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ABSTRACT

In addition to the computer providing us with new tools to use in mathematics, it
also provides opportunities to develop flexible software to help students (and
teachers) to understand fundamental mathematical concepts. The “Graphic
Approach to the Calculus”, designed by the author, is an example of such an
environment, in which computer software is used for teachers to introduce — and
students to explore — fundamental ideas such as the notion of a derivative, the
meaning of the integral as a sum, the idea of a solution of a differential equation.
More recently the ideas have been further developed in the new School
Mathematics 16—19 Curriculum using computer graphics to visualize ideas about
functions, graphs and the calculus. This article outlines the theory underlying the
use of such pieces of software — which | term generic organizers because they are
designed to encourage the user to organize their conceptions from typical
(generic) examples — and briefly reviews the basic ideas underlying several of the
programs. The ideas will be framed within a broader theory of versatile learning, in
which the usual sequential activities of carrying out calculations and deductions in
mathematics are complemented by global overviews of how the ideas link together
— providing a powerful way in which computer technology may be used to
enhance human thought processes.

1. Human thought processes and the use of the computer

Human beings are perverse and fascinating creatures who are distinguished from the rest of
the animalkingdom by their seeminglynboundedcapacity to inventand usetools to

extend their limited physical capabilities. The computer is one such tool — potentially one of
the most powerful. Its mode of operation is somewhat different fhenhumarmind, and
precisely because dis, it can beused tosupplementand complemenhuman thinking
processes.

Tools have been used for conceptual purposes in mathematics for centuiaes.cascan
be used to performcomplex arithmetic calculationghrough routinized physical
manipulations.More recently, physical tools have been developedcomceptualize
mathematicaldeas and fostaunderstanding. For instandeienesblocks aredesigned to
give insight into the notion of place value in arithmetic in different bases (figure 1).

TThis article is based on the theoretical developments and computer programs developed by the author in
publications 4-13 in the list of references. The programs in references 5-8, 11,12 are for BBC, Nimbus and
Archimedes computers, those in reference 13 for IBM compatibles.

This paper appeared Rroceedings of Conference on New Technological Tools in EduchigenAnn
Polytechnic, Singapore, 55-75, 1990. It is based on earlier publications of the author (see references).
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12 + 22 in base 3, regrouped to give 111

figure 1

Here the child carries out thenanipulations, regroupinghe blocks to givethe result,
whose correctness he must judge himself. Computer environmentsve the additional
advantage that they can be programmed to aartycomplex manipulations and provide
feedback for the learner

My main aim in thedevelopment of computeioftware haseen to design environments
which allow the teacher and studentmanipulate mathematicabncepts and processes to

gain greater insight into theeas.The software is designed not only ¢ive examplesof

the processes at work, but also the facility to look at a broader class of situations where the
ideasfail, for it is my belief that many of the misconceptions in human learning arise from
inadequate experiences that do not exhibit the full range of possibilities.

More advanced mathematics abounds with definitions that say explicitly what ccareepts

but only implicitly indicate what the conceptsare not A continuous functions... A
convergent sequence is ... A derivative is ... A Riemann integral exists if ... and so on. We
attempt to teaclstudentsadvanced mathematics lgywing them definitions and making
deductions — a process which is known to be unsuccessful with the majority of students.

Suppose instead that we githee students an environment in whiclnew concept can be
explored — to see instances where it is true and also wHaiks.itFor instance, what do

we mean by the notion of a differentiable function? The traditional method — definitions of
limits, symbolic andgeometric ideas of limitingoncepts — iknown to cause significant
conceptual problemir students. (For exampléhey invariably believe that the limiting
process“gets arbitrarily close” but “cannot reach” the finpbsition andare initially
uncomfortable with the limitinggrocessonly taking solace ithe routine manipulation of
therules of differentiation which they see the “safe” part of th@grocesshey can cope
with.) A method with immediate appeal is to use a computer to magnify a small portion of a
graph.

