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Traditionally the calculus is the study of the symbolic algoritfmngdifferentiation and
integration,the relationship betweehem, andheir use in solving problem©nly at

the end of the course, when all else fails, are numerical methods introduced, such as the
Newton-Raphson method of solving equations, or Simpson'’s rule for calculating areas.

The problem with such an approach is that it often produces studentsewery well
versed inthe algorithms and casolve the most fiendish of symboliproblems, yet
have no understanding tfie meaning ofwhat theyare doing. Giventhe arrival of
computersoftware whichcan carry out these algorithms mechanically, the question
arises as to what parts of calculus need to be studid icurriculum of thduture. It

is my contention thasuch a studganusethe computer technology to produce a far
more versatile approach to theubject, in whichthe numerical and graphical
representations may hesed fromthe outset to producesightsinto the fundamental
meanings, in which a wider understandingta processes othange andjrowth will

be possible than the narrow band of problems that can be solved by traditional symbolic
methods of the calculus.

The fundamental ideas att@ose ofchange the rate of change, andhe accumulation
due to changeSymbolically these are represented by thaction concept, the
derivativeand thentegral. In the calculus curriculum of tHature, weneed to broaden
our ideas of these threthings to give a theoryhat appliesnot just tothe beautiful
abstraction that is traditionablculus, but also a theothat applies to the reavorld
outside.

For example, if a car is moving along a motorway, its distance gone can be recorded on
a graph as a function of time (figure 1). Here ca@ see informallyhat the car started
moving fairly fast, but sloweddown between thepoints A and B on the graph
(travelling through roadworks?) and stopped fovhale between thgoints markedC

andD (at a service station?) Tlspeedof the car is indicated by theteepnes®f the
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graph: fairly fast at all points except for the slower speed betveedB and thestop
betweenC andD.
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figure 1

This real-worldexamplehasthe distance along theotorway as a function of time,
d=f(t), but it cannot beexpressed in areat symbolic way as acombination of
polynomials, trigonometric or exponentialunctions. So f) cannot be formally
differentiated to give the derivativétj, yet thegradientof the graph stilkepresents the
speed.

On a computer, however, the graph might be drawn by remembering a large number of
pairs (,d) whered is the distance after timethen the (average) speed fronto t, can
be calculate as the change in distaohe€l; over the change in tintg-t;.

Thus it is natural to begin looking at numericalxamples, andnterpreting them
graphically at an earlier stage than in a traditi@uaticulum, to usehe graphical and
numerical experiences as a transition to tilseial symbolictheory. In thisway,
numerical methods shoufstecedemuch ofcalculus, rathethan being an afterthought
to cope with cases where the symbolism fails.

Traditionally numericalsolutions of equationshave not fitted naturally into the
development of a calculuurse,exceptwherethe Newton-Raphsomethod isused

because it requirake derivative. In part this is becauiee calculushas concentrated
on thetwo processes dlifferentiation and integration, artde more general function
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concepts, such as the calculation of functions, ideaanafe,domain and composition

of functions, and graph-sketchinbave been regarded as part of the pre-calculus
syllabus. It is mybelief thatthis view is alimited and mistakerone. If the concrete
exploration of the theory diunctions is seen athe first part of a broadecalculus
syllabus, then there are certain analogies laitr parts ofthe syllabus whichgive the
whole picture a greatecoherence. To see this we need to digtla deeper into the
conceptual roots of the ideas.

Doing and Undoing

To obtain a “concept map” of @ew curriculum which encompasséise calculus and
numericalmethods, it ishelpful to begin withthe fundamental idea adoing and
undoing which permeates (@houldpermeate) the whole of mathematics.

