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Mathematicalconcepts are more thgost the logical sequence of definitions and
deductions whichmake up the formaframework ofthe subject. In mathematical
research it is first necessary to develop a framework of linkages between ideas before
they are sorted out into a precise deductive sequence. Yet, in tedbRisgbject is so

often presented in its final organized form in a Wt the majority olindergraduates

seem to find notoriously difficult. Wbelieve that the a maj@ource ofthe students’
difficulty lies in the lack of an appropriate intuitiveackground to provide an
environment within which the formal ideas can be interpreted and hence understood.

The arrival of morepowerful computers offershe opportunity of manipulating
concepts visually in real time, and this facility can be put to good ug&nimg insight
into the logicalrelationships involvedThe recent introduction of thRISC (reduced
instruction set) chip ithe Archimedes computgives such aain in speedhat it is
now possible to dravhighly irregular curves in amteractive manner to give new
insight into subtle theorems of mathematical analysis.

As an example, let us cite the theorem

“the integral function | of a Riemann-integrable function f is continuous, and
where f is continuous, | is differentiable”.

There ardwo ways in which thignay be interpreted: as a sequence of puagical
deductions fronthe definitions of the concepitsvolved, and a broadenterpretation
which gives the individual an understanding awty the theorem istrue, not only in
showing how the continuity of f meaningfully leads to the differentiability of I, but also
how discontinuityof f can sometimegbut not always!)lead to | beingnon
differentiable.

In this article we shall begin by establishing some fundamental principles in the
calculus, whichare somewhat different fronthe definitionsof the conceptsyet form

the basis for abetter understandingof the concepts.The fundamental principles
emphasise thenodellingaspects othe calculus, andare therefore highly relevant to
real-life applications of the theory. They suggest that we stionotthmentallyreassess
theway in which we viewthe structure of the calculdsth from apracticaland a
theoretical viewpoint.

The generative idea we take in differentiation is the notion of “local straightness”, this is
the propertythat a differentiabldunction is onewhose graph “lookstraight” when
viewed under a microscope of sufficient. This seemtislly a crude idea thatequires
further precision, but it has twatal ingredients. Firsthe idea isone which, in a
learning context, appealsnmediately to thebeginner, andsecond,its implications
stretch right througlthe theory to formal ideas of differentiabieanifolds, leading to
concepts in both standard and non-standard analysis.

We will use the power of the ArchimedesRISC chip to show models of both
differentiable and non-differentiabfanctions, togain insight as tavhy theorems in
analysis might arise as a result of thek=as.Then we will look atthe Fundamental
Theorem of Calculus to sdeow the formal idea of continuityarises as anatural

ingredient, and seehy continuityis the generative ide@r this theorem rather than
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differentiability. In particular we will see tharea function Ifor a continuous non-
differentiable function n growing in real time to sgby it is that the aredunction will

be quite smooth and have n as its derivative. In particular we wébleeto visualize a
function | which is differentiable everywhere once, but nowhere twice. Furthermore, if
we look at a second-order differential equation of the form:

2
dxz = n(X)

then we will be able to visualize the solution as a function whidifferentiable every
twice, but nowhere three times.

1. Local straightness

The concept of local straightness is exemplified by magnifying the graph fg=any

point. For example the graph at x=1/2 magnifies to give a curve which appears virtually
straight, withgradient 1. Given suitablsoftware it is possible to superimpose the
graph of y=x-1/4 to make the point clearly (figure 1).

Figure 1

Notice that the computer picture of the line is made upixals, so it is necessary to
discuss howthe computerepresents a curvelhe highlighting of pixels may be
compared with trying to represent a strailyi drawn across a chess-board by only
highlighting squares. lillustrates that the computer picture asly a model of the
situation and emphasizes theed,once the visualizatiomas been achievedfor a
closer analysis athe calculations. Thgraph andhe tangent line malpok coincident
within the limited discriminationafforded bythe computer model but they are only
indistinguishable within the accuracy of the picture.

The “local straightness” on magnifyinghe graph centred atx=a can clearly be
expressed in the form

f(a+h)-f(a)
——FR = constant

for any*“suitably small” h, depending on the accuracy of the compsiteeen. From
this idea can be drawn the beginnings ofetldadefinition of the derivative.

