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The Working Group on Advanced Mathematical Thinking was formed at the 
Conference of P.M.E. in 1985, yet discussion since that time has revealed 
difficulties in specifying the distinction between Advanced Mathematical Thinking 
(AMT) and Non-Advanced Mathematical Thinking, which will here be called 
“Elementary Mathematical Thinking” (EMT). The purpose of this paper is to 
initiate further discussion on the topic to encourage a more refined and specific 
meaning for the subject. 
An initial problem that occurs is that the name can be interpreted in at least two 
distinct ways, as “advanced forms of mathematical thinking”, or as “thinking 
related to advanced mathematics”. Earlier discussions in the Advanced 
Mathematical Thinking Working Group tended to prefer ambiguity on this point, 
accepting either, or both. From a pragmatic viewpoint, the work of the group is 
concerned with extending the theory of the psychology of mathematical education 
to later age groups, which we have arbitrarily fixed at the age of 16+, to include the 
later years of secondary education, the transition to university mathematics, 
undergraduate mathematics as a major study and as a service subject, through to 
the kind of thinking employed in mathematical research. Our intended aim is to 
produce a coherent view of the cognitive development of mathematical thinking 
from its earliest beginnings in childhood to the most abstract thought of the 
research mathematician. 
During this development, mathematical thinking becomes progressively more 
sophisticated, and by their early teens children are already using quite abstract 
ideas in algebra, so the distinction between elementary and advanced mathematics 
is not a simple matter of abstraction, although we shall see that there is a difference 
in manner in which the abstraction is used. 
Generalization and abstraction 
Generalization is the process of forming general conclusions from particular 
instances. The term also applies to the concept produced by the process, for 
instance “a+b=b+a” is considered an algebraic generalization of the arithmetic 
statement “3+2=2+4” and Rn is a generalization of R2. Generalization (and the 
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complementary process of specialization) is common to both elementary and 
advanced mathematical thinking.  
Abstraction is the isolation of specific attributes of a concept so that they can be 
considered separately from the other attributes. Abstraction is often coupled with 
generalization. But the two are by no means synonymous. For instance, the 
solution of linear equations in two variables may be seen as a generalization to the 
process of solving linear equations in three variables. Although one may argue that 
there is an implicit abstraction of the solution process, the more general process is, 
in this case, certainly no more abstract. 
On the other hand, it sometimes happens that when an abstraction occurs, the 
properties abstracted are such that they uniquely determing the original concept. 
One example is the abstraction of the notion of a complete ordered field from the 
real numbers. Another is the abstraction of the group concept from groups of 
transformations – Cayley’s theorem shows that every abstract group is isomorphic 
to a group of transformations – so abstract groups are no more general than 
transformation groups. 
However these latter examples are singularities in the process of abstraction. In 
general (!) abstraction serves two purposes: 

(a) Any arguments which apply to the abstracted properties apply to other instances 
where the abstracted properties hold, so (provided that there are other instances) the 
arguments are more general. 

(b) By concentrating on the abstracted properties and ignoring all others, the 
abstraction should involve less cognitive strain. 

In the latter case, however, although mathematically there is concentration only on 
the salient properties, cognitively there are obstacles to overcome. 
There is a clear cognitive difference between generalizations and abstractions. A 
generalization involves the expansion of a cognitive schema: the generalization 
sets the particular cases in a broader context which enhances their properties 
without violating them in any way. If there are difficulties, the difficulties lie in the 
comprehension of the generalization. The mental process of abstraction involves a 
reconstruction of the cognitive schema: any properties of the abstraction (which 
may also be properties of the original concept) must be deduced from the 
abstracted properties alone and seen not to depend on any implicit assumptions 
concerning other properties of the original concept. This is almost always likely to 
be accompanied by a period of confusion as the cognitive structure is reorganized. 
An example is seen in linear algebra. The generalization is to Rn, so that all the 
processes are involved with n-tuples of “real numbers” where the latter are just 
familiar decimals, without any abstraction of the field properties of R. The 
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abstraction is to a vector space V over the field F of real numbers. Both 
superficially have the same ideas : solving linear equations, linear independence, 
spanning sets, dimension, subspaces, linear maps, kernel, image, isomorphism, 
determinants etc. The generalization (hopefully) involves familiar ideas in R2 or 
R3, complicated by having more coordinates, thus expanding the cognitive 
structure, and only causing problems in the increased detail that must be grasped. 
The abstraction involves deduction from concept definitions, giving power and 
generality, abstract simplicity yet creating cognitive problems of conceptual 
reconstruction. 
It is here that the terms concept image and concept definition are valuable (Tall & 
Vinner 1981): 

The term concept image [is] the total cognitive structure that is associated with the 
concept, which includes all the mental pictures and associated properties and pro-
cesses. It is built up over the years through experiences of all kinds, changing as the 
individual meets new stimuli and matures. 
 ... the concept definition [is the] form of words used to specify that concept.  