In the earlystagessubtraction “undoesthe operation ofiddition, division “undoes”
multiplication. However, theseforms of undoingare special in that they are precise
inverses: subtraction of 2 the uniqueway to undothe operation of addition of 2.
When the operation afloing is afunctional relationship, givernx, find y=f(x), the
“undoing”, giveny to find x, need not beinique. Thus ify=x2, givenx=2, there is a
unique value ofy, namelyy=4, but giveny=4, there aretwo possible values of,
namely +2 and-2. Furthermore “doing”, inthe case of findingy, given x, when
y=eXsinx+x3/9, is just a routine calculation, whereas “undoing”, giye8, say, and to
find x to satisfy this relationship, requires a methodriaf anderror, or amalgorithm
which attempts to produce a sequence of improving approximations to the answer.

So often children get the idea that tkelution of a problem always involves a
straightforward operation (“is it dake away?”), that it would be valuable in
mathematical education aswehole to concentrate on the operations @bing and
undoing, wherdhe first may be given by an explicirocedure, buthe latter might
involve some process of trial and error, or approximation algorithm.

Such contexts occurseveral times in the calculus and ituseful to start with the
notion of doing and undoing of function®oing such calculations on the computer
leads naturally to important topics, such as the accuracy of computer arithmégieand

to efficientways of coding and improving accuracY¥he idea ofundoing functions
begins essentially witthe notion ofsolving equations. Irraditional curriculum the
mostcomplicatedequationghat could besolved werdinear andquadratic, and a few
other specialcases wherghe symbolic manipulationsvere not too hard (such as
factorizable polynomials of highelegree, osimple equations involving trigonometric
and exponential or logarithmic expressions). In a modern curriculum, with a computer,
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the solving of equations can be done by trial and error, or by developing more powerful
search techniques (bisection, decimal search, Newton-Raphson) or by iteration.

This leads to an essential sequence of stages in the development of numethcals.
First exploratory methods — investigations and inspired guesses —aahidieused to
getsomeidea of the nature of theequired calculation. Then simple, buteffective
method of solution whichmay beslow, but follows aclearly understoodline of
development. Finally a move to mopewerful method thatproduces a quicker and
more exact result using subtle theoretical refinements.

Representations
It is helpful to consider differerways ofrepresentingnathematicaknowledge.Here
we consider but three:

* numeric: wherethere is a given procedure tmlculate a numerical
result,

e graphic: wherethe input and output of numerical calculations are
represented by a graph,

* symbolic: where the calculations are given in terms of algebraic
symbolism.

It is important to realize thahese by no means exhauwl the possibilities. Other
representations includeerbal say “multiply a number by itself to get thanswer”,
which is representedumerically by starting with annput, say 3, toget output 9,
graphically by the usual parabolicgraph, and symbolically as y=x2. And many
functionscan be representgatocedurally as a computeprogram, in thiscase the
function may be written as a computer function in a form such as:

DEF FNf(x) = x*x
whenPRINT FNf(3) would give the answer 9.

Simple programming allows numeric values to be calculated by more intmedteds,
say the definition of the absolute value:

DEF FNabs(x): IF x>0 THEN = x ELSE = —x

or the definition of the factorial function:

DEF FNfactorial(n) : IF n=1 THEN =1 ELSE = n*FNfactorial(n—1)
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wherePRINT FNfactorial(1) will satisfy the conditionah=1, sooutput the value 1, but
PRINT FNfactorial(2) will output the alternate definition2*FNfactorial(1), where the
FNfactorial (1)will output 1, so FNfactorial(2) will give2*1. More generallyPRINT
FNfactorial(5) will give 5*4*3*2*1, and PRINT FNfactorial(n) will give the numerical
value ofn!.

Thus fairly elementary programming can hesed togive functions more varied in
nature than the traditional formulae of the calculus and we alsall find that such
things as sequences of approximatitr arise in calculatingolutions of equations

are naturally described in function notation which gives a new insight into the notion of
convergence of sequences.

A concept map for calculus and numerical methods

A new approach to the calculus should concentrate on three aspects:
» change(the notion of function),
» rate of changédgradient of graph or derivative),
» cumulative growtlfnumerical or symbolic integration).

