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We stand at a point in history which has all the makings of a change in
paradigm, in the sense of Kuhn. This change is being caused by a major
innovation in technology: the computer. Interestingly this change is also
occurring at a time when several different schools of thought are putting
forward consonant theories for the difficulties of learning mathematics which
may fruitfully be pulled together. Here I refer to such ideas as the theory of
cognitive obstacles initiated in science by Bachelard (1938) and now taken on
by many contemporary French mathematics educators, the theory of cognitive
“frames” featured in Davis (1984), the theory of concept definition and
concept image in Tall & Vinner (1981) and Kaput’s ‘complex web of mental
representations’ (mentioned in his article for this project).

At this point in the presentation of the Research Agenda Project we are
reviewing the research of the past before turning to the possible effects of the
new technology. The paper under consideration was limited by the organisers
to the pre-computer curriculum, but in this reaction I intend to discuss the two
aspects, the internal one which looks at the nature of the review, and the
external one which looks forward to its implications in the new paradigm. It is
therefore significant that the author selects as his focus of attention the notion
of “cognitive obstacle” which features throughout the pre-computer papers
considered here and will no doubt continue to be a major feature of research
in the future.

The papers discussed are mainly concerned with gathering and analysing
information as to the cognitive obstacles found in the current curriculum,
concentrating on three main topics: equations in two variables, graphs of
equations in two variables and the notion of function. The reviewer takes a
standard school curriculum view of algebra, leavened with the wisdom of his
experience of mathematical education. His viewpoint is essentially
constructivist, (though the term is not actually mentioned in the article) and he
chooses to interpret the notion of cognitive obstacle in terms of Piagetian
theory, where the learner is confronted with new ideas that cannot be fitted
into the learner’s existing cognition, leading to an inability to cope adequately
with the new information. Some, but not all, of the research discussed has an
explicit Piagetian foundation, in particular the data found by the researchers is
sometimes interpreted in terms of quasi-Piagetian stages, representing
increasing levels of complexity which not all of the pupils manage to reach. In
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others there is simply a questionnaire presented, seeking likely phenomena
which are then classified when the data is known.

The author chooses to present the main results from each paper in a
commendably coherent personal interpretation. However, he does not enter
into a detailed discussion of the various theories underlying some of the
papers, nor does he have the space to refer to related papers about topics other
than algebra in which relevant theory may be found. For example he does not
refer to the theory of concept image which Vinner uses to underpins his
approach, and which gives a reasonable explanation for the nature of cognitive
obstacles, nor does he refer to any work from the information processing
school who see cognitive obstacles in terms of mental programs with ‘bugs’ in
them, an analogy conjured up by a computer science environment. (See the
‘gentle criticism’ of the ‘buggy model’ in Thompson’s article later in this
agenda discussion.) It would be a valuable activity for the Research Agenda
Project to take this complex of related theories and to analyse in what ways
they agree or are complementary, and in what ways they differ.

The major problem with most of the investigations considered is that they
are linked to the curriculum as it is at present and one must consider to what
degree the conclusions may remain relevant in a new computer paradigm. This
consideration is intimately linked to the nature of two essentially different
types of cognitive obstacle.

The nature of a cognitive obstacle

The notion of a “cognitive obstacle” was first introduced in the realms of
science by Bachelard (1938) and highlighted in mathematical education by
Brousseau (198?). In their terms an obstacle is a ‘piece of knowledge of the
student that has in general been satisfactory for a time for solving certain
problems, and so becomes anchored in the mind, but subsequently, when faced
with new problems, it proves to be inadequate and difficult to adapt’. The
implication of Piagetian stage theory is that there are certain fundamental
obstacles that occur for us all. If such universal obstacles exist, they would
therefore also apply in a new paradigm.

I postulate that the reason for the belief in fundamental obstacles arises
from the fact that certain concepts have a degree of complexity that makes it
necessary to be acquainted with them in a certain order. For example,
fractions are, of necessity, more complicated than whole numbers, and
experience with operations on whole numbers leads to the implicit property
that ‘multiplication makes bigger’, which leads to a cognitive obstacle when the
individual meets the multiplication of fractions less than one.

However, some topics, traditionally taught in a certain order, may not have
the a priori property that one concept is essentially more complex than the
other. For instance, fractions are usually met in traditional syllabuses before
negative numbers, but there is no reason why, given an appropriate context,
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the two topics should not be taught in the reverse order. Indeed, given the
advocacy of John Thorpe’s opening paper in this agenda project, and the
response by Joan Leitzel, one might make a case for a considerable reduction
of effort on fractions in the curriculum of the future.

One may hypothesise that cognitive obstacles are a product of the student’s
previous experience and their internal processing of these experiences.
Granted this hypothesis, it would follow that an alternative sequencing for the
curriculum (where practicable) may change the nature of understanding and
the type of cognitive obstacle that may arise.

For example, empirical research shows that the problem ‘multiply 3c by 5’
is at a lower conceptual level than ‘for what values of a is a+3>7?’
(Küchemann 1981). However, this is based on a traditional approach to
algebra in which manipulation skills are often taught before seemingly deeper
conceptual skills. In an experiment Thomas (1988) used the computer to give a
conceptual understanding of the notion of a variable to experimental groups
and compared this with a parallel control groups studying a traditional algebra
sequence. This showed the experimental pupils reversing the traditionally
accepted levels of difficulty (table 1).

