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We stand at a point in history whidias all the makings of a change in
paradigm, in thesense ofKuhn. This change is beingaused by amajor
innovation in technology: the computer. Interestingly this changealss
occurring at a time when several differesthools of thoughtare putting
forward consonant theoriefor the difficulties of learningnathematics which
may fruitfully be pulled together. Hereréfer tosuch ideas as théneory of
cognitive obstacles initiated in science by Bache(4888) and now taken on
by many contemporary French mathematics educators, the theory of cognitive
“frames” featured in Davis (1984), the theory of concept definition and
concept image in Tall & Vinner (1981) akaput's ‘complex web of mental
representations’ (mentioned in his article for this project).

At this point in the presentation of the Research Agenda Project we are
reviewing the research of the past before turning tgotssible effects of the
new technology. The paper under consideraivas limited by theorganisers
to the pre-computer curriculum, but in this reaction | intendiscussthe two
aspects, thenternal one which looks at the nature of the review, and the
external one which looks forward to its implications in the new paradigm. It is
therefore significant that the authselects as his focus of attention tieion
of “cognitive obstacle” which featurethroughout the pre-computer papers
considered here and will no doubt continue to be a major featuresearch
in the future.

The paperdiscussecare mainly concerned with gathering aadalysing
information as to the cognitivebstacles found in theurrent curriculum,
concentrating on three main topics: equations in two variables, graphs of
equations in two variables and the notion of function. Tdwaewer takes a
standard schodiurriculum view of algebraleavened with the wisdom of his
experience of mathematical educatiorHis viewpoint is essentially
constructivist, (though the term is not actually mentioned in the article) and he
chooses tanterpret the notion of cognitivebstacle in terms of Piagetian
theory, where the learner is confronted with nieas that cannot bigted
into the learner’s existing cognition, leading to an inability to cope adequately
with the new information. Some, but not all, of the resealisbussed has an
explicit Piagetian foundation, in particular the data found by the researchers is
sometimes interpreted in terms of quasi-Piagetisstages, representing
increasing levels of complexity which not all of the pupils manage to reach. In
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others there is simply a questionnaire presented, seeking |kelgomena
which are then classified when the data is known.

The authorchooses topresent the main results fromach paper in a
commendably coherent personal interpretation. Howeverldes notenter
into a detailed discussion of thaarious theories underlying some of the
papers, nor does he have the space to refer to related papers aboudthmrics
than algebra in which relevant theory may be found. é&@mple he does not
refer tothe theory of concept image which Vinneses tounderpins his
approach, and which gives a reasonable explanation for the nature of cognitive
obstaclesnor does herefer toany work from the informatiomprocessing
school who see cognitive obstacles in terms of mental programsbwgs’ in
them, an analogy conjured up by a compweenceenvironment.(See the
‘gentle criticism’ of the ‘buggy model in Thompson’s articlater in this
agenda discussion.) It would be a valuable actifoty the Research Agenda
Project to take this complex of related theories andnalyse in whatvays
they agree or are complementary, and in what ways they differ.

The major problem with most of the investigations considered isthiegt
are linked to the curriculunas it is at presenand one must consider to what
degree the conclusions may remain relevant in a new computer paradigm. This
consideration is intimately linked to the nature of tessentiallydifferent
types of cognitive obstacle.

The nature of a cognitive obstacle

The notion of a “cognitive obstacle” wdsst introduced in the realms of
science by Bachelar@938) and highlighted in mathematical education by
Brousseau (1987?). In their terms alpstacle is a ‘piece of knowledge of the
student that has in general been satisfacforya time for solving certain
problems, and so becomes anchored in the mind, but subsequently, when faced
with new problems, it proves to be inadequate and difficult to adapt’. The
implication of Piagetian stagdheory is that there are certaimnndamental
obstacles thabccur for us all. Ifsuch universabbstacles exist, they would
therefore also apply in a new paradigm.

| postulate that the reasdor the belief in fundamentabbstacles arises
from the fact that certainoncepts have a degree of complexity that makes it
necessary to be acquainted with them in a certamer. For example,
fractions are, ofnecessity,more complicated than whole numbers, and
experience with operations on whole numbers leads to the implagerty
that ‘multiplication makes bigger’, which leads to a cognitive obstacle when the
individual meets the multiplication of fractions less than one.

However, some topics, traditionally taught in a cerw@ider, may nothave
the a priori property that oneoncept is essentiallgnore complex than the
other. For instance, fractions auvsually met in traditionabyllabusesbefore
negative numbers, but there is no reason why, given an appropriate context,
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the two topics should not be taught in the reversger. Indeed, given the
advocacy of John Thorpe’s opening paper in this aggmdgect, and the
response by Joan Leitzel, one might male@asefor a considerable reduction
of effort on fractions in the curriculum of the future.

One may hypothesise that cognitive obstaalesa product of thetudent's
previous experience and their internal processingthase experiences.
Granted this hypothesis, it would follow that an alternative sequefaintpe
curriculum (where practicable) maghange the nature of understanding and
the type of cognitive obstacle that may arise.

For example, empirical research shows that the problem ‘multplyy3®’

Is at a lower conceptual level than ‘for whatlues of a is a+3>77?
(Kiichemann 1981). However, this lsased on atraditional approach to
algebra in which manipulation skills are often taught before seemilegiger
conceptual skills. In an experiment Thomas (1988) used the computer to give a
conceptual understanding of the notion of a variable to experimgraaps

and compared this with a parallel control groups studying a traditional algebra
sequence. This showed the experimental pugisersing the traditionally
accepted levels of difficulty (table 1).