In each case the concept may be subdivided into doingrashoing,andeach can have
the benefit of graphic, numeric and symbolicrepresentations.The graphic
representation gives a qualitative feel for the global concept with a grapbammpater
screen only beingccurate to about 1% 8o, whilst the numeric representatigives
greater accuracy (several decimal places) and the symbolic representation is theoretically
precise.The three representations therefore are contrastequalgative (graphic),
guantitative(numeric), andnanipulative(symbolic),the last-named being because the
symbolic expression can sometimes be manipulatsdlt@ problems in a precise and
accurateway which is not usually possible with @mputer graph or aumeric
computation. The graphical representation can hesed for visualizing and
conceptualizing the concepts in a globaly, the numeric representatidar estimating
and approximating more accurately, and the symbolic metbodormalizing ideas
which eventually lead to the limiting notions linked to the calculus concepts.
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Representations:
Graphic Numeric Symbolic
Qualitative Quantitative Manipulative
Visualizing Estimating Formalizing
Conceptualizing| Approximating Limiting
||Concepts: ||
||Change II
doing: graphs numeric values algebraic
symbolism
undoing: graphical numerical solutions| inverse functions
solutions of of equations — (solving equations)
equations — sequences of symbolic
intersection numerical solutions
of graphs approximations
Rate of
[change
doing: local numerical derivative
straightness gradient of graph
undoing: build graph | numerical solutions solutions of
knowing its of differential differential equations|
gradient equations —antiderivative
Cumulative
Growth:
, ,
doing: area under numerical area integral
under graph
undoing: know area know area — find FUNDAMENTAL
—find curve numerical function THEOREM

Historically, the curriculumhasconcentrated on the thimblumn, often illustrated by
pictures in thdirst column(using the symbolicform of the function tocalculate the
graph), withthe middle column rarelyisited. It is a powerfulyet strangely poverty
stricken theory. Most of the differential equations that might occur canrsmhed by
elementarymethods,yet all of them can bapproximated by numericahethods. A
combination of graphical and numerical methbdsrecently led to interesting theory
of stability of methods of solution (the initial conditions are changeslightly, does
this just changé¢he end behaviour a smalimount, omight it lead to catastrophically

—6—




David Tall A Versatile Approach to Calculus & Numerical Methods

different possibilities?). Thikas been a rich area afiew results inmathematical
research and is far more interesting and realistic than learning a number of different
tricks to obtain a few symbolic solutions.

| proposethat new curriculum moves intdhe theory via a versatile combination of
columns 1 and 2, with appropriate software available to give insight into column 1, and
simple computer programming, or spreadsheet methods available for column 2.

In the new School Mathematics Project 16-19, a computer procabed theFunction
Calculator hasbeen designed which allovetudents tanake numerical computations
with functions without requiring programming in a computer language.

Change

The first part, on change, involves a number old friends, such as skejcapits, but
these may now be enhanced by compstdtware. For instance, grapban bedrawn
easily by graph-packages, allowing concepts to bwestigated such as the
transformations which might move the grapif(x) to make it coincidevith the graph
of y=2f(x) or y=—f(x) or y=f(x+1), etc. Thusthe symbolic effects of combining
functionsmay be set in a context of experiefi@sed orthe qualitative globagraph-
sketching carried out by a computer.

The numeric calculation of expressions leads to a genuine need to consider the nature of
computer arithmeti@and the propagation adrrors, which at firstcan be performed

simply usingcomputer calculationg:or instance, if dengthd is measured as 2 units
with an errore=£0.1, what would bethe error inthe result ifthis were divided by

c=1.2 wherethe latter is accurate within an errorf=£0.02, say.Clearly thelowest

estimate would be given by
ge
c+H

(with the smallest numerator and largest denominator) and the hegliestite is given
by

dre

c+ -

By printing out these values the range of error in the result can be investigated.

