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ABSTRACT

In addition to the computer providing us with new tools to use in mathematics, it
also provides opportunities to develop flexible software to help students (and
teachers) to understand fundamental mathematical concepts. The “Graphic
Approach to the Calculus”, designed by the author, is an example of such an
environment, in which computer software is used for teachers to introduce – and
students to explore – fundamental ideas such as the notion of a derivative, the
meaning of the integral as a sum, the idea of a solution of a differential equation.
More recently the ideas have been further developed in the new School
Mathematics 16–19 Curriculum using computer graphics to visualize ideas about
functions, graphs and the calculus. This article outlines the theory underlying the
use of such pieces of software – which I term generic organizers because they are
designed to encourage the user to organize their conceptions from typical
(generic) examples – and briefly reviews the basic ideas underlying several of the
programs. The ideas will be framed within a broader theory of versatile learning, in
which the usual sequential activities of carrying out calculations and deductions in
mathematics are complemented by global overviews of how the ideas link together
– providing a powerful way in which computer technology may be used to
enhance human thought processes.

1. Human thought processes and the use of the computer

Human beings are perverse and fascinating creatures who are distinguished from the rest of
the animal kingdom by their seemingly unbounded capacity to invent and use tools to
extend their limited physical capabilities. The computer is one such tool – potentially one of
the most powerful. Its mode of operation is somewhat different from the human mind, and
precisely because of this, it can be used to supplement and complement human thinking
processes.

Tools have been used for conceptual purposes in mathematics for centuries. An abacus can
be used to perform complex arithmetic calculations through routinized physical
manipulations. More recently, physical tools have been developed to conceptualize
mathematical ideas and foster understanding. For instance, Dienes blocks are designed to
give insight into the notion of place value in arithmetic in different bases (figure 1).

                                    
†This article is based on the theoretical developments and computer programs developed by the author in
publications 4-13 in the list of references. The programs in references 5-8, 11,12 are for BBC, Nimbus and
Archimedes computers, those in reference 13 for IBM compatibles.
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12 + 22  in base 3, regrouped to give 111

figure 1

Here the child carries out the manipulations, regrouping the blocks to give the result,
whose correctness he must judge for himself. Computer environments have the additional
advantage that they can be programmed to carry out complex manipulations and provide
feedback for the learner†.

My main aim in the development of computer software has been to design environments
which allow the teacher and student to manipulate mathematical concepts and processes to
gain greater insight into the ideas. The software is designed not only to give examples of
the processes at work, but also the facility to look at a broader class of situations where the
ideas fail, for it is my belief that many of the misconceptions in human learning arise from
inadequate experiences that do not exhibit the full range of possibilities.

More advanced mathematics abounds with definitions that say explicitly what concepts are,
but only implicitly indicate what the concepts are not. A continuous function is... A
convergent sequence is ... A derivative is ... A Riemann integral exists if ... and so on. We
attempt to teach students advanced mathematics by giving them definitions and making
deductions – a process which is known to be unsuccessful with the majority of students.

Suppose instead that we give the students an environment in which a new concept can be
explored – to see instances where it is true and also where it fails. For instance, what do
we mean by the notion of a differentiable function? The traditional method – definitions of
limits, symbolic and geometric ideas of limiting concepts – is known to cause significant
conceptual problems for students. (For example, they invariably believe that the limiting
process “gets arbitrarily close” but “cannot reach” the final position and are initially
uncomfortable with the limiting process, only taking solace in the routine manipulation of
the rules of differentiation which they see as the “safe” part of the process they can cope
with.) A method with immediate appeal is to use a computer to magnify a small portion of a
graph.

                                    
† A program for the Macintosh computer which continuously links together pictures of Dienes’ blocks being
manipulated by the user and the numerical equivalents has been designed by Prof Pat Thompson of Illinois
State University, USA.
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2. A practical example of a computer environment in action

 The Magnify  program of Graphic Calculus6,13 allows the user to draw a graph in one
window on the computer screen and to magnify a selected portion of the graph in a second
window (figure 2).

figure 2

Used without guidance this will lead to pupils discovering various properties for
themselves, for instance:

• as the graph is magnified more and more the picture gets less curved,

• a highly magnified portion of the graph looks (fairly) straight,

• the picture of the graph is not always as smooth might be expected.