TA program for the Macintosh computer which continuously links together pictures of Dienes’ blocks being
manipulated by the user and the numerical equivalents has been designed by Prof Pat Thompson of lllinois
State University, USA.



2. A practical example of a computer environment in action

The Magnify program of Graphi€alculu$:13 allowsthe user to draw a graph in one
window on the computer screen and to magnify a selected portion gfapk in a second
window (figure 2).
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figure 2

Used withoutguidance this willlead to pupils discovering various properties for
themselves, for instance:

* as the graph is magnified more and more the picture gets less curved,
* a highly magnified portion of the graph looks (fairly) straight,

* the picture of the graph is not always as smooth might be expected.

Of these thefirst is a highlyperceptive insighthat later will linkwith subtle ideas about
curvature, the second is the fundamental idea (“local straightness”) underlying the notion of
differentiability and the third is a rellerring, broughtabout by the limitations of the
computer picture made up of a finember ofpixels, or points of light. Thisvill need
teacherintervention, perhaps tparticipate in thaliscussion ofthe pixel limitations, but
almost certainly to focus the students on graphs of functions \ahgatot locally straight.
Students may suggest ideasch as %)=|x|, or teacher guidance may becessaryOnce
started it is possible tead to more interestingxkamples, such as |gjrwith “corners” at
every multiple ofrt, which magnifies aeach of thesgoints to looklike two half-lines
meeting at amngle, ormore subtlecases, such as si#{sin10&|/100, which lookdike
sinx to a normal magnification, but reveals corners when magnified (figure 3).
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The software is designed toope with much more subtleinctions, forinstance the
blancmangdunction, f)=bl(x), which is afractal andwhen highly magnifiedsmaller
blancmanges are revealed growing everywhere (figtire 4)
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figure 4

T This screen dump has been taken from the Archimedes version of the program. The same facility, with a
different screen layout is available for IBM compatibles



It is so wrinkledthat nowheredoes itmagnify to lookstraight. This iscognitively not a

difficult concept, and it shows that computer technology can be used to model the notion of
a nowhere-differentiablefunction in the very early stages ofthe calculus. | have
demonstrated elsewhere on many occasions how this idea can be proved in a way which is
cognitively satisfying to beginnegget containgall the ingredients necessary forfarmal

proof 4.6.13

3. The growth of a theoretical perspective

An environment which enabldbe exploration ofexamplesand (where possiblejon-
exampleof a process, or concept, | terng@neric organizer. The Magnify program is
a generic organizer for the concept of “local straightness”, wénplerienceshows to be a
good startingpoint for the theory of differentiability. Dieneblocks are an example of a
generic organizeffor the concept of place value mrithmetic), but this organizer is
passive The user must operate tire blocks and musinake thenecessary judgements as
to the theory underlying the manipulation of thlecks. The Magnify program is a
cybernetic organizer. It not onlyaccepts the manipulative acts of thser (giving
instructions to draw a graph of given function over a givemange), ittakes pre-
programmed action to carry out thensequences of those adidrawing graphs,
magnifying selectegbortions of graphs)These activities help téocusthe user on the
notion of “local straightness”, which ishe underlyingreason forthe design of the
program.

There are mangoftware programs ieducation whichare designed to judge whether a
student’s input igorrect ornot. It is afundamental axiom of my development of generic
organizers that the software makes no judgements. It simply retuttmsuserthe results

of theuserscommand and it is thaser who mustake apersonal assessment of the
correctness of the situation. Thilie generic organizer remainda®l and the humanser
remainsin control, albeit in debt to theorganizer'sability to processthe calculations
required by the user’s decisions.

Note that the explicit fundamental idaamderlying the Magnify program ithat of local
straightnessather than thenathematical limitconcept The localstraightnessdeahas two
fundamental and complementary properties:

. it is meaningful within the current cognitive development of the pupil,
. it is a powerful mathematical idea that canulsed as a startingpint for
the theory.

