Setting the Calculus Straight

David Tall

The study of the calculus occupies the major part of the pure mathematics A-
level. It is full of formulae and procedures for finding derivatives, integrals,
solutions of differential equations, and all manner of other horrendous things.
But the underlying ideas are extremely simple — so simple that it is only
recently that we have realised how simple they are. In this article David Tall
shows how new methods of visualizing the ideas of the calculus can set the
ideas straight — in a way that makes them easy to imagine.

Introduction

As a reader diathematics Reviewat the time when this issue is published tighly
likely that you are just embarking on an extended study ofdlmilus, orare half-way
throughthe course.Whereveryou are, | hopéhat the ideapresented herdluminate
your studies and give them a meaning that allows you tbh@&ehe whole theory fits
together.

The calculus is traditionally considered donsist of two thingsdifferentiation and
integration. To these we must add a third: solhdiffgrential equationsDifferentiation

is about the rate avhich things changentegration is abouhow thingsgrow, and

differential equationgelate thetwo together in away which will soon bemade

apparentLet usforget these rather intimidating titldsr a moment and getlown to

fundamental ideas: rate of chargagrowth. Wewill later find that the fundamental
ideas of the calculus are very simple indeed.

Rate of change

Suppose | am driving a car away from home and | record the distance gone as | drive to
give the graph in figure 1. This grapdlls astory. First Istart intown (A) andtravel
three orfour miles before realisinghat | haveforgotten some papefst B), so | go
back, stop at my home], find what | need and set out again).( Again | travel
relatively slowly, until I reach themotorway E), then | move faster until | hit a
contraflow £) when | slow down. A littldater (from G to H) on thegraph | stop at a
motorway service area for a coffee, then set out at a more reasonable mejeedy
| can tellhow far | have gone. Inthe first hour | travelled about 27 miles away
(although | was stupid enough to haverétrace mysteps forpart of thetime). In the
second hour travelled about fifty threeniles, including thestop atthe servicearea.
Between B and C, if | measure my distaagey from home, | wasctually travelling
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in reverse, aegativedistance, though | promise you | wagt stupid enough to do it
in reverse gear!
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Figure 1 : taking a journey in a car

The question ishow what was myverage velocity over any given interval of time.
For the first hourthe averagevas 27miles anhour (measured in forward direction),
and in the second hour it was 53 miles per hour. Whilsteaservice station mgpeed
was zero, but after leaving the station I travelled about 35 miles in the next halfian
at around the legal maximum of 70 miles per hour. If | want to work out my speed over
any time interval, | just calculate the ratio:

change in distance

change in time

For instance, in the second hour, my average speed was
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(figure 2.)
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Figure 2 : average speed over the last hour

The problem with working out speed in suchaae is that it izarying all thetime. If
the graph were a straight linghen thespeed would be constant. Thistlg saving
grace of the calculus.

Suppose wehave a grapHike the graph ofy=x2. If part of thegraph is highly
magnified, then it will look almost straight (figur®). This meansthat the rate of
change ol with respect t, which is found by measuring

y-change
x-change’

will not vary much over the magnified part.
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Figure 3 : Magnifying the graph of y=x2

It is this idea that such a curve magnifies to look straight when a small portasacex
under a microscope that makes the calculus possible.

It means that we can scan our eyes along the graph and see various parts of it changing
in gradient. Just byooking, we can see the gradient to fleé being negative and
gettingless and lessteep until the gradient is zero at thegin, then increasing for
positive values.
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Figure 4: The changing gradient of y=x2

At the pointx, we can calculate the rate of change toearby pointx+h, by simply
noting that thex-change ish and they-change is X+h)2—x2, so the average rate of
change is

y-change  (x+h)2—x2
x-change = h




X2+ 2xh+h2—x2
= h

_ 2Xhth?
= h

and, provided thatz0, the gradient is
2x+h.

It would, of course, bénsane taake h equalto zero, aghe two pointsx andx+h
would then be thesame. Butprovided wetakeh to be very smallthe graph isthen
almost a straight line and the gradient is virtually equaktd Ris can be seen in figure
4, wherethe gradient atx=—1 is approximately—2, at x=0.5, the gradient is
approximately 1, and at=1 it is approximately 2. The gradient simply increases
uniformly from large negativaumbers through zero and through increasing positive
numbers.

