THE NATURE OF MATHEMATICAL PROOF

David Tall
Introduction

There is a legendary story of tlsage who posed the question: fermal
elephant hasour legs; if an elephant'srunk is called a leg, how marggs
does it have?’ He askednaathematician, who continued to stare at a pile of
paper on which haasscribbling as he muttered: ‘four and one make five'.
Next to him a philosopher mused enigmatically and puffed for anfewents

on his pipe before observing: ‘The fact that itcadled a leg,doesn’t change
the fact that it immot a leg, so the answer fisur’. ‘Excuse me,’ said gassing
zoologist, ‘if a trunk isclassified as a leg, clearly this will also apply to the
tail, so it hassix legs, and it's an insect’. A logician joined the conversation: ‘A
normal elephant has four legs, but you did not actually saytthaelephant is
normal, so there is insufficient evidence...’

Continuing to seek enlightenment, the sage in his wisgassedhe query on

to a statistician whoeturned the following day assertiripe mean is 0.33".
‘Might | ask how you came by this information?’ queried the sagecealing

his innermost thoughts behind an inscrutible smile. ‘The best way to suthe

a question is to obtain empirical information,” replied the statistician, ‘so |
went to the local zoo and got the answer from hbese’s mouth, so to speak.
Two elephants refused to respond and ithed blew his own trumpejust
once.’

Still bemused the sage went along to the local school which was deeply
embroiled in GCSE investigations and once again stateprbidem. ‘That's a
very interesting question,’ said the teacher.

The moral of this story is that, &umpty Dumpty once said, ‘when | use a
word, it means just what | want it to mean, and nothing else’. The term ‘proof’
IS just such avord. In differentcontexts it meansery different things. To a
judge and jury itmeans something established by evidence ‘beyond a
reasonable doubt’. To a statistician it means sometbowurring with a
probability calculated fromassumptions about the likelihood cértainevents
happening randomly. To a scientist it means something that can be tested - the
proof that water boils at 100° C is toarry out an experiment. A
mathematician wants more - simply predicting and testing is not enough - for
there may be hidden assumptions (thatwia¢er boiling isalwayscarried out

at normal atmospheric pressure and not, say, on the top of Mount Everest).
The Problem of Proof in SchooMathematics

Mathematics students live invaorld in which the term ‘proofmeans many
different things and so their interpretation of the meaning magiferent
from that of the teachejust as one teacher’s interpretation ndiffer from
another’s. | well remember as an A-level student many years ago drdieg
in the differentnuances of thevords ‘show’, ‘demonstrate’,verify’, ‘prove’
and ‘prove from first principles’. Proof very muameant reproducing a
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sequence of deductions to establishimportant result. Rarely did igrow
from a genuine problem.

Proof has nominally been a major ingredient of senior secomdattyematics

for many years, historically through the medium of Euclidg@ometry.
Euclid vanished from the British curriculum many years ago (though it is still

a staple diet in other countries, including the USA). In the nineteenth century |
understand that it was the practice to insist that Euclid was learned verbatim so
that, if a pupil reproduced the exact proof lmseddifferent letters, it was
considered wrong.

So what do we mean by proof in school mathematics today? It is my belief that
an adequate concept of mathematigedof is rarely, if ever, satisfactorily
considered in school. In response to what will surely be a chorus of
indignation, it is necessary to look at the practice of what we call ‘proof’ in
school mathematics. In A-level studigsoof appears insuch things as
‘proving that the derivative of cosx is -sinx’, which means gdimgugh a
sequence of symbolic manipulations that many studemdshard to follow,

only to arrive at a resulvhich they are quite prepared to accept. Why is it
necessary tprove something that iknownto be true?

Using a computer to sketch the gradient of sinx givgsagh whichlooks

like ‘sinx upside down’, can give atrong sense ofunderstanding why the
derivative isminussinx. So why, a student may ask, is a proetessary? An
amusing consequence of such an appraadurred when a group students

who used a graphical approach to guess the gradien&aid3 generalized

this to assert that the derivative df was n¥-1. When asked ithere was a
need toprove this they replied in the negative. A follow-up questgrerying
whether the computer had actually ‘proved’ the refaritall n, for instance,

for n=7 or n=-1 or n;: , elicited the rejoindertell us the value of n and we
will use the computer to verify the result’.

The student response to proof heseemscloser to the scientist than the
mathematician. Yet is it? Think for a moment homathematicians define
continuity: ‘give me an epsilon and I'll find you a delta such that Is this,

on the surface, much different from ‘give me a value of n and I'll find a good
enough numerical approximation to the gradient ...’?