The first of these haseenshown througrempiricalresearch the latter is a matter of re-
thinking mathematical analysis in such a way that the formal theory can be seegrtovbe
from a formal translation ofocal straightnessLocal straightness leads tihe idea of
differentiability and theconverse — building up #ocally straight curveknowing its
derivative — is the fundamental idea of differenggjuations. At a higher levelpcal
straightness ithe one-dimensional intuitiveersion ofthe form notion of a differentiable
manifold (a locally euclidean — or locally flat - topological space).

A fundamental idea with these two properties | calbgnitive rootlt is an ideavhich can
be planted in theoil of the human mind téind fertile links on which itcangrow into a



formal theory. Acognitive root is very different from kgical foundation, forthe latter
only satisfiesghe secondprinciple : a starting poirfor a formal developmentExperience
of the “new math” has shown ughat logicalfoundationsmay fail to be cognitiveoots.

The “new math” failed because it did rakeroot in the minds ofthe learners.The “new

computermath” founded oncognitive rootshas agreater chance afuccessbecause it is
designed both to build from the student’s current position and aleadao thepower of

the formal mathematics.

The example of the Magnify program raise a number of pertinent points:

. Given an appropriate computer environmestiydentscan discover
fundamental mathematicalleas, based otheir cognitive state at the
time,

. Without teaching, theynay notunderstandhe full significance of their
discoveries,

. Subtle and powerfubdeas,particularlythoserelated to the periphery of
the concept and toon-examplesare almost certain to need specific
teaching,

. A learning sequencasing generic organizers may occur in a different
order from a formal mathematical development.

Before the arrival of the computeritas acommon belief thastudentslearn bestwhen
they grow fromtheir own experienceHowever, the introduction of the calculushows
that in the absence of thmomputer,the need to develop a rigdnoughcollection of
examples and non-exampless so onerouthat thestudent would be swamped with the

sheer variety and detail of those examples. At the beginning of this century, Faiamhré

If logic were the sole guide of the teacher, it would be necessary to begin with the
most general functions, that is to say with the most bizarre.

and he then went on to dismiss such a fantasy. Of course dramsthen to attempeach
the calculus beginning with the bizarre notion of an everywhere non-differentiable function
because the calculations necessary to exhibit such a function ineciviezit references to
subtle limiting processesBut the arrival of the Magnifyprogram, which handles the
calculationsimplicitly and internally — together withthe existence of simple-to-explain
functionslike the blancmang&inction —mean that avide variety of examples anaon-
examples can be explored in a singkession with ageneric organizer. Because the
complexity of the detailed calculation is concealgthin the workings ofthe computer
program,teacher andgtudentsare freedrom the computationaburden toconcentrate on
the essential idea: is the graph of the function locally straight or not? Wiihinontext it
is possible to concentrate once anddibron thepowerful ideafrom whichthe theory can
blossomthe cognitive root of local straightness

This leads to a new way of approachthg curriculum, in which learnersan gaininitial

insight into the fundamental ideas at their current cognitive level, linking them together in a
global, often visual way, iaddition to theusual sequentiahathematicaprocesses which

are the basis of the traditional curriculum. Generic organizerdesigned to helthe user

gain a preliminary global/holistic insight to provide a context for relational understanding of



logical/sequentialprocessing which followsThe combination of these complementary

modes of global/holistic ankbgical/sequential learning is termedrsatile. Research at
Warwick University has shownthat a more versatilepproach to the learning of
mathematicgesults in significant improvements the ability of students to solve non-
routine problemselated to thadeas, withoutany diminution in theirability to perform

traditional manipulations9.14

4. Examples of Generic Organizers in Graphs, Functions and the Calculus
4.1 Gradient’

The cognitiveroot of the calculus is the notion dbcal straightness. A student who
understands this can look at the graph of a fun@imh in his oher mind’'seye, beable
to mentally zoom in andeethe changing gradient of the curf@@ovided, of coursethat
the picture faithfully represents the situation and there are no smaller hidden wrinkles!).