The concept definition has been abstracted by previous generations of 
mathematicians from their mathematical experiences. The student is asked to 
accept this concept definition as a list of abstracted properties that characterize the 
concept, involving reconstruction of the concept image to generate the logical 
deductions and to isolate the subset of properties deduced from the concept 
definition. 
Justification and Proof 
The 16+ School mathematics curriculum in England claims to introduce students to 
the idea of proof, though at this early stage the concept is usually developed in an 
informal way. However, I would contend that the type of proof envisaged by many 
students at this stage is more in the nature of a justification than a logical necessity. 
For example, in using Graphic Calculus to show that the gradient of xn is nxn-1, I 
have many times worked with students as they establish that the numerical gradient 
of the graph of x2 approximates to 2x and the numerical gradient of x3 is 
approximately 3x2. Students usually generalize to state that the gradient function of 
xn is nxn-1. However my experience is that when asked “don't we need to prove this 
for general n”, they often respond with the comment “Tell me n, and we’ll check 
with the program” – for instance, if n=1/2 then, checking with the program will 
confirm that the gradient is again nxn-1 (for n=1/2)). The form of proof here is 
analogous to scientific proof: to show that water boils at 100˚ C, just boil it and 
confirm that it does. It is also dangerously close to the format of the proof of 
continuity - give me an ε and I'll find a δ - only the student says “give me a specific 
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value of n for f(x)=xn, and I'll find a small value of h so that the graph of 
f(x+h)-f(x)

h   looks like nxn–1 ...” 

The difference between justification and proof is also related to the mathematical 
objects on which the argument is based. In elementary mathematics the objects are 
first concrete objects in the environment whose existence is confirmed by a 
combination of the five senses, and then mathematical abstractions (such as 
number) which can be related directly to reality. Advanced mathematics is more 
often based on mathematical objects which are defined in terms of their properties. 
The latter may have been abstracted from reality, and the initial definitions may 
implicitly depend on the students’ previous experiences. For instance a function 
may be defined in the following terms: 

A function f from a set A to a set B is a rule or process that associates with each 
element of A a unique corresponding element of B 

which actually required a sophisticated concept image in order that the terms used 
are given appropriate meanings. Having so “defined” a function, further definitions 
may be given in terms of properties, for instance: 

A function f from A to B is injective if f(x)=f(x') implies x=x'. 

To be able to cope with this definition, the student has to realize that x and x' 
denote elements of the set A which have different names (x and x') but the elements 
may be the same, indeed, in the end they are the same! Once one understands the 
game, it is a trivial matter to prove that: 

If f and g are injective functions, then the composite g°f is injective. 

Proof: If g°f(x)=g°f(x') 

then, by definition, g(f(x))=g(f(x')),  
so f(x)=f(x') (because g is injective) 
Hence x=x' (because f is injective. 

Thus g°f is injective. 

However, for many beginning university students, this is a very difficult proof 
because they do not understand the way advanced mathematicians define concepts 
by properties and then prove theorems by manipulating the properties of the 
concept definition.  
Deduction and implication 
It is also important cognitively to distinguish between two kinds of proof that are 
mathematically equivalent: 
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(1) The deduction of properties of mathematical concepts in a given context, 
(2) The implication that if certain properties hold, then others will follow. 

Typical examples of (1) might be 
There are an infinite number of primes, 
The derivative of cosx is -sinx, 

In a group, (a*b)–1=b–1*a-–1, 

Typical examples of (2) are: 
If a function is differentiable, then it is continuous, 

If f and g are injective, then so is the composite g°f. 

In (1) there is an implicit conceptual field in which certain properties are assumed 
to hold and other properties then exist within this field. In (2) specific assumptions 
are made explicit and the existence of other properties is contingent on the explicit 
properties being satisfied. Given the conceptual field, the properties proved by 
deduction then have a cognitive existence and can be used to build up a powerful 
and stable edifice in the mind. The conditional implication has a lack of closure 
that means the mind must always be alert to the existence of the necessary pre-
conditions. Particularly difficult from a cognitive viewpoint are statements of the 
kind P ⇔ Q where it is necessary first to assume P is true to prove Q, then suspend 
one’s belief in P and assume Q is true to prove P. 
Thinking in advanced mathematics 
Advanced mathematics in the twentieth century is built on the scaffolding of 
axiomatic theories, where the axioms are no longer the “self-evident” truths of the 
Greeks, but concept definitions which are set-theoretically formulated abstractions. 
The knowledge structure of advanced mathematics is based on such abstract 
scaffolding. Thinking in advanced mathematics is more than just the finished 
structure of the mathematical theory. It concerns mathematical thinking that 
creates such a knowledge structure, communicates it to others who then re-create 
such a knowledge structure in their own minds and use the forms of mathematical 
thinking to solve problems which are new to the individual (though perhaps not to 
the mathematical culture as a whole). Thinking in advanced mathematics is not 
always a logical process, for the creation of mathematical ideas involve associative 
resonances between previously disconnected ideas. 
Using the notions that have been distilled by mathematicians such as Poincaré, 
Hadamard, Polya, and more recent mathematical educators (for instance Mason, 
Burton & Stacey 1982), we should recognize a number of distinct phases in 
mathematical thinking. For instance, Mason et al identify three stages: entry, 
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attack and review. In the entry phase the context is clarified, identifying what is 
known and what is wanted, before the main phase of attack occurs. Such an attack 
can involve both deductive and associative processes, and once a problem has been 
well and truly entered, a period of mulling or incubation may well be necessary 
before an idea for a solution may occur. Finally the review phase checks what has 
been done and reflects on it before looking forward to extend the ideas in new 
avenues. 
Advanced mathematics includes all these phases, enriching the review phase to 
include the building of the knowledge structure into a formal sequence of 
deductions from concept definitions, a stage of thinking which Hadamard terms 
“precising”. 
Advanced thinking in mathematics 
It is significant to note that the book “Mathematical Thinking” (Mason et al 1982), 
which includes problems that can be attacked by a wide range of abilities and ages, 
does not explicitly refer to proof in its overall strategy, placing the emphasis 
instead on three levels of justification: 