In A-level, proof often occurs in the form ‘show that if something occurs then
something else happens’ - for instance a mechanics problem might skekato
that if the block slidesthen the coefficient of friction idessthan a certain
value’. For over a quarter of a centurywtas my privilege to mark A-level
examination papers in which, invariably, many pupils answeredjulestion

by showing that ‘if the coefficient of frictionvas lessthan a certain value,
then the block slides’. Irother words pupils were not able thstinguish
between the statements ‘if P then Q' and ‘if Q then P’. In examiner's meetings
we invariably agreed not to penalize this mistake, largpelyause irvirtually
every question under consideration the two conditions P andve@®
equivalent and sdoth statementsvere true simultaneously. Unddhese
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circumstances the concentration on deduction in one way only is a fine
distinction.

Of course, we teachers would never make such a mistake, would we? The
truth is otherwise. Every year virtually everyone teaching A-lawakhs
commits just thiserror. Weassert that two indefinite integrals differ by an
arbitrary constant, that is we say f'(x)=g'(x) thenf(x)=g(x)+c’. We deduce

this statement by reference to the true statement

‘If f(x)—g(x)=cthenf'(x)—g'(x)=0’

and commit the cardinal sin of simply turning it the other waynd,
perpetrating the very error | remarked on in mechanics examinations. Only in
this case the ‘theorem’ is false.

A counter-example may be given using the signum function

-1 x<0
sgn(x)=0 0 x=0.
1 x>0

The functions f(x)=sgn(x))-1(|- ad g(x)=)1(- have the same derivatives

everywhere (except x=0 where they are not defined), but they do not differ by
a constarit Oh, you may saythat's cheating, we don’normally meet
functions like that in the calculus...

No we don’t. Nor do we normally have the personal experience of boiling
water on the top of Mount Everest, which would prove that wetersn't
always boil at 100° C.

If we insist on claiming a general result is true jbstause wdind it to be
true in most of the&cases weaneet, how can we pretend to honour the ideal of
mathematical proof?

This example reminds me of another well-known story of the experimental
physicist who claimed to prove that 60 is divisible by every other number. He
came to this conclusion by consideringsequence of cases &stablish the
pattern: 1,2,3,4,5,6 and then moved on to a few others at random to test out
the theory : 10,12, 20, 30, and concluded that his regstexperimentally
verified. Hewas surpassed in themdeavour by an engineer who noticed that

all odd numberseemed to berime... One - well that's aroddity, butwe’ll
include it in - three, five, seven, good, we'’re getting somewhere - nine ? Oh,
nine... Let’'s leave that a moment - eleven, thirteen - fine. The exceptasel

of nine must have been an experimental error.

If we are truly to address the notion of mathematical proof in the A-level
curriculum, wemust begin to show students the difference between asserting
something is true on empiricadvidence and proving itrue by logical
deduction from known facts.

1The true theorem states “if (x)=g'(x) on a connected domain, then f(x)=g(x)+c”. The counter-example does not
violate this theorem because the domain of f(x)=1/x is in two separate connected pieces, x<0 and x>0, and on
each of these there is a single arbitrary constant.
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Problem Solving and Convincing Arguments

When a problem is encountered, the question of providing a convincing
argument to explain the solution often arisedds been a joyful experience
over the last few years to teach an annual problem-solving cbasssl on
‘Thinking Mathematically’ by John Mason, Leomeirton and Kay Stacey. In
this book are lots of diverting problems gmazzles which give mathematical
students of all abilities the chance to devefmpblem solving strategies.
Consider the problem ‘into how many squares can you cut a square?’. Initially
students often sajas many as you like’, or ‘infinity’. Then they begin to
realize that they could cut a square into 4, 9 or 16 by dividing it into pieces of
equal size, and suddenly thegethat any of these squares could itself be cut
into four smaller squares. Aha! A square could be cut into four quarters and
one quarter cut into four agaitgsing thequarter as acounted square but
gaining four smaller ones - so a square can be cusewensquares.

Now the problem begins to strike home - cutting any ofsdaeen squares in
four gives a new total of 10, then 13, then 16, and sdSonn the student is

on the track of identifying all the possible number of squares that rmigg®.

| won't spoil the fun by telling you the answer. But in all the yealave
studied this problem with some of the brightest mathematical undergraduates
around, virtuallyall of themsee sequences of possibl@mbers increasing by
three such a4,7,10,13,.. and 9,12,15,... aatinostnone of them enunciate
the obvious general result ‘IF | can cut it into n squares THEN | can cut it into
n+3’. After three years of university mathematics they still prefassertthe

truth of a statement using specific numbers rather deaicethe truth of one
general statement from another.

