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Introduction

What is a differential? From my investigations asking sixth-formers arriving at

university about concepts in the calculus, the evidence shows a manifest confusion in

the meaning of notations such as 
dy
dx   and ∫ f(x) dx. Many students repeat the received

wisdom that  
dy
dx   means the derivative of a function y=f(x) and should be thought of as

a single indivisible symbol, not as a quotient. Those who do give dx a meaning as a

separate entity invariably talk of a “very tiny change in x” or an “infinitely small change

in x” or even “the limit of δx as it tends to zero”. Meanwhile the dx in ∫ f(x) dx means

“with respect to x”, though students need to be willing to make the substitution

du = 
du
dx  dx, to compute the integral by substitution. A little later they may be faced

with the problem to solve the differential equation

dy
dx  = – 

x
y 

(where they had been told that 
dy
dx  is an indivisible symbol) by “separating the

variables” to get

y dy = – x dx

(what does the dx mean here?) then put an integral sign in front to get

∫ y dy = – ∫ x dx

(where presumably dx now means “with respect to x”), to obtain the solution(s)

y2

2   = – 
x2

2   + c.

Why is it that we seem to teach what should be a logical and clearly defined subject in

such a perverse and mystical way? Perhaps it is simply that we belong to a

mathematical community and have learned to repeat the litanies of our youth that gave
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us a passport to become fully fledged members. I confess that, along with most of my

colleagues, I learned to cope with the routines and got the right answers until I ceased

to ask awkward questions about the meanings of the symbolism.

A perusal of calculus textbooks in current use shows some very neat ways of

sidestepping the fundamental issues of meaning, but few seem to have a totally

coherent view of the meaning of differential that works throughout the calculus.

In an earlier article1 I discussed the visual interpretation of the differential in

differentiation, but at the time had not yet appreciated a possible analogous use of the

differential dx in the integral ∫ f(x) dx.

In this article I will show that there is indeed a simple meaning that can be given to dx

which works in both differentiation and integration – a meaning that was given by

Leibniz in his first publications on the calculus2,3 – a meaning that takes on a new and

vigorous life in our modern computer age. For three hundred years Leibniz has been

maligned in the English-speaking world, first as a man who stole Newton’s theory of

the calculus, and then as someone who invented an incredibly useful but curiously

mystical notation. He deserves better treatment. All it requires is to look at the right

pictures.

1. The differential in differentiation

This is an easy matter to explain and has been well represented in the literature (see, for

example, Quadling4). The derivative of a function f at a point x is found by calculating

f(x+h)–f(x)
h  

and considering what happens as h gets small. If it tends to a limiting value, this is

denoted by f'(x) and called the derivative of f at x. It is, of course, the gradient of the

tangent to the graph at x. If dx is any real number, then dy is defined as

dy = f'(x) dx.

This simply says that the tangent vector is in the direction (dx, dy) (figure 1).
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dx

dy = f'(x) dx

y = f(x)

x

figure 1: dx and dy as components of the tangent vector

Computer graphics now help us visualize that, under high magnification, a suitably

small portion of the graph of a differentiable function will look straight. Thus, when dx

is suitably small, then dy is a good approximation to f(x+dx)–f(x) (figure 2).

dx
dy

y = f(x)

x

figure 2: magnifying a locally straight portion of the graph of a differentiable function

This insight will prove valuable in linking this use of the differential with that in

integration.

2. The differential in integration

Let us begin by attempting to give the differential in integration the same meaning as in

differentiation: dx represents a change in x. We will use the notation 
b
Σ

x=a
  f(x) dx or Σ

b
a

 f(x) dx to denote the sum of the areas of strips width dx, height f(x) between x=a and

x=b. (In Britain, the more usual symbol is 
b
Σ

x=a
  f(x) δx, where δx denotes a small

change in x, but this extra piece of symbolic baggage is not absolutely necessary. It

arose in a Cambridge textbook in 18035 to distinguish between the value of an

increment δx before taking a limit and an infinitesimal change dx “in the limit”. Since

then it has been used to distinguish between a finite sum and the limit of the sum as the