Solving an equationXj=g(x) can be done graphically by simply drawing the graphs of
f(x) and gk) and seeing where th&yoss.Given a graph-plotter with a zoofacility
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and fairly good numbering orthe axes, this can be a fairly accurate method of
determining the answer.

Numeric solutionscan befound first by trial and error (use a spreadsheet, or a
computer program toalculate thevalues of fk)—g(x) and search for where it changes
sign). This will naturallylead to bettesearchmethods, such assection andlecimal
search.

Solution of the equatiox=f(x) can be investigated iteratively by trying a solutierx;.
If xo=f(X1) and it happens thag=x1, then a solution has been found. Otherwise/el
hopefully looking atx3=f(x2), X4=f(x3) etc, to see ithe sequence afumbersxy, X»,
X3, ... homes in on a stable value.

This can easily be programed in a functional way. For instance, the functions:

DEF FNapprox(f$,x,n)
FOR k=1 TO n : x=FNf(x) : NEXT
=X

DEF FNf(x)=EVALf$

in BBC BASIC will calculate thenth iteration of the equatiox=f(x) starting at given
value ofx. Using this function,PRINT FNapprox("COS(x)",1,50) will print the 50th
iteration ofx=cox starting ak=1. More interestingly, if we define a new function:

DEF FNa(n)=FNapprox("COS(x)",1,n)

thenPRINT FNa(n) gives thenth term of a sequence, of whitie following are thefirst
few:

0.50302306 0.857553216 0.65428979 0.701368774 ...
whilst bothPRINT FNa(100) andPRINT FNa(101) give 0.739085133.

Thus it is possible to talk about the convergencsegiuencegarly in thecourse,long
before thequestion ofthe convergence o$eries arisesand thenth term of the
sequences concernete more general than the simple algebexpressions in n
usually encountered. Thesan move in to dmit from above orbelow, they may
converge or divergeslowly or quickly, andthey are much more interesting to

. . . 2n%+1
investigate than simple formulaeich asan= 2o

erroneouslyeither by puttingh=c, or by dividing through byn2 and putting 1#=0.

, which manystudentshandle

There are still conceptual problems with the more gese@lencesand guidance and
discussion withthe teacher is an essential ingredient in the development of the
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concepts, but there is less room flee moreobvious errors whictarewell-known to
teachers.

Rate of change

Herethe traditional approachsed to besia an “intuitive” approach to thimit notion
which hasbeenshown bymany researchers to be fraught with cognitive difficulties.
Instead an approach basedramericalapproximationsprovidedthat it is donewith
care is more profitableDoing it with care means calculating numerigcabdients for
expressions of the form

f(x+h)—f(x)
h

whereh is not too small. If it is toemall (say 1619 whenthe values of %) and
f(x+h) are expressed as numbers (say to 8 dectmalplaces) whichare not affected
by adding such amall number, then f+h)—f(x) will be zero according to the
computer.Even worse, the calculation may have a tigrror which is nevertheless
fairly large compared with, so the expression becomes something atheusame size
ash on top,with an error ofcomparablesize,leading to an incredibly inaccurate final
result.

This is where the discussion of errorghie section on chandes its first bigpayoff.
Following the idea that each numerical calculation mightid@roved by alittle
subtlety, it is interesting to compute the “balance gradient” fedmtio x+h in the form:

f(x+h)—f(x-h)
—oh

to see whether it is more accurate and when it may fail. Heeesatile combination of
graphical and numericaésultsare unbeatable (until the studentaisle to get a more
precise symbolic reasomhy the balance gradiemjives a moreaccurateresult using
Taylor’'s theorem).

The approach to the visual idestsown bythe graphicsvia magnification ofgraphs is
well-documented elsewhere, together with cognitivereasons why this ipreferable
over the old “intuitive” limit approach. (e.g. Tall 1987).