Of these, the first is a highly perceptive insight that later will link with subtle ideas about
curvature, the second is the fundamental idea (“local straightness”) underlying the notion of
differentiability and the third is a red herring, brought about by the limitations of the
computer picture made up of a finite number of pixels, or points of light. This will need
teacher intervention, perhaps to participate in the discussion of the pixel limitations, but
almost certainly to focus the students on graphs of functions which are not locally straight.
Students may suggest ideas such as f(x)=|x|, or teacher guidance may be necessary. Once
started it is possible to lead to more interesting examples, such as |sinx| with “corners” at
every multiple of π, which magnifies at each of these points to look like two half-lines
meeting at an angle, or more subtle cases, such as sinx+|sin100x|/100, which looks like
sinx to a normal magnification, but reveals corners when magnified (figure 3).
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figure 3

The software is designed to cope with much more subtle functions, for instance the
blancmange function, f(x)=bl(x), which is a fractal and when highly magnified, smaller
blancmanges are revealed growing everywhere (figure 4)†.

figure 4

                                    
† This screen dump has been taken from the Archimedes version of the program. The same facility, with a
different screen layout is available for IBM compatibles



– 5 –

It is so wrinkled that nowhere does it magnify to look straight. This is cognitively not a
difficult concept, and it shows that computer technology can be used to model the notion of
a nowhere-differentiable function in the very early stages of the calculus. I have
demonstrated elsewhere on many occasions how this idea can be proved in a way which is
cognitively satisfying to beginners yet contains all the ingredients necessary for a formal
proof 4,6,13.

3. The growth of a theoretical perspective

An environment which enables the exploration of examples and (where possible) non-
examples of a process, or concept, I term a generic organizer. The Magnify program is
a generic organizer for the concept of “local straightness”, which experience shows to be a
good starting point for the theory of differentiability. Dienes blocks are an example of a
generic organizer (for the concept of place value in arithmetic), but this organizer is
passive. The user must operate on the blocks and must make the necessary judgements as
to the theory underlying the manipulation of the blocks. The Magnify program is a
cybernetic organizer. It not only accepts the manipulative acts of the user (giving
instructions to draw a graph of a given function over a given range), it takes pre-
programmed action to carry out the consequences of those acts (drawing graphs,
magnifying selected portions of graphs). These activities help to focus the user on the
notion of “local straightness”, which is the underlying reason for the design of the
program.

There are many software programs in education which are designed to judge whether a
student’s input is correct or not. It is a fundamental axiom of my development of generic
organizers that the software makes no judgements. It simply returns to the user the results
of the user’s command and it is the user who must make a personal assessment of the
correctness of the situation. Thus the generic organizer remains a tool and the human user
remains in control, albeit in debt to the organizer’s ability to process the calculations
required by the user’s decisions.

Note that the explicit fundamental idea underlying the Magnify program is that of local
straightness rather than the mathematical limit concept. The local straightness idea has two
fundamental and complementary properties:

• it is meaningful within the current cognitive development of the pupil,

• it is a powerful mathematical idea that can be used as a starting point for
the theory.

The first of these has been shown through empirical research9, the latter is a matter of re-
thinking mathematical analysis in such a way that the formal theory can be seen to be grow
from a formal translation of local straightness. Local straightness leads to the idea of
differentiability and the converse – building up a locally straight curve knowing its
derivative – is the fundamental idea of differential equations. At a higher level, local
straightness is the one-dimensional intuitive version of the form notion of a differentiable
manifold (a locally euclidean – or locally flat - topological space).

A fundamental idea with these two properties I call a cognitive root. It is an idea which can
be planted in the soil of the human mind to find fertile links on which it can grow into a



– 6 –

formal theory. A cognitive root is very different from a logical foundation, for the latter
only satisfies the second principle : a starting point for a formal development. Experience
of the “new math” has shown us that logical foundations may fail to be cognitive roots.
The “new math” failed because it did not take root in the minds of the learners. The “new
computer math” founded on cognitive roots has a greater chance of success because it is
designed both to build from the student’s current position and also to lead to the power of
the formal mathematics.

The example of the Magnify program raise a number of pertinent points:

• Given an appropriate computer environment, students can discover
fundamental mathematical ideas, based on their cognitive state at the
time,

• Without teaching, they may not understand the full significance of their
discoveries,

• Subtle and powerful ideas, particularly those related to the periphery of
the concept and to non-examples, are almost certain to need specific
teaching,

• A learning sequence using generic organizers may occur in a different
order from a formal mathematical development.