The big differencefor today’s generation is that it igossible to calculate the
approximate numerical gradient on a computer or hand calculator and drgraheof
the gradient. For instance, figure 5 shows the gradientx{with angles measured in
radians) and superimposed is a chord through dlese points orthe graph. The
software is plotting the numerical value of the gradient ofcti@d as a point anithen
moving on, leaving a trace representing the gradient behind. You can see alieseof
calculationsyourself by castinggour eye along theurve. Atthe origin, for example,
the gradient of theine curve is 1. It thedecreasesgemainingpositive,until the sine
curve reaches itgiaximum valuewhen the gradient is zero and thémrns negative.
This will help confirm toyou that the computer is trulgirawingthe gradient curve of
sinx. Anyone with amite of knowledge islikely to suggestthat the dotted gradient
curve looks like cos
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Figure 5: The gradient curve for sinx looks like cosx

“Differentiation” is just the calculation of thgymbolism forthe gradienfunction. The
latter is called théerivativeof the original function. I§=f(x), the derivative is denoted
by f'(x). We have alreadguessedhat the derivative of ¥)=x2 is f'(x)=2x, and of
f(x)=sinx is f(x)=cox. It is not difficult to guess a fewore simple cases either. But
once you have the idea that the derivative isthestgradienfunction, this sets you on
the path tounderstanding what is happening in differentiatidme derivative is
determined visually by looking along tiggaph and seeintipe changinggradient. This
will not get you far if you wish to work out the gradient of mooenplicatedfunctions.
The techniques of differentiation are developed to enahleto workout the gradients
of more complicatedunctions from simplepnesthatyou alreadyknow and thiswill
take you a few months of study and practice.

The Leibniz Notation

Leibniz wasone of theco-inventors ofthe calculus in the seventeerdéntury,along
d
with Sir Isaac Newton. Leibniz had his own notation for the calculus and g&olﬁmr

the gradient. He actually thought of as representinthe change ix and ¢/ as being
the corresponding change up to the tangex(fajure 6).
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figure 6: dx and dy as components of the tangent vector

The two notations share the relationship

and, bythinking of dx and ¢ as being the components of the tangedtor, we see
that they are related by the equation

dy = f'(x) dx.

Undoing differentiation

d
The reverse of differentiation is knowirige gradienl% , to find the original function
y=f(x). The idea is again extremedymple.Because thgraph is differentiable, in the
small a tiny portion approximates to a straighe segmentand, if we know the
gradient of the segment, then we can draw it. For instance, if we have
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which tells us that the gradient of the origiiahction through Xy) is >
can draw a line segment of gradiény. By visually sticking such line segments end to
end we can build up an approximatelution curve. Figure &hows the Solution
Sketchesoftware written for the new 16-19 A-level with a line segment drawn through
x=1.5,y=2, where the gradient is therefokey=1.

y, then we
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Figure 7 : part of a curve of gradient ;—y

By simply moving the segment around the computer screen under software control and
leaving a trace o$uch curveditting end to end an approximate solution cucaa be
built. Figure 8 shows such eurve and an array oline segments showing the

directions of other possible solution curves. Throagbh point in the plane there is a
unigue solution of the differential equation
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Figure 8 : A solution curve and an array of other segments with the appropriate gradient

This is the essential idea of a differential equation. It iequration which specifies the
gradient of a graph and, provided it does this unambiguouslyeay point, there is a
unique solution othe differential equatiothrough every point irthe plane. There is
thus awhole family of solutions to a given differential equation.



Cumulative growth

The final ingredient of the calculus is given by the cumulative growth of a function. The
most straightforward example is to take a function and calculagraleng areaunder

the graph. Sayone mighttake agraph as in figure @nd, bysome method oother,

work out theareafrom a fixed pointato a variable poink. The area will then be a
function A).
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Figure 9 : The area A(x) under the curve from ato x

The aredrom x=a to x=b is easily calculated approximately on a computesibyply
simply chopping ughe intervalfrom ato b into small lengthsvhich, inthe Leibniz
notation will be denoted byxd and then adding together the rectangles of height f(
and width o (figure 10).
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Figure 10 : The Leibniz sum

By taking thinner and thinnetripsthe Leibnizsum islikely to give better andbetter
approximations to the area.