The SchoolMathematicsl6-19 projectdoes not, inthe first year ofthe course,link
together the graphic/numeric exploratory approach thghsimple idea of calculating a
symboliclimit (say, forexamplefor f(x)=x2) because the majority afriters believe
there are too many things to introduce at once. Whilst having some sympatttiewith
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concernfor less-ablepupils, | believethis to be a seriousonceptualomission which
underestimates the versatile thinking power of the pupils and tEaddo even greater
conceptual pressure when even more new ideas are introduced in the second year.

The “undoing” ofrate of change is theolution of (first orderdifferential equations —
knowing the gradient find the originalgraph. This can be attacked in a cognitive
manner using the “solution sketcher” written for the School Mathematics P16jei@.
This is a computer program that, for a given differential equation, say

dy

dx =y
will calculate the gradientydtx for a graph using the formula on the right-hande of
the equation, (in this casey). As a pointer is moved round the screte, gradient of
a shortline segment indicates tlsteepness ahe graph througtthe point &,y). It is
easy to instructhe computer to leave a permanent nfarkthis line-segment, and by
sticking them together, end to end, it is possible to build up an approximate solution to
the differential equation.

It is also possible to give simple programs to provide numesalations, forexample,
the solution of the differential equation

ay __1
dx T 14x4

is given by

10 INPUT x,y
20 INPUT dx
30 dy=1/(1+x"4)*dx
40 x=x+dx : y=y+dy
50 PRINT x,y
60 GOTO 30

Functionally the generadolution of d/dx=f(x) where f§) is given asf$ may be
calculated as

DEF FNsol(f$,x,y,dx,n)
FORk=1TOn
dy=EVALf$*dx:x=x+dx:y=y+dy
NEXT

=y

to find they-value of the solution starting aty), takingn x-steps each of lengtix.

Thus

PRINT FNsol("2*x",0,0,0.1,20)

—10 -
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will print the numerical value of the solution of/dx=2*x starting atx=0, y=0, taking
20 steps of length 0.1.

At an appropriatéime (which may be demandinfpr the lessable students at aparly
stage), thisnmay be improved by letting the general equatigrix:f(x) be expressed
by typing the expressiaf for f(x),

defining

1000 DEF FNf(x)=EVAL{$

then replacing the calculation in line 30 by

30 dy=FNf(x)*dy

and improving it either by the midpoint approximation

30 dy=FNf(x+dx/2)*dy

or the “balance approximation”:

30 dy=(FNf(x)+FNf(x+dx))/2*dy

which may beseen tarelate to the mid-ordinatend trapeziumuleslater in numerical
integration.

Thus differential equations can be investigdtadthe first time soonafter thestudy of
gradient and differentiation. Conceptually the complement of the act of differentiation is
thesolution of differential equationaot integration.

Cumulative Growth

Cumulativegrowth, represented by the areader a curvean easily be attacked by a
combination of graphic and numempproaches. Programs ¢alculate the area are
short and easy to write. In fact powerful conceptual functtamseasily be writtethat
will give the area a functional concept, for instance:

DEF FNarea(f$,a,b,n)

s=0: w=(b—a)/n : x=a

FOR k=1 TO n: s=s+W*FNf(x+w/2): x=x+w: NEXT
=s

DEF FNf(x)=EVALf$

may be used to print out tlaeeaunder a graph fromto b in n steps usinghe “mid-
ordinate rule” in each strip. Thus

—11 -
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PRINT FNarea("SINx", 0, P1/2,50)

gives the area undgrsinx from 0 toTv2 in 50 steps.

The function definition:

DEF FNa(n)=FNarea("SINx",0,P1/2,n)

again gives a sequence of approximations, here homing timecereaunder six from
0 to1v2.

Or the function definition

DEF FNA(x)=FNarea("SINx",0,x,100)
gives the approximate areslA(x) from O tox using 100 strips.