The Gradient progranmas two different generic organizers — oneghich looks at the
gradient of a chord through pointsf(x)), (x+h,f(x+h)) for fixed x ash decreases in steps
— the otherfixes h and considerthe changing gradient asincreasesThe first of these
mirrors the way that the symbolic or geometridimit is first introduced intraditional
calculus. It hashe advantage that tltudent can see tlolord through twalose points
stabilizing as h gets small. (In figuredsx, h=c andb=x+h).
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figure 5

At the samdime the numericavalue of the gradient ishown and, ag€ gets small, the
gradient will be seen to be stabilizing at a fixedue. Of course itwill! The studenhas a

T Available for all IBM compatibles, the BBC computer, Archimedes, Nimbus PC.



new understanding — ime mind’s eye thegraph islocally straight, so providedhat the
points are closenough,they are on a virtually straight part of theaph andhe gradient
between any two points dhe graph is virtuallythe same.The more the magnification is
performed,the better the approximation to a straityim and the better the approximation
of the gradient to a fixed value. If the student so desires, it is possibd®no in close up
to a point on the graph and dibe graph as a straigline to givesubstance tthe mental
picture.

The second option is the omath the most powerfulmental imagery as &ncourages the
learners to gain global view of the gradient, movingdynamically along the curve &ee
the changing gradient (figure 6).
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figure 6

The seed is sown that the gradient changedwasctionof the value ok...

4.3 Solutions of Equation$

A short stretch of a locally straight graph can be approximated by a straight line, giving rise
to various methods of approximating tocsalution, depending ohow the straightline
approximation is calculatedror instancefigure 7 calculatesuccessive approximations

X1, X2, X3, X4, ... t0 @root using anumericalversion ofthe Newton-Raphson. Having
foundx,, the line through the points on the curve wittpordinate,, x,+h is used as an
approximation the curve. Where thise meets thex-axis isthe next approximatioRp+1.

An autozoom feature allows the user to zoom in on the process — which will revieabthe
straightness of the curve and why the method is effective.

T Available the BBC computer, Archimedes, Nimbus PC and, in a slight different form for IBM compatibles.



Opportunitiesfor versatile learning are immediatedyailable. In addition tstudying the
local theory of convergence (what happemsen the process isnear a root) it is also
possible to uséhe software toinvestigate the more intricate (even catastrophic!) global
theory of what happens when the process is begun in in various regions further away.
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figure 7

Figure 8 shows the standard iteration process to sely@) by replacingk by g) .
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Sometimes the iteration process homes on a solution and sometttoes otBut why?
Rescaling the picturduring operatiormay giveinsight. Once the magnification ikigh
enough to represent a small part of the gsaal{x) as almost straight, it becomes apparent
that each iteration is just moving closer by the same proportional quantity (figure 9).
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figure 9

Further investigation of examples which converge and those Vidilatan lead to theories
relating speed and success of convergence to the gradient of thg=m(xyeat a rootl.

4.4 The Solution Sketchefr

The Solution Sketchewas designed fothe School Mathematics16—19 Curriculum to
enablestudents toexperience theprocess of building up a solution of a first order
differential equation. A short line segmentdigwn inthe plane, withgradient determined
by the differential equation. As the segment is moved, its gradient is adjusted. gihgay
the current segment can be deposibedcreen and subsequent segmeats beused to
build up a solution. Thus the construction dbeally straightsolution curve isnacted by
the studentOther facilities includeautodrawing of a solution artle drawing of aglobal
array of segments to give an overall view of the total family of solutions (figure 10).

The naivety of the rudimentary constructiomocesswill soon bereplaced by the greater
power of step-by-stepumericalmethods, perhaps auto-drawn thg computer, andater

by symbolic methods, as appropriate. But the cognitive insight of the building of a solution
using little straight line-segments must not be underestimated. It lays foundatisobtfer
ideas about existence aodiqueness of solutions whidan easily be visualized but are
not well understood by pupils versed only in a symbolic traditional approach.

