.

This simply says that the tangent vector is in the directiondl (figure 1).
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figure 1: dx and dy as components of the tangent vector

Computer graphiceow help us visualizeghat, under high magnification, suitably
small portion of the graph of a differentiable function will look straighius, when ®
is suitably small, thenyds a good approximation toxfdx)—f(x) (figure 2).
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figure 2: magnifying a locally straight portion of the graph of a differentiable function

This insight will provevaluable in linking thisuse ofthe differentialwith that in
integration.

2. The differential in integration

Let us begin by attempting to give the differential in integration the same meaning as in

: L : : . b b
differentiation: & represents a changexnWe will use the notatiorz  f(x) dx or 2,
X=a

f(x) dx to denote the sum of the areas of strips widthtaight f&) betweenx=a and

b
x=Db. (In Britain, the moreusual symbol isZ f(x) 5x, wheresx denotes asmall
X=a

change inx, but this extrgiece ofsymbolic baggage is not absolutelgcessary. It
arose in a Cambridge textbook 803 to distinguish betweerthe value of an
incrementsx before taking dimit and an infinitesimal changexdin the limit”. Since
then it has been used to distinguish between a finite sum ahehithef the sum as the
width of the strips diminish insize. Wewill avoid this notational difficultyshortly by
replacing thex in the finite sum by thgin the limit. No other notational change will be
necessary.



3. Visualizing the Fundamental Theorem
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figure 3: The area sum 22 f(x) dx

To understand the relationship between the us& béck andhat in differentiation, all

we have to do is took atthe rightpicture Figure 3, which for so long hd®en the
standard view is not the right one for the fundamental theorem. We must look not at the
graph ofy=f(x), but at thegraph ofy=I(x) where I(x)=f(x). We will assumdor the
moment that such a function | can foeind, returning to the conditionsnder which it

exists inthe nextsection. Given such an | wher&x)=f(x) we simply draw the
correspondingpicturefor y=I(x) with the samesubdivision ofthe interval §,b] into
sub-intervals (figure 3).

A y=I(x) ﬁl“r/
f dy = I’(x)dx
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figure 4: The sum Zg f(x) dx as a sum of lengths Z dy

At each pointx of the subdivision we drawthe tangent to the curvex)( then the
corresponding increment to the tangent is

dy = I'(x) dx = f(x) dx.



Thus the sunig f(x) dx is seen athe sum ofthe lengths dy whereeach ¢ is the
vertical component of the tangent vector to dneph ofy=I(x). ThesumZX dy is the
sum of the vertical line segments, and, provided thattlaeedtaken to be small sbat
the graph isrelatively straighfrom x to x+dx, then this is approximately equal to the
increment to the graph xidx)—I(x). Adding together the incremernitsthe graphfrom
x=a to x=b simply gives Ib)-I(a). Thus addingogether the verticasteps ¢ may in
some sense approximate th)Kl(a). Figure 4 gives a fair indication of this idea. It fails
in part because we had to make $trps fairly wide to see what is going on attus,

in turn, means that the graph may be so curved in a stripytiacigarly different from
I(x+dx)—I(x). But imagine it instead as havindaage number otrips, andimagine a
part of the graph being magnified to sedatsal straightness with a few stripgext to
each other (figure 5).
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figure 5: looking closely at the summation process

Now it should be possible to imagine thatlas lengths ® getsmaller,the sum of the
lengthsZ dy approximates to b)—I(a).

The picture only gives senseof what is goingon. But the zooming-irprocess should
hint at something more. As one zoomsthe curvedgraph getdess curvedStudents
who use a graph-plotting prograeeadily appreciat¢his phenomenon. It wake first
thing that thefirst students toplay with Graphic Calculusobserved without any
prompting.

If we accompany the zooming-iprocess bytaking a smaller value of xd the
correspondingvalue of ¢ more closely approximates tls¢ep up tothe curve. We
should beable toseethat therelative error in the difference between the value of d



and theactualstep tothe curvegetsless. Inthis way weget a hint that therrors are
now smallin proportionto the verticaktep, soaddingthemtogether the totalerror is

also now small in proportion to thetal verticalstep. Inotherwords wemay begin to
see that, as the lengths gkt smaller, the sum of the vertical stepsly, gets closer to

I(b)—I(a).