Convince yourself 
Convince a friend 
Convince an enemy. 

The third of these might be seen as a kind of proof, but only if the enemy is a 
mathematician who demands a deductive proof from concept definitions. The 
existence of the final “precising phase” of proof is the significant difference 
between EMT and AMT. This stage is what I would term “advanced thinking in 
mathematics”, as opposed to the creative stage that occurs in attack, which 
involves creative “thinking about advanced mathematical concepts”. There is 
creative thinking in both EMT and AMT. Both often involve generalization, but 
AMT usually involves abstraction, particularly in the use of concept definitions for 
associative and logical deduction. 
The logical proof structure developed in the “precising” stage is one of the 
crowning glories of advanced mathematics. Regrettably, too often it is only the 
results of this stage that are passed on to mathematics students; giving them (in 
Skemp's terminology) the product of mathematical thought rather than the process 
of mathematical thinking. 
This advanced stage of mathematical thinking requires the abstraction of 
generative properties from mathematical concepts to produce concept definitions 
which may be manipulated abstractly to develop the logical relationships between 
them. Whereas the keyword of EMT is coherence between related concepts that fit 
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together, in AMT it is consequence, involving logical deduction from concept 
definitions. 
AMT 
I consider AMT to be any part of the complete process of mathematical problem-
solving, from the creative processes involving deductive and associative 
resonances between previously unrelated, or even undefined, concepts, through to 
the final “precising” process of mathematical proof. 
This description (for it is hardly a definition) is global, rather than local. A specific 
process may be designated as advanced mathematical thinking because it is part (or 
even potentially part) of the complete cycle of mathematical problem-solving. 
Notice therefore that the use of ideas developed through advanced mathematical 
ideas, such as an algorithm for solving a problem, is therefore designated as AMT, 
even though it may not involve the whole cycle of mathematical thinking. Because 
of the abstraction involved in the process (through concept definition and 
theoretical deduction), AMT occurs in a mathematical conceptual field where there 
are appropriate abstract mathematical structures available to build up a network of 
deduced relationships. In significant research, AMT includes the development of 
new conceptual fields. 
Although an essential criterion is proof, or the later possibility of proof, advanced 
mathematical thinking can, and does, occur at times when logical deduction is 
absent. In particular the creative act in mathematical research through the 
resonance of previously unrelated mathematical ideas is classified as (an extremely 
important part of) AMT, even though it may involve little, or no logic, at any given 
time. 
AMT cannot exist in a vacuum. The constructions of appropriate concept 
definitions rely on previous experience from which the generative properties can 
usefully be abstracted. There are preliminary activities laying the groundwork for 
AMT which introduce concepts not immediately abstracted from reality, such as 
the mathematical notion of an infinite process, the notion of a limit, or of cardinal 
infinity. These are involved in the transition from EMT to AMT and much material 
taught in the calculus in the late secondary school comes under this heading. It is a 
moot point whether this is classified as AMT or not, yet it is an important 
foundation for AMT. I would propose that this comes under the heading of AMT, 
though in a transition phase, for it is laying the foundations for ideas which will 
eventually be abstracted in the advanced mathematical thinking of mathematical 
analysis. 
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Distinguishing features of Advanced Mathematical Thinking 
Because advanced mathematical thinking has been defined here in terms of the 
overall conceptual structure in which it takes place, it is not possible (at least, I 
have found it difficult!) to specify a list of criterial attributes that distinguish a 
particular instance of mathematical thinking as being advanced rather than 
elementary. However, for the purpose of discussion, it may be valuable to end up 
by listing some of the characteristics which have arisen during the course of this 
paper: 
 (1) The abstraction of properties to provide concept definitions for 

mathematical concepts, 
 (2) The use of abstract mathematical concept definitions to ease cognitive 

strain in thinking, 
 (3) The insistence on logical proof rather than coherent justification, 

which involves: 
 (4) The deduction of properties of mathematical concepts (from given 

concept definitions), 
 (5) The implication that if certain mathematical properties hold, then 

others follow. 
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