Question Experimental Control
% correct % correct

Multiply 3c by 5 14 41
For what values of
a is a+3>7?

31 12

Table 1

Thus the computer is likely to challenge many fondly held beliefs concerning
the comparative difficulties of algebraic concepts. It may also help
mathematics educators to sequence the curriculum in a manner more
appropriate for cognitive development.

I contend that the very way in which we logically sequence the curriculum,
limiting the child initially to simple cases for a substantial period before
passing on to more complex cases, is bound to set up cognitive obstacles.

Thus simple cases of functions, limited to those given by simple formulae,
will lead to the impression exhibited by Vinner and Dreyfus, that a function
‘cannot have two rules of correspondence’, or that the graphs are always
‘continuous’ because the examples encountered by the student always have had
this property.

According to Hart (1983),
... the brain is by nature’s design, an amazingly subtle and sensitive pattern-
detecting apparatus (p.60) ... designed by evolution to deal with natural
complexity, not neat ‘logical simplicities’ ... (p.76).
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Thus our curricula, designed to present ideas in their logically simplest
form, may simply cause cognitive obstacles, as for example, in the ‘intuitive
function concepts’ wherein the student is asked if the change of literal symbol
may induce a change in the values of a function table. Here one recalls
Brousseau’s notion of a ‘didactical contract’, the implicit unspoken agreement
between teacher and pupil as to the nature of the tasks to be carried out in the
classroom. Looking through this review one is often struck by the difficulty of
understanding the nature of the didactical contract in some of the questions as
posed. Clearly the students do not understand the nature of the game that is
being played and the meanings of the algebraic symbols.

Already curricula are being designed which incorporate more complex
problem-solving tasks from the outset, allowing the student to perform in a
human way by abstracting relevant information from a rich context. The
nature of cognitive obstacles produced by this type of approach is, once again,
a matter for research.

The computer will allow topics to be approached in a richer variety of
ways, allowing new sequences of presentation of ideas to avoid known
cognitive obstacles, though they are very likely to introduce new obtacles of
their own. Witness, for example, the work of Nachmias and Linn (1986) who
show that a significant proportion of students interpret computer
representations literally. In a physics experiment the students inserted a probe
into a cooling liquid and the temperature was represented as a function of time
as a graph on a computer screen. Unfortunately, the large pixel size onscreen
made the graph appear jagged rather than smooth, which about one-third of
the students interpreted as a true representation of cooling: they thought the
liquid remained at a constant temperature for a while, then suddenly dropped a
little (although this was actually given by the onscreen fall to a lower pixel
level). The ‘authority of the computer’ may therefore be an impediment in
learning, especially in the early stages though, on the other hand, the
predictability of computer software may also be a powerful learning tool to
help the student form meaningful mental representations of concepts currently
known to provoke difficulties. For example, programming in both Logo
(Sutherland 1987) and BASIC (Tall & Thomas 1986) gives students the
possibility of a meaningful conceptualization of a variable which, in their
different ways, help them to perform better at standard tests involving the
meaning of the concept of a variable. This suggests that the cognitive obstacles
that currently arise in the meaning of algebraic notation may occur to a
different (and one may hope a lesser) extent in the new computer paradigm.

Avenues for future research
The review has concentrated on describing the literature to date which does
not explicitly look to the new technology. However, there are pointers to
interesting avenues for future research. First of all, in a changing paradigm,
we need to ask the overall question:
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(1) What role will algebra play in the new technological paradigm?

For example the manipulation of algebra to solve equations will be less
important for that class of problems for which a numerical solution is
appropriate, for which simple numerical algorithms on the computer will
suffice. Leitzel and Demana (1988) report how the early stages of algebra can
be replaced for effective solution of many real problems by using a calculator,
and this approach includes problems which are very difficult to solve
algebraically.  Likewise the existence of symbolic manipulators may affect the
need to spend excessive time in the classroom learning techniques which can
now be carried out by a computer (though anyone who has used MuMath, or
the new symbolic calculator, the HP28C, will know that it is vital to
understand the essential algebraic principles, even if the computer is used to
carry them out at a greater level of complexity than the individual may care to
do by hand). We must genuinely rethink the role that algebra will play in the
mathematics of the future and this will be no easy task.

The second fundamental question related to cognitive obstacles is to initiate
new research to discover the effects of different kinds of computer
experiences on students conceptualizations:

(2) How does the computer environment change the nature of the
mathematical concepts, the development of students’
conceptualizations and the related cognitive obstacles?

In view of the growing realization of the complexity of the mathematical
concepts, which cannot be explained to the learner purely in terms of
mathematical definitions and logical development, we must also ask:

(3) How we can encourage students to participate actively in the
construction of appropriate meanings, some of which will be
very different in the future paradigm?

This latter question brings me to a point that is not explicitly germane to this
review, yet rarely discussed in papers presented at the Research Agenda
Meeting: the question of programming. I make a plea for its consideration
here because the review is implicitly about the manner in which individuals
construct mathematical meaning for the concepts of equations, graphs and
functions, and the cognitive obstacles which arise in the process. A most
valuable way of building and testing algebraic concepts is through
programming, even though this is bound to be bestowed with meanings
different from those found in pencil and paper algebra. An elementary
understanding of how the computer works through programming may provide
insight into how variables are handled and how graphs are drawn, so that some
of the cognitive obstacles mentioned so far may be confronted and discussed
openly, enabling the student to construct a richer and more coherent
conceptualization.
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