It should be noted that, during the course of the magnification,

equal scales must hesed to se¢he truegradient.There is aschool text-book, which

shall remain nameless, that asks the student to draw the graph of sinx from 0 to 180 (in
degrees) and then to obtain a gradient of 1 abtiggn. Usingunequal magnifications
produces other interestindeas, as washall sedater when wecome toconsider the
concept of continuity.

More exotic examples to strengthen the learner’s grasp will nedtt@not only non-
differentiability, but alscsuch things athe possible non-continuity othe derivative.



The well-known function f(x)=xXsin(1/x) exhibits a number dhterestingproperties,
for example, the shape flarge x (and how ‘large’ is ‘large’). Othe moreusual study
of what happensear, andat the origin. Zooming in near, but not including,zero
reveals a sine curve (with gradient varying betwe#jy but magnifying thegraph
centred on zero (takinif0)=0) showsthe curve to be flaffigure 2). The function is
differentiable everywhere but the gradient visibly has a discontinuity at the origin.

Figure 2

A practical method teketch a tangent to a curve at a specific point [ddoce a ruler
‘inside the curve’, in such a position that equal portionthefcurve argust visible on
both sides of the point (figure 3).

Figure 3

This suggests that the very reasonable expression

f(a+h)-f(a-h)
~—2n

could beused as aapproximation to thelerivative. Graphs with ‘cornergdifferent

left and right gradients at a specific poist)ow the inherent fallacy ofthis attempted
definition. This isclearly seen fromtbe simple exampl¢x|, orthe more interesting
function, the maximum of sinx and cosx, defined as

d(x)=max(sinx,cosx).

In this case, dine drawn from x-h to x+h for x®&/4 in no way represent®cal
straightness: zooming in shows the graph is not locally straight at this point (figure 4).

: . . . fx+h)-f(x) . :
Hence the necessitior the one-sidedtraditional limit h is established
together with the fadhat the limitmust bethe samdor h both positive and negative.
Students (andnany teachers) have amplicit belief in the existence of thengent,

even at a corner, as a line that “touches the graph at oneopbjiiit Examplessuch as

these show that a graph has a tangent at a given point if and only if it has a (two-sided)
derivative there.



Figure 4

Initial experiences with the computer might suggest that it is only necessasydbtze
the gradient using a “small h” rather than use the formal limit. However, a syseailic
may fail to exhibit even tinier variations igetail which are revealed by a higher
magnification. The function

h(x)=cos(1000x)/1000

produces tiny oscillations and, although the graphs of d(x) and d(x)+h(x)dermtical

on the screen when drawn from O tm, 22 much higher magnification reveals the tiny
differences between the curves which lead to considerable differences igragint.

For the graph of d(x)+h(x) avalue of h several degrees of magnitude smaller than
before is necessary tget a reasonable estimafer the gradient. Meanwhile,
magnifying the curve at X#4 showsthe “corner” still persists (figures). The only
way to be sur¢hat the gradient is correctly calculated is via “an appropriately small
value of h”, which will depend on the nature of the graph and possibly vdiffesent
parts of a given graph, leading to the necessity to introduce the formal derivative.

Figure 5

The examples so far described can give the studentintimgession of non-
differentiability as an occasionaficalizedphenomenonmuch as itwas viewed in the
nineteenth century before the full range of possibilities became apparent.

A function with an infinite number of discontinuities is
g(X)=1/[1/X]
(where square brackets denote the “integer part” function, and we also define g(0)=0).

The derivative, everywhere #éxists, is seen to beero by zoomingn, except at the
origin, where itclearly looks to be 1 (figure 6) Here isiotivation to calculate the
gradient of the function at x=0 from first principles (not too difficutaisk). The result
is confirmation of a very nasty beastleed, with aderivative of 1 at the origin and a
derivative of 0 “almost everywhere else®. except at a sequence pdints where the
function is defined but discontinuous. Magnifying the graph at the origin gpietuse
which looks like astraight ine of gradient 1, banywhere elsegven near therigin,
the graph either has a jump discontinuity or has derivative zero.



Figure 6

Given an adequate drawing package on a computepdsisible to look at sonreally
awkward caseslhe Function Analysefor the Archimedes computer encourages the
use of functionnotation to look at difficult functionsuch as g(d(x))giving real
challenges to sketch and interpgeich graphs, oroccasion testing the computer
software beyond its limits!

