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Setting the Calculus Straight

David Tall

The study of the calculus occupies the major part of the pure mathematics A-
level. It is full of formulae and procedures for finding derivatives, integrals,
solutions of differential equations, and all manner of other horrendous things.
But the underlying ideas are extremely simple – so simple that it is only
recently that we have realised how simple they are. In this article David Tall
shows how new methods of visualizing the ideas of the calculus can set the
ideas straight – in a way that makes them easy to imagine.

Introduction

As a reader of Mathematics Review at the time when this issue is published it is highly

likely that you are just embarking on an extended study of the calculus, or are half-way

through the course. Wherever you are, I hope that the ideas presented here illuminate

your studies and give them a meaning that allows you to see how the whole theory fits

together.

The calculus is traditionally considered to consist of two things: differentiation and

integration. To these we must add a third: solving differential equations. Differentiation

is about the rate at which things change, integration is about how things grow, and

differential equations relate the two together in a way which will soon be made

apparent. Let us forget these rather intimidating titles for a moment and get down to

fundamental ideas: rate of change and growth. We will later find that the fundamental

ideas of the calculus are very simple indeed.

Rate of change

Suppose I am driving a car away from home and I record the distance gone as I drive to

give the graph in figure 1. This graph tells a story. First I start in town (A) and travel

three or four miles before realising that I have forgotten some papers (at B), so I go

back, stop at my home(C), find what I need and set out again (D). Again I travel

relatively slowly, until I reach the motorway (E), then I move faster until I hit a

contraflow (F) when I slow down. A little later (from G to H) on the graph I stop at a

motorway service area for a coffee, then set out at a more reasonable motorway speed.

I can tell how far I have gone. In the first hour I travelled about 27 miles away

(although I was stupid enough to have to retrace my steps for part of the time). In the

second hour I travelled about fifty three miles, including the stop at the service area.

Between B and C, if I measure my distance away from home, I was actually travelling



– 2 –

in reverse, a negative distance, though I promise you I was not stupid enough to do it

in reverse gear!
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Figure 1 : taking a journey in a car

The question is: how what was my average velocity over any given interval of time.

For the first hour the average was 27 miles an hour (measured in forward direction),

and in the second hour it was 53 miles per hour. Whilst at the service station my speed

was zero, but after leaving the station I travelled about 35 miles in the next half an hour

at around the legal maximum of 70 miles per hour. If I want to work out my speed over

any time interval, I just calculate the ratio:

change in distance
change in time   .

For instance, in the second hour, my average speed was
QR
PQ 

(figure 2.)
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Figure 2 : average speed over the last hour

The problem with working out speed in such a case is that it is varying all the time. If

the graph were a straight line, then the speed would be constant. This is the saving

grace of the calculus.

Suppose we have a graph like the graph of y=x2. If part of the graph is highly

magnified, then it will look almost straight (figure 3). This means that the rate of

change of y with respect to x, which is found by measuring

y-change
x-change ,

will not vary much over the magnified part.
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Figure 3 : Magnifying the graph of y=x2

It is this idea that such a curve magnifies to look straight when a small portion is placed

under a microscope that makes the calculus possible.

It means that we can scan our eyes along the graph and see various parts of it changing

in gradient. Just by looking, we can see the gradient to the left being negative and

getting less and less steep until the gradient is zero at the origin, then increasing for

positive values.
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Figure 4: The changing gradient of y=x2

At the point x, we can calculate the rate of change to a nearby point x+h, by simply

noting that the x-change is h and the y-change is (x+h)2–x2, so the average rate of

change is

y-change
x-change  = 

(x+h)2–x2

h   
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= 
x2+2xh+h2–x2

h  

= 
2xh+h2

h  

and, provided that h≠0, the gradient is

2x+h.

It would, of course, be insane to take h equal to zero, as the two points x and x+h

would then be the same. But, provided we take h to be very small, the graph is then

almost a straight line and the gradient is virtually equal to 2x. This can be seen in figure

4, where the gradient at x=–1 is approximately –2, at x=0.5, the gradient is

approximately 1, and at x=1 it is approximately 2. The gradient simply increases

uniformly from large negative numbers through zero and through increasing positive

numbers.