width of the strips diminish in size. We will avoid this notational difficulty shortly by

replacing the Σ in the finite sum by the ∫ in the limit. No other notational change will be

necessary.
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3. Visualizing the Fundamental Theorem

y=f(x)

x
dx

f(x)

a b

figure 3 :  The area sum  Σ
b
a  f(x) dx

To understand the relationship between the use of dx here and that in differentiation, all

we have to do is to look at the right picture. Figure 3, which for so long has been the

standard view is not the right one for the fundamental theorem. We must look not at the

graph of y=f(x), but at the graph of y=I(x) where I'(x)=f(x). We will assume for the

moment that such a function I can be found, returning to the conditions under which it

exists in the next section. Given such an I where I'(x)=f(x) we simply draw the

corresponding picture for y=I(x) with the same subdivision of the interval [a,b] into

sub-intervals (figure 3).

y=I(x)

dx

dy
I(b)

I(a)

a x b

dy = I’(x)dx

figure 4: The sum  Σ
b
a  f(x) dx as a sum of lengths  Σ dy

At each point x of the subdivision we draw the tangent to the curve I(x), then the

corresponding increment to the tangent is

dy = I'(x) dx = f(x) dx.
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Thus the sum Σ
b
a  f(x) dx is seen as the sum of the lengths Σ dy where each dy is the

vertical component of the tangent vector to the graph of y=I(x). The sum Σ dy is the

sum of the vertical line segments, and, provided that the dx are taken to be small so that

the graph is relatively straight from x to x+dx, then this is approximately equal to the

increment to the graph, I(x+dx)–I(x). Adding together the increments to the graph from

x=a to x=b simply gives I(b)–I(a). Thus adding together the vertical steps dy may in

some sense approximate to I(b)–I(a). Figure 4 gives a fair indication of this idea. It fails

in part because we had to make the strips fairly wide to see what is going on and this,

in turn, means that the graph may be so curved in a strip that dy is clearly different from

I(x+dx)–I(x). But imagine it instead as having a large number of strips, and imagine a

part of the graph being magnified to see its local straightness with a few strips next to

each other (figure 5).

b

y=I(x)

a

I(a)

I(b)

dy

dx

figure 5: looking closely at the summation process

Now it should be possible to imagine that as the lengths dx get smaller, the sum of the

lengths Σ dy approximates to I(b)–I(a).

The picture only gives a sense of what is going on. But the zooming-in process should

hint at something more. As one zooms in, the curved graph gets less curved. Students

who use a graph-plotting program readily appreciate this phenomenon. It was the first

thing that the first students to play with Graphic Calculus observed without any

prompting.

If we accompany the zooming-in process by taking a smaller value of dx, the

corresponding value of dy more closely approximates the step up to the curve. We

should be able to see that the relative error in the difference between the value of dy
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and the actual step to the curve gets less. In this way we get a hint that the errors are

now small in proportion to the vertical step, so adding them together, the total error is

also now small in proportion to the total vertical step. In other words we may begin to

see that, as the lengths dx get smaller, the sum of the vertical steps, Σ dy, gets closer to

I(b)–I(a).

The symbol ∫
b
a  f(x) dx is used to represent the limit of Σ

b
a  f(x) dx as (the maximum

size of) dx gets small. The argument just given provides a powerful intuition as to why

this limit is likely to be:

 ∫
b
a  f(x) dx = I(b)–I(a).

4. Proving the Fundamental Theorem

Although we may now have a sense of why the fundamental theorem of calculus might

be true, this does not yet constitute a proof. For instance, what are the conditions on the

function f which would guarantee that there is a function I such that I' = f ? Until we

can establish this we cannot even draw figures 4 and 5, because we cannot be sure of

the existence of the function I. I have earlier shown how one might visualize the likely

properties required of f by looking at the graph of f in a different way6,7. I suggest that

interesting pictures might occur by maintaining a constant y-range whilst taking a much

smaller x-range. For instance, figure 6 shows the graph of y=sinx with the same

y-range in each (–3 to 3) but x-range being changed from –3 to 3 down to 1 to 1.01.