The symboljg1 f(x) dx is used to represetite limit ofzg1 f(x) dx as (the maximum
size of) & gets small. The argument just given provides a powaerfuition as to why
this limit is likely to be:

b
Ja f(x) dx = I(b)-I(a).
4. Proving the Fundamental Theorem

Although we may now havesenseof why the fundamentaheorem of calculus might
be true, this does not yet constitutgraof. For instance, what are the conditions on the
function f which wouldguaranteethat there is dunction | suchthat I' = f ? Until we
can establish this we cannot ewdnaw figures 4 and S)ecause we cannot kere of
the existence of the function I. | hagarliershown howone might visualize thikely
properties required of f by looking at the graph of f in a different®staly suggesthat
interesting pictures might occur by maintaining a congtaahge whilst taking anuch
smallerx-range. For instancdigure 6 shows the graph ofy=sinx with the same
y-range ineach(-3 to 3) butx-rangebeing changed from —3 todwn to 1 tol1.01.
What happens ighat thegraph inthe second case is pulldtat by the stretching of a
thin x-range to fill the computer window.

Figure 6 : The graph of y=sinx, pulled out flat

If one calculates thereaunder aflat graph like this, the areafrom x to x+h is
approximately f{)h. This represents a change in area frox) &{ A(x+h), so



A(x+h)=A(X) = f(x)h.

This suggests that we may have

A(x+h)-A
R )

and perhaps, ds- 0, we might get
A'(X)=f(x).

Whatkind of function, wherstretched out horizontally nearxg, looks flat ? If we
suppose this mearisat thegraph lies in aixel representing a heightdte, then we
need to know that, given suchan 0, then we can find a small enouglnterval, say
x+8, so that when lies betweenx—6 andx+s, then f) lies between )— and f)+e.

In other words, aatural conditiorfor the function tosatisfythe fundamental theorem
is that it becontinuousn the formal sense:

Given anye>0, a5>0 can be found such that whenexes <t <x+5 we
know that f&)— < f(t) < f(xX)+e.

For such dunction if thewidth of a striph is taken positive ankkssthans then the
value of ff) will lie between fk)— and f§k)+e throughout the strip and so

(f(xX)—)h < A(x+h)-A(x) < (f(x)+¢)h.

Hence

A(x+h)—A(X)
h

is sandwiched betweerxjt< and fk)+e. A similar argumenholds forh negative. As
e is arbitrary, this is the formal definition that

err(]) A(X+h|‘)l_A(X) = f(x),
i.e. A(x) = f(x).

Note that this only requireghe continuityof f(x), notthat it be differentiable. The
readerwho hascompleted a universitynathematics degree witloubtless knowthis
theorem. But can yoseewhy it is true with your inner eye?

It is easy to simulatehe idea on thecomputer. Figure 7 showthe blancmange
function, which is everywhere continuous and nowhere differentiBifferentiability
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is exhibited by seeing that when magnifying the graph it neafs straight (figure 7)
and continuity by stretching the graph horizontally to see it pull out flat (figir& 8)
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Figure 7 : The blancmange function being magnified near x=1/3
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Figure 8 : The blancmange function being stretched horizontally from x=0.499 to x=0.501

Figure 9 shows two grapfsone — thesmooth one — ithe numerical area ¥(under
the blancmangéunction, calculatedusingthe mid-ordinate rulevith strips width0.1.
This is smooth and (withithe accuracy of the approximation) locally strai¢dg can
be seen by magnifying it). The other looks like the blancmange function, babit. it
is the (numerically calculated) gradient function of the numedoah. It is only an
approximation, but it clearly intimates that the area functignisifferentiable once to
get the blancmangeinction. Thusthe area function &) is differentiable everywhere
once but nowhere twice...



d

Figure 8 : The area function for the blancmange and its (approximate) derivative

Using Real Functionsand Graphs10 on the Archimedesomputer, it is possible to
draw (anumerical approximation to) therea functiorfor a(x), which is a graph kj
whose derivative is & and whose secorgkrivative is the blancmandenction. This
builds an approximation to a graph which is everywtdifferentiable twice, but
nowherethreetimes, even though its secordkrivative iscontinuous. It isrelatively
boring todraw, yet illustrates the concepthich is otherwise hard tomagine: the
possibility of a graptdifferentiable twice but not thregmes, or,more generallyn
times but non+1 times.

Leibniz would have never visualized such monsters. In fact, Wiegnappeared in the
nineteenth century, they were generally regarded as unintiiinegiven appropriate
computer environments for exploratidheir properties become more natural and they
become integraparts ofthe theory. Wecan now see continuity arising as a natural
ingredient of the Fundamental Theorem of the Calculus rather than béiegretical
pre-requisite imposed for some more esoteason. And, at last, waee the intuition

of Leibniz, which was exhibited ithe very first publishedarticles on thecalculus, yet
vilified for three hundred years the Englishpress,appearing as a natural conception
in a modern computer approach.
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