Before the arrival of the computer it was a common belief that students learn best when
they grow from their own experience. However, the introduction of the calculus shows
that in the absence of the computer, the need to develop a rich enough collection of
examples and non-examples was so onerous that the student would be swamped with the
sheer variety and detail of those examples. At the beginning of this century, Poincaré3 said:

If logic were the sole guide of the teacher, it would be necessary to begin with the
most general functions, that is to say with the most bizarre.

and he then went on to dismiss such a fantasy. Of course it was crazy then to attempt teach
the calculus beginning with the bizarre notion of an everywhere non-differentiable function
because the calculations necessary to exhibit such a function involved explicit references to
subtle limiting processes. But the arrival of the Magnify program, which handles the
calculations implicitly and internally – together with the existence of simple-to-explain
functions like the blancmange function – mean that a wide variety of examples and non-
examples can be explored in a single session with a generic organizer. Because the
complexity of the detailed calculation is concealed within the workings of the computer
program, teacher and students are freed from the computational burden to concentrate on
the essential idea: is the graph of the function locally straight or not? Within this context it
is possible to concentrate once and for all on the powerful idea from which the theory can
blossom: the cognitive root of local straightness.

This leads to a new way of approaching the curriculum, in which learners can gain initial
insight into the fundamental ideas at their current cognitive level, linking them together in a
global, often visual way, in addition to the usual sequential mathematical processes which
are the basis of the traditional curriculum. Generic organizers are designed to help the user
gain a preliminary global/holistic insight to provide a context for relational understanding of
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logical/sequential processing which follows. The combination of these complementary
modes of global/holistic and logical/sequential learning is termed versatile1. Research at
Warwick University has shown that a more versatile approach to the learning of
mathematics results in significant improvements in the ability of students to solve non-
routine problems related to the ideas, without any diminution in their ability to perform
traditional manipulations 1,9,14.

4. Examples of Generic Organizers in Graphs, Functions and the Calculus

4.1 Gradient†

The cognitive root of the calculus is the notion of local straightness. A student who
understands this can look at the graph of a function and, in his or her mind’s eye, be able
to mentally zoom in and see the changing gradient of the curve (provided, of course, that
the picture faithfully represents the situation and there are no smaller hidden wrinkles!).

The Gradient program has two different generic organizers – one which looks at the
gradient of a chord through points (x,f(x)), (x+h,f(x+h)) for fixed x as h decreases in steps
– the other fixes h and considers the changing gradient as x increases. The first of these
mirrors the way that the symbolic or geometric limit is first introduced in traditional
calculus. It has the advantage that the student can see the chord through two close points
stabilizing as h gets small. (In figure 5, a=x, h=c and b=x+h).

figure 5

At the same time the numerical value of the gradient is shown and, as c gets small, the
gradient will be seen to be stabilizing at a fixed value. Of course it will!  The student has a

                                    
† Available for all IBM compatibles, the BBC computer, Archimedes, Nimbus PC.
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new understanding – in the mind’s eye the graph is locally straight, so provided that the
points are close enough, they are on a virtually straight part of the graph and the gradient
between any two points on the graph is virtually the same. The more the magnification is
performed, the better the approximation to a straight line and the better the approximation
of the gradient to a fixed value. If the student so desires, it is possible to zoom in close up
to a point on the graph and see the graph as a straight line to give substance to the mental
picture.

The second option is the one with the most powerful mental imagery as it encourages the
learners to gain a global view of the gradient, moving dynamically along the curve to see
the changing gradient (figure 6).

figure 6

The seed is sown that the gradient changes as a function of the value of x...

4.3 Solutions of Equations†

A short stretch of a locally straight graph can be approximated by a straight line, giving rise
to various methods of approximating to a solution, depending on how the straight line
approximation is calculated. For instance, figure 7 calculates successive approximations
x1, x2, x3, x4, ... to a root using a numerical version of the Newton-Raphson. Having
found xn, the line through the points on the curve with x coordinates xn, xn+h is used as an
approximation the curve. Where this line meets the x-axis is the next approximation xn+1.
An autozoom feature allows the user to zoom in on the process – which will reveal the local
straightness of the curve and why the method is effective.