T Available only for the BBC computer, Archimedes, Nimbus PC. An IBM compatible program in the Graphic
Approach to the Calculus draws direction fields and automatic solutions in a similar manner.

—-10 -
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figure 10

4.4 The Parametric Function Analysef

This program was designed ftlie SMP 16—19curriculum to givenew insightinto
parametric functions in the form x=x(t), y=y(t), not only in terms ofthe usual
representation as a parametric curve inxtfyeplane, but alsdhe separatgraphsx=x(t)
andy=y(t) and the three-dimensional picturetb& curve created by thpoints {,x,y) ast

varies. In addition, an arromay bedrawn through twaclose points orthe curve with
parameters andt+h. For smalh this approximates to the tangent &f there isone!) and

the projections of the arrow are approximations to the tangent to the projected curve in the
three planesx, t-y andx-y (figure 11).

The tangent vector has componentggdy), so relationships such as

dy dydx

dt —dx dt

are simply arithmetic relationships between thsides of a box inthree space. The
visualization even helps to give insight into the singular and difficult case ofhapaens
when &=0...

Tonly available for the BBC computer, Archimedes and Nimbus PC.

—-11 -
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figure 11

4.5 Extensions to Second Order and Simultaneous Differential Equatiohs

When an attempt is made to extend timion of building up a solution of a first order
differential equation to aecond ordedifferential equation,then it seems tdail because
thereseems no longer to be a single directiofotow. Throughany point in theplane

there may be mangolutions. Figure 12 showthree solutions of @x/dt2 =—x passing
through the origin. There is a unique solution through this point for each starting direction.

There is a subtle way of dealing with this which simply involves defithiegnew variable
v=dx/dt wherev is the gradient of thex curve. The original equation becomes

dv/dt=-x,
and, taken with the definition of this gives the two simultaneous equations:

dx/dt=v
dv/dt=—x.

T Available for all IBM compatibles, the BBC computer, Archimedes, Nimbus PC

- 12 —
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figure 12
These give the direction of the tangent vectgo¥glv) in three dimensional space as:

dx =v dt,
dv = —x dt,

(dt, dx, dv) = (ck, v dt, = dt),

SO

is in the direction (1,—X).

Again aunique tangential direction @iven, but now in three-dimensionalt,v)-space.
Through every pointtfx,v) in three-dimensional space there is a unique solution found by
following the given tangential directions. pmactice agood approximation can be built up

by putting short line segments in the appropriate directions end to end (again a triumph for
local straightness!).

The uniquesolution starting at=tg, Xx=Xg, V=Vg projects ontahe {,x) plane to give the
unique solution througthe pointt=ty, x=xg starting with gradientxdt=vg. In figure 13
the 3d-view has spiral solutions which do not intersect, but the projection oo ptene

reveals the intersecting solutions of a second order differential equation in figure 12.

- 13—
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figure 13

4.5 Ared

The area program gives the student the power to see the manner in which the area “under” a
curve can becalculatedusing thin rectangulastrips, orother usefulrules, such as the
trapezium orSimpson rule. Visually, bytaking a larger number ddtrips, it becomes
apparent thasum of strip-areas ikkely to give the value of the araaderthe curve.
However, as usuathe software isextremely flexible and may based forall kinds of

investigations’-13. For instance, few students understémalidea of thesign ofthe area
calculation given in a traditionalburse,because it is leftoo late in thedevelopment and
related to the symbolism of the integral, instead of being introducedtifi®ieginning as
a numerical calculatiomvolving signedengths.Most students,and not a few teachers,
believe that the area is “positiabove,negativebelow”, but if the sign of the step is
negative, the reverse is true... (Figure 14 has a negative stepnagdtize ordinate in the

range working backwards fronTt2o 1, giving a positive result whethe curve ibelow
the x-axis).