Question Experimental Control
% correct % correct
Multiply 3c by 5 14 41
For what values of
aisat+3>7? 31 12
Table 1

Thus the computer is likely to challenge many fondly held beliefs concerning
the comparative difficulties of algebraic concepts. It may also help
mathematics educators to sequence thgriculum in a mannermore
appropriate for cognitive development.

| contend that the very way in which we logicagquence theurriculum,
limiting the child initially to simplecasesfor a substantial period before
passing on to more complex cases, is bound to set up cognitive obstacles.

Thus simplecases ofunctions, limited to those given by simgl@mulae,
will lead to the impression exhibited by Vinner and Dreyfus, that a function
‘cannot have tworules of correspondence’, or that the graphs aways
‘continuous’ because the examples encountered by the student always have had
this property.

According to Hart (1983),

... the brain is bynature’s design, aamazingly subtle and sensitiyattern-

detecting apparatus(p.60) ... designed by evolution taleal with natural
complexity not neat ‘logical simplicities’ ... (p.76).
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Thus our curricula,designed to present ideas timeir logically simplest
form, may simplycausecognitive obstacles, @r example, in théintuitive
function concepts’ wherein the student is asked if the changte@ symbol
may induce a change in the values of a function table. Here one recalls
Brousseau’s notion of a ‘didacticabntract’, the implicit unspoken agreement
between teacher and pupil as to the nature ofaies to becarried out in the
classroom. Looking through this review one is often struck by the difficulty of
understanding the nature of the didactical contract in some of the questions as
posed. Clearly the students do not understand the nature of the game that is
being played and the meanings of the algebraic symbols.

Already curricula are beinglesigned whichincorporate morecomplex
problem-solvingtasksfrom the outset, allowing thstudent toperform in a
human way by abstracting relevant informatibom a rich context. The
nature of cognitive obstacles produced by this type of approach is, once again,
a matter for research.

The computer will allow topics to be approached imicher variety of
ways, allowing newsequences ofpresentation of ideas to avoid known
cognitive obstacles, though they are very likely to introduce obiacles of
their own. Witness, for example, the work Machmias and Linn (1986) who
show that a significantproportion of students interpret computer
representations literally. In physicsexperiment the students insertegrabe
into a cooling liquid and the temperature was represented as a function of time
as a graph on a computer screen. Unfortunately, the large gmeebnscreen
made the graph appear jaggedher than smooth, which about one-third of
the studentsnterpreted as a true representation of cooling: they thought the
liquid remained at a constant temperature for a while, then suddenly dropped a
little (although this was actually given by the onscreen fall towaer pixel
level). The ‘authority of the computer’ may therefore be an impediment in
learning, especially in the earlystagesthough, on the other hand, the
predictability of computer software may also be a powerful learning tool to
help the student form meaningful mental representations of cormepé&ntly
known to provoke difficulties. For example, programming in both Logo
(Sutherland 1987) an®ASIC (Tall & Thomas 1986) gives students the
possibility of a meaningful conceptualization of a variable whichthieir
different ways, help them tperform better at standarngsts involving the
meaning of the concept of a variable. Thigygestshat the cognitiveobstacles
that currently arise in the meaning of algebraic notation may occur to a
different (and one may hope a lesser) extent in the new computer paradigm.

Avenues for future research

The review has concentrated on describing lieeature to date whicliloes
not explicitly look to the new technology. However, there are pointers to
interestingavenuedor future research. First of all, in @hangingparadigm,
we need to ask the overall question:
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(1) What role will algebra play in the new technological paradigm?

For example the manipulation of algebra to solve equations willlelss
important for thatclass of problems for which a numerical solution is
appropriate, forwhich simple numerical algorithms on the computer will
suffice. Leitzel and Demana (1988) report how the estdges ofalgebra can
be replaced for effective solution of many real problems by using a calculator,
and this approach includes problems which are very difficultsatve
algebraically. Likewise the existence of symbolic manipulators may affect the
need to spend excessitrme in the classroom learning techniques which can
now be carried out by a computer (thoumhyone who has used MuMath, or
the new symbolic calculator, the HP28C, will know that it is vital to
understand the essentafebraic principles, even if the computer is used to
carry them out at a greater level of complexity than the individual may care to
do by hand). We must genuinely rethink the role that algebra will play in the
mathematics of the future and this will be no easy task.

The second fundamental question related to cognitive obstacles is to initiate
new research to discover the effects of different kinds computer
experiences on students conceptualizations:

(2) How does the computer environment change the nature of the
mathematical concepts, the development aftudents’
conceptualizations and the related cognitive obstacles?

In view of the growing realization of the complexity of theathematical
concepts, which cannot be explained to tearner purely in terms of
mathematical definitions and logical development, we must also ask:

(3) How we can encourage students to participatgively in the
construction of appropriate meanings, some of which will be
very different in the future paradigm?

This latter question brings me to a point that is not explicitly germati@sto
review, yetrarely discussed inpapers presented at the ReseaAdenda
Meeting: the question gbrogramming.l make a pledor its consideration
here because theeview is implicitly about the manner in which individuals
construct mathematical meanifigr the concepts of equations, graphs and
functions, and the cognitive obstacles whiahse in the process. A most
valuable way of building and testing algebraic concepts thsough
programming, even though this is bound to be bestowed with meanings
different from those found in pencil and paper algebra. An elementary
understanding of how the computer works through programmingpmtagde
insight into how variables are handled and how graphs are drawn, Soitat

of the cognitive obstacles mentioned fao may be confronted andiscussed
openly, enabling the student to constructrieher and more coherent
conceptualization.
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