2. Nowhere differentiable continuous functions

It is now possible to drawnodels of everywhere continuous, nowhdierentiable
functions asintegral parts of graph plottingprrograms.Appropriate functionan be
calculated byalgorithms whichare simpler tacalculate than familiafunctions such as
sine or cosine, and given sufficient computpayver (available on many computers in
compiled languagesuch as C andPascal,and on the Archimedes in interpreted
BASIC!) they may be drawn at a most satisfac&pged.This offers not onlyisual
insight to stimulate the thinking about tlmgical construction of such functions, but
also a flexible context in which the combinations of thesetionsmay bedrawn and
investigated.

One such function was christened the “blancmange functiodobyMills (figure 7),
because of itshape,(Tall 1982). Wewere amused, however, to fitiadat theFrench

do not recognize this Franglais term at all; their French word for this culinary creation is
“pudding”. Other nations are very patriotic in their attributions: the blancmange function
is called the “Takagifunction” in Japan, after the Japanesemathematician who
described it in (Takadl903) and in Holland graphs of thigoe are named after Van

der Waerden, who used them to give a simple proof of non-differentiability.

Figure 7

The general case of a Van der Waerden function is constructed by starting wilwvthe
tooth

s(x) = min(x-[x], 1-(x-[X]))

defining
s(k™)
()= n
and setting



van(x,k,m) = g(x)+s1(x)+...5n-1(X).
(Figure 8.)

Figure 8

The kth Van der Waerden function is tireit of this as m increase¥he blancmange
function is the particular case when k=2.

The whole thing could be a formal nightmare to the uninitiated. But visually it is easy to
see. To construdhe kthVan deWaerdenfunction, start with a saw-tootls(x) which
moves up to a half and down again in every unit inteiNalv take agraph reduced in
size to have lsuchteeth in each intervalnd add iton. Successively add osmaller
teeth reduced in size by a factor k each time. Suezessive approximations ttee Van
der Waerden functions wikoon stabilize to give a satisfactopicture. (Figure 8(c)
superimposes van(x,3,n) fo=1,2,3,4 and the stabilization is already evident on-
screen.The Archimedes computdrolds “real numbers” only to an accuracy of 32
binary digits (toutilize the speed of its 32bit processor), sdhe practical limit of
computer accuracy will be reached adding on the mth teb#tre 1/K is lessthan
1/232, For k=2 this requires farger thar82, k=3requires m>21 and k=10 requires
m>10. Thus forthe most accuratemodels possible orthe Archimedes require
approximations such asan(2,x,32) or van(10,x,10)Provided that they are not
pressed toelose to the limitations of numericatcuracy, they give most satisfactory
visual presentations.

Logically these pictures camotivate ideas concerning the limits sequences in

analysis. For each x;,€) is a positive number between 0 and 1MRlkso the sum of
m terms van(x,k,m) does not exceed

A1+1/k+...+1/K0-1) |

which is lessthanz /(1-1/k) and iscertainly lessthan 1.For any x,k the sequence
van(x,k,m) is a monotonic increasing sequence in m, which tends to a linihdess.

Hence it is (mathematicallwtraightforward to give a formadroof of the result, and
once more link the visual idea of the limiting process to the formal notion.

3. The fundamental theorem of calculus and continuity

The Riemann integral may be simulated on the computer by dréwergreaunder the
graph using strips of appropriate height. Consider the simple example of sinx from 0 to
211, using a fairly coarse strip-width, say0.5, with the mid-point approximation for

the height of each strip. This gives a surprisingly close estimate.

But what happens when we add thin extra strips tarea already calculate@ppose
we have the arellom 0 to x calculated approximately as A(&nhd look atthe area
calculationaround x=2.4. The generative idea here is to stretch graph in the
horizontal direction, without changing the vertical scale (figure 9).