                                    
† Available  the BBC computer, Archimedes, Nimbus PC and, in a slight different form for IBM compatibles.
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Opportunities for versatile learning are immediately available. In addition to studying the
local theory of convergence (what happens when the process is near a root) it is also
possible to use the software to investigate the more intricate (even catastrophic!) global
theory of what happens when the process is begun in in various regions further away.

figure 7

Figure 8 shows the standard iteration process to solve x=g(x) by replacing x by g(x) .

figure 8
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Sometimes the iteration process homes on a solution and sometimes it does not. But why?
Rescaling the picture during operation may give insight. Once the magnification is high
enough to represent a small part of the graph y=g(x) as almost straight, it becomes apparent
that each iteration is just moving closer by the same proportional quantity (figure 9).

figure 9

Further investigation of examples which converge and those which fail can lead to theories
relating speed and success of convergence to the gradient of the curve y=g(x) at a root11.

4.4 The Solution Sketcher†

The Solution Sketcher was designed for the School Mathematics 16–19 Curriculum to
enable students to experience the process of building up a solution of a first order
differential equation. A short line segment is drawn in the plane, with gradient determined
by the differential equation. As the segment is moved, its gradient is adjusted. At any stage
the current segment can be deposited onscreen and subsequent segments can be used to
build up a solution. Thus the construction of a locally straight solution curve is enacted by
the student. Other facilities include autodrawing of a solution and the drawing of a global
array of segments to give an overall view of the total family of solutions (figure 10).

The naivety of the rudimentary construction process will soon be replaced by the greater
power of step-by-step numerical methods, perhaps auto-drawn by the computer, and later
by symbolic methods, as appropriate. But the cognitive insight of the building of a solution
using little straight line-segments must not be underestimated. It lays foundations for subtle
ideas about existence and uniqueness of solutions which can easily be visualized but are
not well understood by pupils versed only in a symbolic traditional approach.

                                    
† Available only for  the BBC computer, Archimedes, Nimbus PC. An IBM compatible program in the Graphic
Approach to the Calculus draws direction fields and automatic solutions in a similar manner.
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figure 10

4.4 The Parametric Function Analyser†

This program was designed for the SMP 16–19 curriculum to give new insight into
parametric functions in the form x=x(t), y=y(t), not only in terms of the usual
representation as a parametric curve in the x-y plane, but also the separate graphs x=x(t)
and y=y(t) and the three-dimensional picture of the curve created by the points (t,x,y) as t
varies. In addition, an arrow may be drawn through two close points on the curve with
parameters t and t+h. For small h this approximates to the tangent at t (if there is one!) and
the projections of the arrow are approximations to the tangent to the projected curve in the
three planes t-x, t-y and x-y (figure 11).

The tangent vector has components (dt,dx,dy), so relationships such as

dy
dt   = 

dy
dx 

dx
dt  

are simply arithmetic relationships between the sides of a box in three space. The
visualization even helps to give insight into the singular and difficult case of what happens
when dx=0...

                                    
†Only available for the BBC computer, Archimedes and Nimbus PC.
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figure 11

4.5 Extensions to Second Order and Simultaneous Differential Equations†

When an attempt is made to extend the notion of building up a solution of a first order
differential equation to a second order differential equation, then it seems to fail because
there seems no longer to be a single direction to follow. Through any point in the plane
there may be many solutions. Figure 12 shows three solutions of d2x/dt2 =–x passing
through the origin. There is a unique solution through this point for each starting direction.

There is a subtle way of dealing with this which simply involves defining the new variable
v=dx/dt where v is the gradient of the t-x curve. The original equation becomes

dv/dt=–x,

and, taken with the definition of v, this gives the two simultaneous equations:

dx/dt=v
dv/dt=–x.

                                    
† Available for all IBM compatibles, the BBC computer, Archimedes, Nimbus PC.



– 13 –

figure 12

These give the direction of the tangent vector (dt,dx,dv) in three dimensional space as:

 dx = v dt,
dv = –x dt,

so
(dt, dx, dv) = (dt, v dt, –x dt),

is in the direction (1,v,–x).

Again a unique tangential direction is given, but now in three-dimensional (t,x,v)-space.
Through every point (t,x,v) in three-dimensional space there is a unique solution found by
following the given tangential directions. In practice a good approximation can be built up
by putting short line segments in the appropriate directions end to end (again a triumph for
local straightness!).