T Available for all IBM compatibles, the BBC computer, Archimedes, Nimbus PC.
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figure 14

The area-so-far graplmay be drawn by plotting the value of the cumulativarea
calculations from a fixed point to a variable point. Figureshéwsthe superimposition of
two area calculations, first from0 tox=—5 with the negative step —0.1, then frgad to

the right with positive step 0.1. Notice the cubic shape of the ddtse aireacurve, which

experts will recognize a&x3/3. But we rarely consider this faegativex.
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4.6 The Function Analysef

The Function Analyser is written for the SMP 16-19 curricul@me ofits manyfacilities

is the ability touse function notation in the form f(xX) and to combine and compose
functions inthe normalway. Thus it is possible tdefine anddraw the graphof, say
f(x)=sinx, and then to superimpose the grapl=d{x)+2 (figure 16).
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figure 16

One routine in the progranallows a graph to be shifted or stretched horizontally or
vertically by specified amounts. It is clear that the graph»# ¥ is the same as thgraph

of f(x) shifted up two units, but what shift is required to prodineggraph of f&+2), and
why? ...

4.7 Numerical Gradients and Areas as Functioris

Now that the 32 bitRISC chip is becoming freely available iBritish Schools at a
reasonable pricéwhere Britain leads, the rest of the world will follow or steal...),
awesome power inalculation iswidely available tochildren. There are manyrograms
aroundthat will draw numerical gradients or numericaleasbut these are usualfyst a
sequence of pointplotted on thescreen. Anareagraphplotted as in figure 15 simply
recordsthe cumulative area calculations pictoriatlpyd does notemember them in any
way. But the area under a graph of a gifnction, fromx=a to x=b, with a givenstep,

say h, is calculated by atraightforward computeprocedure. Given amextremely fast
processor thixan be calculated almostistantaneously and may be considered as a
function depending on the graph and the valueslpfandh.

TCurrentIy only available for the BBC computer, Archimedes and Nimbus PC.

+ requires the processor speed of the Archimedes 32 bit RISC chip to function fast enough, but also
available at a slower speed for the Nimbus PC.

- 16 —



In theFunction Analyset? the expression:
areaéxpr, a, b, h)

is interpreted as the areaderthe graph given bythe expressiorexpt, from x=a to x=b
using step-widthn. Thus:

area(sin, 0x,0.1)

is the areaundery=sinx from 0 to x with step-width0.1. Such isthe power of the
Archimedes thathis graphcan bedrawn fromx=-5 to 5with 100 intermediatepoints in

less than 3 seconds (using interpreted BBC BASIC), even though at the exdezmesea
calculation is adding up the areas of 50 strips for each point plotted.

Now that the numerical area isfanction it may be treated as any other function and
numerically differentiatedrigure 17 showshe area functiorarea(blk),0,x,s) under the
blancmange function from 0 tousing strip-widths=0.05. (The area function is the rather
bland looking increasing function, not the pudding-like blancmange).
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figure 17

Of course, this graph is not the exact area function, but it is a good-laapgmgximation

to it — as good as one could hope to get on a computer screen. Notice thatri:laimiety
smooth — which it is, if one ignores tp&ellation problem — because the derivative of the
exact area is the blancmanfysction. The exact aredunction for the blancmange is a
function which is differentiable everywhere once aagvheretwice!... At last, using the
computer, the student has a chance of gaining insight as to how suchctimihgppen...
Mathematical analysis can begin to take on a real meaning...

The other graph in figure 17, by the wayay look like the blancmangé&unction, but it is
not! It was in fact drawn as the graph of
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area(blg),x,x+w,h)/w
which isthe areaunderthe blancmangéom x to x+w (calculatedusing strips widthh)
divided by thewidth w, (here withw=h=0.001). Thus it isthe numerical gradient of the
numerical area of the blancmange function!

Even thoughhe blancmange function rowhere differentiable, itarea function isquite
smooth and differentiable everywhere.

One way of understanding what this means is to think in a versatil@aleay the meaning
of area and the fundamental theorem.

Imagine a tiny part of the graph stretched horizontally (figure 18). In many tbaggaph
of a function stretches out to look flat — the more it is stretched, the flatter it gets.