Eigure 9
This pulls the graph out horizontally and clearly shows that
A(x+h) = A(X)+(x)*h,
SO

f(x) = A(x+k;])-A(x)

What can be motivated lhis idea is that the morene stretches this particular graph
horizontally, the more it pulls out flalhe essentigbroperty is that, tget the y-value
onscreen within a pixel, say get f(x+h) within atolerancete of f(x), requires the
choice of a suitably small value of h, say h less than some specifi¢aisthe idea of
being able to stretch a graph out flat corresponds to the symbolic idea:

Givene>0, one may specif§>0 so that when |h§so |f(x)-f(x+h)|<,

which is preciselythe definition ofcontinuity. In otherwords continuity arises as a
natural ingredient for the fundamental theorem of the calculus

This can be tested out on otheontinuous functions, for examplalthough the
blancmange function looks very steepeath integer value of x, stretched horizontally

it still pulls out flat! (Figure 10.)Evenvx, which has aertical tangent at therigin,
pulls out flat for given y-scale by choosing the x-range suitably small...

Figure 10

4. Insights into theorems about integration

Looking more specifically at the fundamental theorem we have a pragngh plots

the area calculation as a sequencealat and simultaneouslyraws the straightline
through the lasttwo dots ateach stage. The gradient ofthis straightline is an
approximation to the gradient of the afaaction. But aghe area of the lastrip (say
from x to x+h) is h*f(x+h/2) using thenid-ordinate approximatiorthe gradient is this
value divided by hwhich is f(x+h/2). Forsmall values of h this is close f{x), the
ordinate on the originaturve,again giving a visual representation of the fundamental
theorem, though one which contains a lot of information and is thereforediffimdt

to comprehend in real time. Taking the strip-width to be very small and using the power
of the RISC chip todrawthe moving picture amaximumspeedcan give interesting
insights.



Considerthe integral of thaliscontinuous function [x] fronx=-1 to 3 with asmall

step, say 0.0Zfigure 11). Over each horizontadtrip of the graphthe area function
increases linearly, but as each new step is higherarea functiomncreasedaster. At

the discontinuities the different ledind right gradientsnatch thegrowth rates on the
two successive horizontal parts of the original graph...

Figure 11

Rather more interesting is[x], using the fast speed of drawing tactually seethe
suddenchange in gradient of the area function asciturs inreal time. Figure 12,
which becomes truly meaningful only when seen changing dynamicallyhdgsaph
f(x)=x-[x] drawn and isbuilding up the picture of the ardanction, momentarily
drawingthe gradient of the area function aslaes so.The successive pictureshow
the suddenchange in gradient of the area function as the calculgizmses over a
discontinuity of f(x) at x=3.

Figure 12

A discontinuity in the original functiomloes not alwaysead to asuddenchange in
gradient. Try drawinghe graph of o(x)=|sgn(x)[the absolute value of thgignum
function, which gives o(x)=1 for#0 ando(x)=0. The graph-drawingalgorithm is
unlikely to pick up theodd point wherethe function is zero so it wiljust draw a
horizontal line. However, if the software will calculate the value of individual points on
the graph, if x=0 is given specifically, then one obtains 0(0)=0.

Clearly calculating the numerical area for this graph over an interval including the origin
will like as not fail to pick up the value of the function at the origitess weselect the
intervals very carefully, and even thtve effect ofthis will be diminished by taking
very thinstrips. The area functiofrom x=a in this case i#&(x)=x-a, with derivative
A'(X)=1. Thusthe area function can leverywhere differentiable, but differ from the
original function if that has isolated discontinuities.

What would the integral of 1/[1/x]look like? It is an interesting challenge ty to
sketch it... Where is it continuous? Where is it differentiable? (Figure 13.)

Figure 13



The integral of a non-differentiable function ssirely a very odd creature. As a
challenge, what does the area function lbké for the 3rd van der waerdefunction?
The resulting graph is of a function whichdiéferentiable everywherpreciselyonce
(Figure 14.)

Figure 14

Again, the drawing of the area function in realme produces interestingnsights,
particularly when one looks at the changgrgdient. For examplaear the point x=1

the graph is near zero, so the change in area is small too, leading to the area graph being
nearly flat. In fact the area function for this non-differentiable function is a very boring
looking function indeed, jusimpily increasing in a relativelgmooth manner, with
gradient varying between 0 and 3/4 (the lower and uppeinds ofthe Van der
Waerden Function).

5. Differential Equations

A first order differential equation
dy/dx=f(x,y)

can be visualized by drawing an array of shiog segments through poin{g,y) with
gradient f(x,y). A solutions then follows the direction of these line segments.