The big difference for today’s generation is that it is possible to calculate the

approximate numerical gradient on a computer or hand calculator and draw the graph of

the gradient. For instance, figure 5 shows the gradient of sinx (with angles measured in

radians) and superimposed is a chord through two close points on the graph. The

software is plotting the numerical value of the gradient of the chord as a point and then

moving on, leaving a trace representing the gradient behind. You can see a few of these

calculations yourself by casting your eye along the curve. At the origin, for example,

the gradient of the sine curve is 1. It then decreases, remaining positive, until the sine

curve reaches its maximum value when the gradient is zero and then turns negative.

This will help confirm to you that the computer is truly drawing the gradient curve of

sinx. Anyone with a mite of knowledge is likely to suggest that the dotted gradient

curve looks like cosx.
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Figure 5: The gradient curve for sinx looks like cosx

“Differentiation” is just the calculation of the symbolism for the gradient function. The

latter is called the derivative of the original function. If y=f(x), the derivative is denoted

by f'(x). We have already guessed that the derivative of f(x)=x2 is f'(x)=2x, and of

f(x)=sinx is f'(x)=cosx. It is not difficult to guess a few more simple cases either. But

once you have the idea that the derivative is just the gradient function, this sets you on

the path to understanding what is happening in differentiation. The derivative is

determined visually by looking along the graph and seeing the changing gradient. This

will not get you far if you wish to work out the gradient of more complicated functions.

The techniques of differentiation are developed to enable you to work out the gradients

of more complicated functions from simpler ones that you already know and this will

take you a few months of study and practice.

The Leibniz Notation

Leibniz was one of the co-inventors of the calculus in the seventeenth century, along

with Sir Isaac Newton. Leibniz had his own notation for the calculus and wrote 
dy
dx  for

the gradient. He actually thought of dx as representing the change in x and dy as being

the corresponding change up to the tangent at x (figure 6).
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dx

dy = f'(x) dx

y = f(x)

x

figure 6: dx and dy as components of the tangent vector

 The two notations share the relationship

f '(x)=
dy
dx 

and, by thinking of dx and dy as being the components of the tangent vector, we see

that they are related by the equation

dy = f'(x) dx.

Undoing differentiation

The reverse of differentiation is knowing the gradient 
dy
dx , to find the original function

y=f(x). The idea is again extremely simple. Because the graph is differentiable, in the

small a tiny portion approximates to a straight line segment and, if we know the

gradient of the segment, then we can draw it. For instance, if we have

dy
dx  = 1

2
  y.

which tells us that the gradient of the original function through (x,y) is  1
2

  y, then we

can draw a line segment of gradient  1
2

  y. By visually sticking such line segments end to

end we can build up an approximate solution curve. Figure 7 shows the Solution

Sketcher software written for the new 16-19 A-level with a line segment drawn through

x=1.5, y=2, where the gradient is therefore  1
2

  y=1.
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Figure 7 : part of a curve of gradient 
1
2 y

By simply moving the segment around the computer screen under software control and

leaving a trace of such curves fitting end to end an approximate solution curve can be

built. Figure 8 shows such a curve and an array of line segments showing the

directions of other possible solution curves. Through each point in the plane there is a

unique solution of the differential equation

dy
dx  = 1

2
  y.

Figure 8 : A solution curve and an array of other segments with the appropriate gradient

This is the essential idea of a differential equation. It is an equation which specifies the

gradient of a graph and, provided it does this unambiguously at every point, there is a

unique solution of the differential equation through every point in the plane. There is

thus a whole family of solutions to a given differential equation.
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Cumulative growth

The final ingredient of the calculus is given by the cumulative growth of a function. The

most straightforward example is to take a function and calculate the growing area under

the graph. Say one might take a graph as in figure 9 and, by some method or other,

work out the area from a fixed point a to a variable point x. The area will then be a

function A(x).

y=f(x)

xa

A(x)

Figure 9 : The area A(x) under the curve from a to x

The area from x=a to x=b is easily calculated approximately on a computer by simply

simply chopping up the interval from a to b into small lengths which, in the Leibniz

notation will be denoted by dx, and then adding together the rectangles of height f(x)

and width dx (figure 10).

y=f(x)

x
dx

f(x)

a b

Figure 10 : The Leibniz sum

By taking thinner and thinner strips the Leibniz sum is likely to give better and better

approximations to the area.