After an hour or so on this problem almost all $tedents have not only
found the numbers which can be done, including one or two surpusies
they had not initially thought about, they are concentrating on the few
numbers that do not seem to be possiSame studentsere able tooffer
some arguments as wehy the particular numbers would not work. But it was
not until | had run the course three times, with a total of well oveunared
students passinthrough my hands, that a student produced a plegsmogf
showing precisely which numbers could not be done.

| was so concerned about this lack fofmalities that the following year |
offered the prize of a bottle of vintage wine to anyone who produced what |
termed a ‘sweet proof’ of the result. | had to award the prize to a student who
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neatly word-processed his answer orMacintoshcomputer and coated the
paper with sugar!

To help the student focus on the variogtages ofputting up a convincing
argument, ‘Thinking Mathematically’ suggests three stages:

convince yourself,
convince a friend,
convince an enemy.

The idea is first to get a good idea how and why the result works, sufficient to
believe its truth. Convincing oneself iI®grettably, all too easy. Seased is

the average mortal when the ‘Aha!’ strikes that, even if shouting ‘Eureka’ and
running down the street in a bath towel isrdgeur, it is very difficult to
believe that the blinding stroke of insight might be wrong. So the stage is

to convince a friend - another student, perhaps - which has the advHrggge

to explain something to someone else at least makesaoheut thedeas into
some kind of coherent argument. The final stage, according to ‘Thinking
Mathematically’ is to convince an enemy - a mythiadbiter of goodlogic

who subjectsevery stage of amargument with a fine toothcomb seek out
weak links.

But absent from ‘Thinking Mathematically’ is the formal notion of
mathematicaproof, notbecause thauthors do not believe in it, bbecause,
in my experience too, the nature of a formal mathematical proofeig
difficult for students (and others) to comprehend.

Mathematical Proof

Mathematical proof differs from convincing a friend or enemy in thatust

be based on twamportant ideas. One is that it requirekearly formulated

definitionsand statementsand the other is that it requiragreed procedures
to deduce the truth of one statement from another

The reason why mathematical proof is so difficult to introdswecessfully in

the sixthform is thatneither of these concepts is found in the sixtrm
curriculum. We do not propose definitions ofathematical concepts in the
sixth form in the way that is done (with limitesdiccess) iruniversity courses.

By this | mean definitions such as ‘a group is a set G and a binary operation *
such that...’. Attempts at introducinguch ideas in th&New Maths’ of the
sixties were doomed ttailure. As examiner of an A-level paper including
group theory | found that virtually all students avoided the questions involving
the simplest of proofspreferring instead to gdor a predictable buborribly
messy question omtegration. It is much easier warry out a routine, but
nasty, calculatiorrather than make deductionBom an abstract definition,
however mathematically trivial the deduction may be.

Without adequate definitions of concepts we cannot be absolutely cettain

we are talking about and so we cannot be sure that we have a feoonad

proof. Experienceshows that thentroduction of formal definitions is not a
suitable way of teaching mathematics at this level. The Frémeth it for

years, in best Bourbaki style, and such an approach still persists in some coun-
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tries (Greece for one). But the French are neading activities which take

into account the cognitive development of pupils, based on the premise that
informal experience ofisingideas must precede the logical analysigh&m.

It is only by building on experience that we can hope to show students the
subtleties of different forms of proof: that ‘IF P THEN Q’ is the same as ‘IF Q
Is false THEN P is false’, but is not the same as ‘IF Q THEN P’.

The problem of proohas been with us since tinmamemorial and, if we do

not address the problem seriously, it could get worse in new curricula with an
emphasis on informal methods of enquiry throughmathematical
investigations. My friends in Comput&cience auniversity often express to

me their worries abowttudents enteringheir course without any concept of
proof. For howcan they teach students about the necegsityexact logical
thinking in the development of software if the students have no concept of
deduction? They are seriouslyorried about the need to producmmputer
scientists and programmers who write provably correct software that does not
contain horrendous bugs. The development semsible concept gbroof is
surely an important part of A-level.

Three men were going by train to a conference in the nether region of the
United Kingdom. The engineer looked out of the window and said, ‘Look, all
the sheep in Scotlandre black’. The theoretical physicist thougfar a
moment and said, ‘No, theexists a field in Scotland in which all tlsheep

are black’. Therevas silencdrom the logician whanusedfor some time in

the corner of the compartment before declariNg, there exists a field in
Scotland in which all the sheep are at least half black...’

The Beginnings of Proof in School

By asserting that formal mathematical proof is unattainable in a calnisé

lacks formal definitions and formal methods of deduction, havéorced
myself into a Catch 22 situation where the concept of proof cannot be part of
A-level? Will the difficulties not grow worse in new A-level coursesich

must follow on from GCSE and cater for a wider range of abilitreduding
students who only obtain a C-grade at 16+?