What happens is that the graph in the second case is pulled flat by the stretching of a

thin x-range to fill the computer window.

             

Figure 6 : The graph of y=sinx, pulled out flat

If one calculates the area under a flat graph like this, the area from x to x+h is

approximately f(x)h. This represents a change in area from A(x) to A(x+h), so
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A(x+h)–A(x) ≈ f(x)h.

This suggests that we may have

A(x+h)–A(x)
h   ≈ f(x),

and perhaps, as h → 0, we might get

A '(x)=f(x).

What kind of function, when stretched out horizontally near x=x0, looks flat ? If we

suppose this means that the graph lies in a pixel representing a height f(x)±ε, then we

need to know that, given such an ε > 0, then we can find a small enough x interval, say

x±δ, so that when t lies between x–δ and x+δ, then f(t) lies between f(x)–ε and f(x)+ε.

In other words, a natural condition for the function to satisfy the fundamental theorem

is that it be continuous in the formal sense:

Given any ε>0, a δ>0 can be found such that whenever x–δ < t <x+δ we

know that f(x)–ε < f(t) < f(x)+ε.

For such a function if the width of a strip h is taken positive and less than δ then the

value of f(t) will lie between f(x)–ε and f(x)+ε throughout the strip and so

(f(x)–ε)h  < A(x+h)–A(x) < (f(x)+ε)h.

Hence

A(x+h)–A(x)
h  

is sandwiched between f(x)–ε and f(x)+ε. A similar argument holds for h negative. As

ε is arbitrary, this is the formal definition that

lim
ε→0

  
A(x+h)–A(x)

h    = f(x),

i.e. A'(x) = f(x).

Note that this only requires the continuity of f(x), not that it be differentiable. The

reader who has completed a university mathematics degree will doubtless know this

theorem. But can you see why it is true with your inner eye?

It is easy to simulate the idea on the computer. Figure 7 shows the blancmange

function, which is everywhere continuous and nowhere differentiable. Differentiability
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is exhibited by seeing that when magnifying the graph it never looks straight (figure 7)

and continuity by stretching the graph horizontally to see it pull out flat (figure 8) 8,9.

Figure 7 : The blancmange function being magnified near x=1/3

Figure 8 : The blancmange function being stretched horizontally from x=0.499 to x=0.501

Figure 9 shows two graphs10: one – the smooth one – is the numerical area a(x) under

the blancmange function, calculated using the mid-ordinate rule with strips width 0.1.

This is smooth and (within the accuracy of the approximation) locally straight (as can

be seen by magnifying it). The other looks like the blancmange function, but it is not. It

is the (numerically calculated) gradient function of the numerical area. It is only an

approximation, but it clearly intimates that the area function a(x) is differentiable once to

get the blancmange function. Thus the area function a(x) is differentiable everywhere

once but nowhere twice...
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Figure 8 : The area function for the blancmange and its (approximate) derivative

Using Real Functions and Graphs 10 on the Archimedes computer, it is possible to

draw (a numerical approximation to) the area function for a(x), which is a graph b(x)

whose derivative is a(x) and whose second derivative is the blancmange function. This

builds an approximation to a graph which is everywhere differentiable twice, but

nowhere three times, even though its second derivative is continuous. It is relatively

boring to draw, yet illustrates the concept which is otherwise hard to imagine: the

possibility of a graph differentiable twice but not three times, or, more generally, n

times but not n+1 times.

Leibniz would have never visualized such monsters. In fact, when they appeared in the

nineteenth century, they were generally regarded as unintuitive. But, given appropriate

computer environments for exploration, their properties become more natural and they

become integral parts of the theory. We can now see continuity arising as a natural

ingredient of the Fundamental Theorem of the Calculus rather than being a theoretical

pre-requisite imposed for some more esoteric reason. And, at last, we see the intuition

of Leibniz, which was exhibited in the very first published articles on the calculus, yet

vilified for three hundred years in the English press, appearing as a natural conception

in a modern computer approach.
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