The unique solution starting at t=t0, x=x0, v=v0 projects onto the (t,x) plane to give the

unique solution through the point t=t0, x=x0 starting with gradient dx/dt=v0. In figure 13

the 3d-view has spiral solutions which do not intersect, but the projection onto the t-x plane

reveals the intersecting solutions of a second order differential equation in figure 12.
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figure 13

4.5 Area†

The area program gives the student the power to see the manner in which the area “under” a
curve can be calculated using thin rectangular strips, or other useful rules, such as the
trapezium or Simpson rule. Visually, by taking a larger number of strips, it becomes
apparent that sum of strip-areas is likely to give the value of the area under the curve.
However, as usual, the software is extremely flexible and may be used for all kinds of
investigations 7,13. For instance, few students understand the idea of the sign of the area
calculation given in a traditional course, because it is left too late in the development and
related to the symbolism of the integral, instead of being introduced from the beginning as
a numerical calculation involving signed lengths. Most students, and not a few teachers,
believe that the area is “positive above, negative below”, but if the sign of the step is
negative, the reverse is true... (Figure 14 has a negative step and a negative ordinate in the
range working backwards from 2π to π, giving a positive result when the curve is below
the x-axis).

                                    
† Available for all IBM compatibles, the BBC computer, Archimedes, Nimbus PC.
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figure 14

The area-so-far graph may be drawn by plotting the value of the cumulative area
calculations from a fixed point to a variable point. Figure 15 shows the superimposition of
two area calculations, first from x=0 to x=–5 with the negative step –0.1, then from x=0 to
the right with positive step 0.1. Notice the cubic shape of the dots of the area curve, which
experts will recognize as y=x3/3. But we rarely consider this for negative x.

figure 15
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4.6 The Function Analyser†

The Function Analyser is written for the SMP 16–19 curriculum. One of its many facilities
is the ability to use function notation in the form f(x) and to combine and compose
functions in the normal way. Thus it is possible to define and draw the graph of, say
f(x)=sinx, and then to superimpose the graph of y=f(x)+2 (figure 16).

figure 16

One routine in the program allows a graph to be shifted or stretched horizontally or
vertically by specified amounts. It is clear that the graph of f(x)+2 is the same as the graph
of f(x) shifted up two units, but what shift is required to produce the graph of f(x+2), and
why? ...

4.7 Numerical Gradients and Areas as Functions‡

Now that the 32 bit RISC chip is becoming freely available in British Schools at a
reasonable price (where Britain leads, the rest of the world will follow or steal...),
awesome power in calculation is widely available to children. There are many programs
around that will draw numerical gradients or numerical areas, but these are usually just a
sequence of points plotted on the screen. An area graph plotted as in figure 15 simply
records the cumulative area calculations pictorially and does not remember them in any
way. But the area under a graph of a given function, from x=a to x=b, with a given step,
say h, is calculated by a straightforward computer procedure. Given an extremely fast
processor this can be calculated almost instantaneously and may be considered as a
function depending on the graph and the values of a,b, and h.

                                    
†Currently only available for the BBC computer, Archimedes and Nimbus PC.
‡ requires the processor speed of the Archimedes 32 bit RISC chip to function fast enough, but also
available at a slower speed for the Nimbus PC.
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In the Function Analyser 12 the expression:

area(expr, a, b, h)

is interpreted as the area under the graph given by the expression expr, from x=a to x=b
using step-width h. Thus:

area(sinx, 0,x,0.1)

is the area under y=sinx from 0 to x with step-width 0.1. Such is the power of the
Archimedes that this graph can be drawn from x=–5 to 5 with 100 intermediate points in
less than 3 seconds (using interpreted BBC BASIC), even though at the extremes each area
calculation is adding up the areas of 50 strips for each point plotted.

Now that the numerical area is a function, it may be treated as any other function and
numerically differentiated. Figure 17 shows the area function area(bl(x),0,x,s) under the
blancmange function from 0 to x using strip-width s=0.05. (The area function is the rather
bland looking increasing function, not the pudding-like blancmange).

figure 17

Of course, this graph is not the exact area function, but it is a good-looking approximation
to it – as good as one could hope to get on a computer screen. Notice that it looks relatively
smooth – which it is, if one ignores the pixellation problem – because the derivative of the
exact area is the blancmange function. The exact area function for the blancmange is a
function which is differentiable everywhere once and nowhere twice!... At last, using the
computer, the student has a chance of gaining insight as to how such things can happen...
Mathematical analysis can begin to take on a real meaning...