Leibniz denoted the area by
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⌡⌠a
b

 f(x) dx 

where the elongated S denoted the first letter of the Latin word Summa, for sum. This

Leibniz notation should therefore be read “the sum from a to b of f(x) dx”. It is also

called “the integral from a to b of f(x) dx”. The process of working out the sum is

called integration. You can think of integration as adding up of all the little bits to make

up the whole, “integrating” them, as it were into a cumulative total, in the usual sense

of the verb “to integrate”.

For more than three centuries Leibniz has been misunderstood. Old (i.e. pre-1991) text-

books often accused Leibniz as having thought up a good notation with a very

imprecise meaning and the poor chap has been given an awful press, particularly in

chauvinistic British publications. His salvation is at hand. We have simply been

looking at the wrong diagram for three hundred years. This amazing misconception is

now being set right for the first time in these pages of Mathematics Review.

We should not look at figure 10 to see what is going on. We should suppose instead

that there is a function I(x) whose derivative is I'(x)=f(x) and instead draw the

corresponding graph of I(x) (figure 11).

y=I(x)

dx

dy
I(b)

I(a)

a x b

dy = I'(x)dx

Figure 11 : The Leibniz sum as a sum of vertical line segments

This picture has the same subdivision of the interval from a to b into subintervals. As

we saw earlier in figure 6, the value of I'(x) dx is equal to the vertical distance to the

tangent. Because f(x)=I'(x), the Leibniz sum

⌡⌠a
b

 f(x) dx  = ⌡⌠a
b

 I '(x) dx 

is the sum of these vertical segments.
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The picture as it stands is not very helpful. But now we must see it through our new

spectacles and set Leibniz’s reputation straight. Figure 12 shows the same idea with a

large number of very thin strips.

b

y=I(x)

a

I(a)

I(b)

dy

dx

Figure 12: The Leibniz sum as the sum of the risers to the curve y=I(x)

Because the graph of y=I(x) has a derivative, under a microscope it will look straight.

So now the vertical steps are approximately equal to staircase risers. Adding together all

these risers when the strips are very small gives the total sum to be the rise from x=a to

x=b, which is

I(b)–I(a).

Thus, when a very large number of strips are taken, the value of the Leibniz sum is

⌡⌠a
b
 f(x) dx  = I(b)–I(a).

This result is called the Fundamental Theorem of the Calculus. It says that, if you wish

to calculate the integral

⌡⌠a
b

 f(x) dx 

then all you need do is to find a function I(x) such that I'(x)=f(x) and then the integral

is just I(b)–I(a).

For instance, to calculate

⌡⌠4
5

 2x dx 
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since I(x)=x2 satisfies I'(x)=x, then the integral

⌡⌠4
5
 2x dx  = I(5)–I(4)= 52–42 = 25–16 = 9.

You may find this a breath-taking step to make, but closer scrutiny will show that the

argument can be made really watertight and that is one of the items you should study in

more detail during your two years of calculus.

Thus the calculus gives powerful and immensely simple ways of computing rates of

change (derivatives) and growth (integrals. Through the Fundamental Theorem of the

Calculus it shows that these are related in a surprisingly simply way. It will take two

years of study at A-level to fill in all the details and develop all the symbolic techniques

to calculate derivatives, integrals and solutions of differential equations. But the

pictures shown in this article demonstrate the nature of the fundamental ideas in a

manner akin to the original vision of Leibniz, married to modern computer techniques

to give graphic representations of the ideas. I hope they will help you see how simple

the ideas are at heart, in a subtle way which sets the calculus straight.

Further Reading

Graphic Calculus I, II, III : Books and computer software for the BBC, Master,

Archimedes, Nimbus PC and X-series computers from Glentop Press, Unit 11,

Stirling Industrial Centre, Stirling Way, Boreham Wood, WD6 2BT.

Real Functions & Graphs (including the Solution Sketcher): Computer software for the

same computers from Cambridge University Press.

David Tall is author of Graphic Calculus and of the 16-19 Software designed
to visualize ideas in the new 16-19 A-level approach to the subject. He is
currently Reader in Mathematics Education at Warwick University, though
admits his title is a misnomer because the endless work on computer software
is annually requiring him to have stronger spectacles.
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