Leibniz denoted the area by



jg f(x) dx

where the elongated S denoted the fetter of the Latirvord Summa, for sumrhis
Leibniz notationshouldtherefore be read “theum fromato b of f(x) dx”. It is also
called “theintegral from a to b of f(x) dx”. The process of working outhe sum is
calledintegration You can think of integration as adding upatifthe little bits to make
up the whole;integrating” them, as it werénto a cumulativeotal, inthe usual sense
of the verb “to integrate”.

For more than three centuries Leibniz has been misunderstood. Old (i.e. prée891)
books often accused Leibniz asaving thought up a goodotation with a very
imprecise meaning and thpoor chaphasbeen given an awfybress, particularly in
chauvinistic British publicationsHis salvation is athand. Wehave simply been
looking at thewrong diagramfor threehundred yearsThis amazing misconception is
now being set right for the first time in these pagagathematics Review

We should not look at figure 10 to see what is gaing We should supposastead
that there is dunction I(x) whose derivative is 1(x)=f(x) and insteaddraw the
corresponding graph of¥( (figure 11).
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Figure 11 : The Leibniz sum as a sum of vertical line segments

This picturehasthe samesubdivision ofthe intervalfrom a to b into subintervals. As
we sawearlier in figure 6, the value of(k) dx is equal to the vertical distance to the
tangent. Becausexj=l'(x), the Leibniz sum

jg f(x) dx =j2 I'(x) dx

is the sum of these vertical segments.
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The picture as istands is not very helpful. Bubw we mustsee it through our new
spectacles and set Leibniz’s reputatsdraight. Figure 12 showthe same idewith a
large number of very thin strips.
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I(b)

I(2)
a b

Figure 12: The Leibniz sum as the sum of the risers to the curve y=I(x)

Because the graph gEl(x) has a derivative, undernaicroscope it will lookstraight.

So now the vertical steps are approximately equal to staircase risers. Adding together all
these risers when the strips are very small gives the total sumherse fromx=a to

x=b, which is

I(b)—I(a).
Thus, when a very large number of strips are taken, the value of the Leibniz sum is

jg f(x) dx = I(b)—I(a).

This result is called theundamental Theorem of the Calcullissays that, if you wish
to calculate the integral

[240x) o

then all you need do is to find a functiom)lSuchthat I'(x)=f(x) and then théntegral
is just I)—I(a).

For instance, to calculate

Ji 2x dx
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since 1&)=x2 satisfies (x)=x, then the integral

ji 2x dx = I(5)—I(4)= 5—42 = 25-16 = 0.

You may find this a breath-taking steprtake, but closer scrutinyill show that the
argument can be made really watertight and that is one of theyitemshould study in
more detail during your two years of calculus.

Thusthe calculugyives powerful andmmensely simplavays of computing rates of
change (derivatives) argtowth (integrals. Througthe Fundamental Theorem of the
Calculus itshowsthat these are related insarprisingly simplyway. Itwill take two
years of study at A-level to fill in all the details and develtghe symbolic techniques

to calculatederivatives, integrals and solutions differential equations. But the
picturesshown inthis article demonstrate the nature of the fundamental ideas in a
manner akin to the originaision of Leibniz,married to modern computer techniques
to give graphic representations of ideas. | hopehey will helpyou seehow simple

the ideas are at heart, in a subtle way which sets the calculus straight.

Further Reading

Graphic Calculus 1,11, 1ll: Books and computersoftware forthe BBC, Master,
Archimedes, Nimbus PC and X-series computers from Glefu@ss, Unit 11,
Stirling Industrial Centre, Stirling Way, Boreham Wood, WD6 2BT.

Real Functions & Graph@ncluding theSolution Sketchgr Computer software for the
same computers from Cambridge University Press.

David Tall is author of Graphic Calculus and of the 16-19 Software designed
to visualize ideas in the new 16-19 A-level approach to the subject. He is
currently Reader in Mathematics Education at Warwick University, though
admits his title is a misnomer because the endless work on computer software
is annually requiring him to have stronger spectacles.
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