The value of drawing a direction field for differential equations to visualietions is
well known (Neill & Shuard 1982, Hubbard &/est1985, Tall & West1986). By
allowing a wider repertoire ofunctions, graphical programscan begin toaddress
broader problems. For instance, under whatumstancesdoes the differential
equationdy/dx=f(x,y) have solutions®imited experience mighéuggest f(x,y) would
need to be some kind dhice function”, but looking at possible solutions of a
differential equation such as

dy/dx=Dbl(x)

(the blancmange function) suggests that continuity of the function is more essential than
differentiability. Drawing a direction fielthrough an array of points ithe diagram,

with each line segmerthaving gradient bl(x)produces a rather uneventful looking
picture (figurel5). Asbl(x) is everywhere between 0 and the gradient of thdine
segments are everywhere between 0 and 1 and a solution curve which follows the given
directions gently ambles along increasing in a steady but lwayywe saw earlier.

Since a solution y=I(x) ofhe differential equatiosatisfiesl'(x)=bl(x), we once more

find a function 1(x) which is everywhere differentiable once and nowhere twice.



Figure 15

Of course this solution is the integral

I(x) = jg bi(t) dt |,

which is the area under the blancmange curve from a fixed point a to a variable point x.
We do notknow asimple way of calculatingthis function in general, although the

reader might like to check that the afe@m 0 to 1 isexactlyz . Thus we knowthat a
solution exists and bable to calculate mumerically, but are not bable to give it in
terms of a formal algorithm or formula.

Differential equations such as
dy/dx=x2+y?

may havesolutions,but these solutionsiay not be given by combinations kfiown
functions (in “closed form”). Hubbard and West (198Baching differential equations
to studentdave noted thastudentshave difficulties distinguishing betwedhe case
that “a differential equatiohas no solution”, andhat “a differential equatiomas no
solution in closedorm”. The problem lies in the similarity of the verldéscriptions
and thelack of suitableexamples. Graphical modetgmable the student weethat a
solution exists, even though it has no simple formula.

Looking at higher order differential equations, such as
d2y/dx2=bl(x)

can lead to even momowerful ideas. Solutions to théxjuation can be easilyrawn
and have theproperty that they areeverywheredifferentiable twice, but nowhere
differentiablethreetimes Oncemore the graphicaolution, far frombeing exotic, is
really rather prosaic (figure 16).

Figure 16

As we have indicated elsewhe(@all 1986), the visual approach tdirst order
differential equationsthrough the direction diagramgives a far more powerful
generative idea than the hotchpotchsginbolic methods, whichare only of value in
specific cases. It gives insights into the conditions under what solutions might exist and
the qualitativeshape of such solutionsimply by looking at thepicture. See, for
example, how figure 17 intimates the possible behaviour of solutiothe a@fifferential
equationdy/dx=x-y+1. As X increases, nmatterwhat the initial starting values, the
solutions home in on the line y=x.
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Figure 17

Solving differential equations is best done by a combination of symbolic methods
interpreted using visual insight and dynamic computer graphics have a fundamental role
to play.

6. Conclusion

Nature has few straighines - one mighsaythat theonly straight lines in nature are
made by man, or by motion. Yet we model thal world of fluctuation and change by
the calculus, which itself is based the idea of locastraightness. Moreovethe real
world modelsare by no meanslways amenable to theymbolic methods of the
calculus. Inthe realworld, computer models of theconomy,aircraft manufacture,
weather prediction, spacttavel and a myriad other applicationsse numerical
approximations honed by carefully guided theory.

Does this not intimate to us that the traditioapproach to thealculus,heavily biased
towards symbolic methods, might not benefit from a greater usenoéricalmethods,
backed by graphic visualization to give the general overview.

The once universally taught method of extraction of squ@ts is dead, long division
is dying, we nolonger double declutciwhen changinggear. Giventhe increasing
power ofvisualization withthe computerthe emphasis on symbolic manipulation for
the majority ofusers stands imperil of being replacedFor the manywho use
mathematics, interactive computer graphics can begin to giviedighitsthat hasbeen
so sorelylacking in purely formaimethods. For those who pass on to sttatynal
mathematicabnalysisthe power of graphic packages isow being raised to devel
where it isable toprovide the cognitivdoundations on whiclhe theorems can be
built.
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