AN/_\/ I

b > a b

expand horizontal scale/

figure 18

/]

This is easy to see with a graph program by chantj@g andy scales — using #in x-
range and a normgrange but drawing the graph in a standard graph windtivetretch
the thinx-range out horizontally.

Figure 19 shows that if the area from a fixed paitt a variable poink is A(x), then the
area froma to x+h is A(x+h), so the change in area fronto x+h is A(x+h)—A(x).

If the strip fromx to x+h is approximately a rectangle widthheight f§), then its area is
A(x+h)-A(X) = f(x)h
giving

AQc+h)-A
CH-AN .
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A(x+h)-A(X)

a X Xxth

figure 19
As h gets smaller, the graph gets pulled flatter, the approximation gets better and so
A'(X) = f(x)
— thefundamental theorem of the calculus.

A formal proof of this requireshe notion ofcontinuity. This notion is usually confused
intuitively by students, teachers andmathematiciansalike. Ask anyone with some
knowledge ofthe concept to explaiwhat it means anthe likely answer isthat is is a
functionwhose graph ha%o gaps” — its grapltan bedrawn “withouttaking the pencil
off the paper’etc, etc.These ideas argot the intuitive beginnings of continuity but of
“connectedness” which isnathematically mathematicallinked, but technically quite
different.

An intuitive idea of continuityarises inthe fundamental theorem oélculus.What is the
essential property that makes the fundamental theorem work? It is thatpartiion of the

graph stretched horizontallgoks flat. Howcanthis essential property beharacterized?
The answer is that the computer picture does not draw a theoretical lindineubfapixels

of finite thickness.

Consider asimplified model of what is happening in stretchihg graph horizontally.
Suppose that graph picture has middieluex=xg and the pointx,f(xg)) on the graph is
in the middle of a pixelvhose uppeand lower valuesire fkg)—e and fg)+e. To fit the

graph in a horizontal line of pixels means finding a smeadinge fronxy—d to xp+d so that
for any x in this rangethe value of ) lies in the “pixel range” betweenxf)—e and

f(xg)+e (figure 20).

The definition of continuity is:
The function f is continuous at X, if, given any specified error e>0, there can be

found a (small) distance d such that whenever x is between x,—d and xy+d, so f(x)
is between f(xp)—e and f(xg)+e.
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Xo—d Xo X0+d
figure 20

Mathematicians usually replace the letiendd by theirGreek equivalents & (epsilon)

and o (delta). (Perhaps inakes them seem monaposing!). The definition is written
formally as:

The function f is continuous at X, if, given any €>0, there exists & > 0, such that
Xg—0 <X < Xp+0 implies f(xg)—€ < f(X) < f(xp)+e.

The ramifications of this definition takeonths,evenyears, to understand all its glory,
but remembethat it has anappealing cognitive rooa continuous function is onghose
graph has the property that any suitably tiny portion stretched horizontally will pull out flat.

Thus we have again illustrated that the order of development may be very different from the
traditional logicalone. Herecontinuity has notbeen studiedbefore the fundamental
theorem — indeed it is very difficufor students to grasp in itegical form. Instead,
continuity arises through exploration as a natteglirementfor the fundamental theorem

and is ripe for further investigatiaiter the fundamental theorem has been encountered.

5. Reflections

In the precedingections we have hdbe briefest acquaintanedth a number ofyeneric
organizers involved with functions, graphs ahd calculus. In every cagbe software is
designed to expose one or morathematicalideas withthe dual role of being both
immediately appealing tstudents and also providing foundational concepts on which the
ideas can bduilt. By exploringexamples whichwork and examples whiclfail, it is
possible for the students to gain a far megesatileunderstanding. Buhey need help in
identifying the subtle powerful ideas embedded in the software and formulating it in a way
that can be used as foundations for the futéinel here they need taacher, as mentor, to
guide and encourage them in their journey through the theory, a task made potentially much
easier by the existence of the new software tools.
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