No. By giving students the opportunity to start along the patprotiucing
convincing arguments in practical situations, we can move towards the idea of
making logical deductions in more general situations.

First it is imperative forstudents to be involved in making deductions of the
form ‘if | know something, then | knowomething else’, ircaseswhere the
second may hold when thigst does not. Surprisingly suddeasare around
us all the time and we make them every day in the classroom:

If x+1=3 then (x+1%=9.

The converse is false: If (x+439, then it does not follow that x+1=Because
it might equal -3.

It may be helpful to look at general statements such as
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If x>5 then x>3

which is likely to meet with universal agreement as a true statement. Yet if P
is the statementx>5 and Q is ‘x>3’, this leads to someteresting
possibilities. Certainly we see that whenever P is true, Q is also tru¢hd3at

are alsacases, such as x=4 when P is false and {Qué& and otherssuch as

x=2 when P is false and Q is false. In general, shiggestshat the statement

‘If P then Q" means ‘If P is true then Q also must be true, but if P is false then
it doesn’t matter whether Q is true or false’. My experience in trying to
explain this idea shows that studeriisd it very hard to think about
implications of the form ‘If P then Q’ when P is false. They don’t understand
why we waste our time talking about it.

My own personal preference is to go for meaningful examples of THEN

Q’ where the conversdoesn’'thold. There are a number efichcasesthat
arise in the sixtorm if only we were to be bravenough to confront them
properly. One of my pet hates is the way that students invariably foola
maximum or minimum by seeking zeros ©fx). They cannot cope with
f(x)=|x| whichhas a minimum at therigin, but no derivative. If theypave
graphical experience which reveals that a curve baly a derivative where it
magnifies to look straight, then they are quite happsethat f(x)=|x|has no
derivative at the origin. The correct theorem is ‘IF a function hdsriaative

at a local maximum or minimum, THEN the derivative is zero’. The proof is
that if a function has a positiveerivative, under high magnification liboks
locally straight and is increasing, whilst if it has a negatiegvative, locally

it is decreasing. In eitharase itcannot have a maximum or minimum, so the
only possible thing that can happen at a maximum or minimum is that the
derivative is zero.

The power of proof can bemphasized nicely by showing howgeneral
algebraic statement covers far wider number ofcasesthan a specific
numerical calculation. A nice example from a recent book on ‘Introduction to
Proof in Mathematics’ by James Franklin and Albert Daoud is the proof that

1 _ 1 o 1
1000 ~ 1001 ~ 1000000

Although this can be done by simple arithmetic, it is just as easymand
powerful, to show that

1_1 1

n n+l " [2°

This now applies not just to n=1000, but to any value of n, say
n=100000000002.

Another kind of proof that we shouldmphasize is th@roof that certain
things are not possiblefer instance, is it possible to cut two oppositener
squares off &hessboard and to cover the remaining squares with dominoes,
each covering two adjoining squarddter a time one begins to realize that
perhaps it cannot be done. One strategy is to look not at 8 by 8 boards, but
something more manageable, say 2 by 2, 3 by 3 or 4 by 4. Théocltiee 8

by 8 board eventuallgomesfrom looking at thecolours of the chessboard
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squares. A domino covers one white and one black square. But what are the
colours of the squares in the opposite corners? Does this help us show that the
board with the missing corners cannot be covered by dominoes?

Proof means being precise about arguments and getting thiglgs But it

must be placed in the broader context of its power and generality, not just the
finnicky nitty gritty of dotting all the i's and crossing the t's. It should take its
proper place as the last and culminating stage of the process of mathematical
enquiry when all the threads are drawn together iorderly fashion with a

clear statement of assumptions and a clear sequence of deduction.

There is an unfair story, with a grain of truth in it, that is taldout
mathematicians which is a warning against excessive reliance on proof without
practicality.

‘How can you tell a mathematician from an engineer or physicist?’ The answer
Is, you seffire to his wastepaper basket. The engineer will malausory
calculation and swamp the basket with enough water to put outré¢hand
more. The physicist will sit down, calculate exactly how much watee¢sled

and pour the exact quantity on there. The mathematician? The
mathematician will sit down and calculate exactly how much water is needed.

What is needed in A-level mathematics are experiences that encetudgats

to make convincing arguments in meaningful situations. What we must do is to
introduce these experiences in a way that is both an end infidsetiie vast
majority of students who will go on to studgther disciplines, butalso
provides the cognitive foundations of formal prdof the tiny minority of
mathematics specialists whvaill later make logical deductionfom precise
definitions.