The other graph in figure 17, by the way, may look like the blancmange function, but it is
not! It was in fact drawn as the graph of
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area(bl(x),x,x+w,h)/w

which is the area under the blancmange from x to x+w (calculated using strips width h)
divided by the width w, (here with w=h=0.001). Thus it is the numerical gradient of the
numerical area of the blancmange function!

Even though the blancmange function is nowhere differentiable, its area function is quite
smooth and differentiable everywhere.

One way of understanding what this means is to think in a versatile way about the meaning
of area and the fundamental theorem.

Imagine a tiny part of the graph stretched horizontally (figure 18). In many cases the graph
of a function stretches out to look flat – the more it is stretched, the flatter it gets.

 

a b a b

expand horizontal scale

figure 18

This is easy to see with a graph program by changing the x and y scales – using a thin x-
range and a normal y-range but drawing the graph in a standard graph window will stretch
the thin x-range out horizontally.

Figure 19 shows that if the area from a fixed point a to a variable point x is A(x), then the
area from a to x+h is A(x+h), so the change in area from x to x+h is A(x+h)–A(x).

If the strip from x to x+h is approximately a rectangle width h, height f(x), then its area is

A(x+h)–A(x) ≈ f(x)h

giving

A(x+h)–A(x)
h   ≈ f(x).



– 19 –

A(x)

A(x+h)–A(x)

a x x+h

figure 19

As h gets smaller, the graph gets pulled flatter, the approximation gets better and so

A '(x) = f(x)

– the fundamental theorem of the calculus.

A formal proof of this requires the notion of continuity. This notion is usually confused
intuitively by students, teachers and mathematicians alike. Ask anyone with some
knowledge of the concept to explain what it means and the likely answer is that is is a
function whose graph has “no gaps” – its graph can be drawn “without taking the pencil
off the paper” etc, etc. These ideas are not the intuitive beginnings of continuity but of
“connectedness” which is mathematically mathematically linked, but technically quite
different.

An intuitive idea of continuity arises in the fundamental theorem of calculus. What is the
essential property that makes the fundamental theorem work? It is that a tiny portion of the
graph stretched horizontally looks flat. How can this essential property be characterized?
The answer is that the computer picture does not draw a theoretical line, but a line of pixels
of finite thickness.

Consider a simplified model of what is happening in stretching the graph horizontally.
Suppose that graph picture has middle x-value x=x0 and the point (x0,f(x0)) on the graph is
in the middle of a pixel whose upper and lower values are f(x0)–e and f(x0)+e. To fit the
graph in a horizontal line of pixels means finding a small x-range from x0–d to x0+d so that
for any x in this range the value of f(x) lies in the “pixel range” between f(x0)–e and
f(x0)+e (figure 20).

The definition of continuity is:

The function f is continuous at x0 if, given any specified error e>0, there can be
found a (small) distance d such that whenever x is between x0–d and x0+d, so f(x)
is between f(x0)–e and f(x0)+e.
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x0–d x0 x0+d

f(x0)+e

f(x0)–e

figure 20

Mathematicians usually replace the letters e and d by their Greek equivalents – ε (epsilon)

and δ (delta). (Perhaps it makes them seem more imposing!). The definition is written
formally as:

The function f is continuous at x0 if, given any ε>0, there exists δ > 0, such that

x0–δ <x < x0+δ implies f(x0)–ε < f(x) < f(x0)+ε.

The ramifications of this definition take months, even years, to understand in all its glory,
but remember that it has an appealing cognitive root: a continuous function is one whose
graph has the property that any suitably tiny portion stretched horizontally will pull out flat.

Thus we have again illustrated that the order of development may be very different from the
traditional logical one. Here continuity has not been studied before the fundamental
theorem – indeed it is very difficult for students to grasp in its logical form. Instead,
continuity arises through exploration as a natural requirement for the fundamental theorem
and is ripe for further investigation after the fundamental theorem has been encountered.

5. Reflections

In the preceding sections we have had the briefest acquaintance with a number of generic
organizers involved with functions, graphs and the calculus. In every case the software is
designed to expose one or more mathematical ideas with the dual role of being both
immediately appealing to students and also providing foundational concepts on which the
ideas can be built. By exploring examples which work and examples which fail, it is
possible for the students to gain a far more versatile understanding. But they need help in
identifying the subtle powerful ideas embedded in the software and formulating it in a way
that can be used as foundations for the future. And here they need a teacher, as mentor, to
guide and encourage them in their journey through the theory, a task made potentially much
easier by the existence of the new software tools.
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