Again numerical are@omputations, combined judiciously with looking at pictures
given by flexiblesoftware,can give great insight into conceptigé¢as. For example,
what happens tthe areaENA(x) whenx is negative? Whatappens te-Narea(f$,a,b,n)
whenb < a, or when the function is negative ? Investigate.

Following the earlier enunciated precepisat numericalapproximations can be

investigated to see if they can be subtlely improved, it is interesting to calsalkatée
midordinate ared and the trapezium ar@afor the area under sinx from 0162 using

the same number of steps. One overestimates, one underestirhatesorsare in an
interesting proportion, namely

M = A+E, T=A-2E

where A is the true areand E is the approximateerror for the midordinate. By
attempting to cancel out the errors by taking

2M+T  2(A+E)+A-2E
3 - 3 =A
N : 2M+T : L
we get a much better approximation for the error in the fogm which simplifies to

give ... Simpson’s rule...

Again the investigation of theort of stupidities whichmight occur if the area is
calculatedunder fk)=1/x from a=—1 tob=1 may be investigated by taking a random
element in thesum (either in terms of a randomaximum step-width, or aandom
point in eachstrip at whichthe height is estimated, doth.) The latter idea ipaving
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the way for the theoretical introduction of Riemann sums, should this ever be studied in
a later course.

If a thin strip of a graphpicture is stretched horizontallwhilst the y-scale is
unchanged, an interesting picture appears (figure 2).

A
A

5>

N
) DR ] §

4-& < >
expand horizontal scale/

figure 2

This pulls the graph outflat — the tinier thestrip the better it approximates to a
horizontal line when stretched horizontally. If the area is calculated from an earlier point
ato a variable poirnt asA(x), then the change by adding on the strip is clearly

A(x+h)-A(X) = f(x)* h (approximately),
giving

w = f(x) (approximately).

Thetinier the value oh, thebetterthe approximation, giving
A'(x) = f(x),
which is the FUNDAMENTAL THEOREM OF THE CALCULUS.

Once this has beatiscoveredihe other aspects 6¢éindoing cumulative”growth pale
into insignificance for if one knows the area AX), then thegraph ofthe original
function isy=f(x) where f)=A'(x). Thus the Fundamental Theorem givehepretical
way of undoingcumulativegrowth symbolically, by differentiationhe Fundamental
Theorem essentiallgaysthat the integral can bgorked out bythe process of‘anti-
differentiation”.
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Looking at the numerical methods sdlving differential equations and theumerical
methods of calculating areas, it will be realized that these are actually cartibg the
same processes.

Thus the deep structure linking the various concepts is revealed.

Further extensions

This isnot, of coursethe end of thestudy of aversatile approach to thealculus. A
very natural extension is to look at approximations to curves other thandmesar to
pose the problem if a functiorxj(is approximated not by lanear form y=mx+c, but a
more general polynomial

f(X)=ap+aix+aox2+...+anx+e(x)

wherethe error functione(x) is, hopefully,very small. Bythe usual differentiation
argumentthe coefficients aréound to be those dflacLaurin’s series,and a similar
argument gives Taylor series

f(a+h) = f(@)+f'@h + ... + (n)(a)% +

Once more, these can be graphed, to see how good a global fit they are, or programmed
as functions. For instance the expansion toithgower ofx

X X2 xN
e(x,n) = 1#7 +57 + ...+

can be programmed as

DEF FNe(x,n) : s=1: t=1 : FOR k=1TOn: t=t*x/k : s=s+t: NEXT : =s

By investigating, for reasonabgmall x (say X|<10) it is easy to find galue ofn=N
such that the value @fNe(x,n) stabilizes and doesn’t chanfgg n>N. Thusthe series
for the exponential function is once more approached as a sequence ofwiakles
converges to a limit.

The values can be graphed and compangd what is expected dhe function, once

again coherently linking together numeric, graphic and symbolic representations, giving
them the mutuasupportthat one comes to expeftom a versatile approach to the
subject.
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