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This reaction has been commissioned by the PME Xl organising committee to
consider the contribution of each paper grouped under this heading, to seek
common threads, to formulate major questions that still need to be answered
and to look for indications in the papers as to how these questions might be
tackled. The task is a daunting one. It is rather like attempting to put together a
jigsaw puzzle whose pieces were not created to fit together in a master plan,
each with a life of its own. It is a problem-solving activity and | shall approach

it in a problem-solving spirit. In doing so | should like to acknowledge the help
given me by Michael Thomas in formulating this reaction.

1. The contributions of the papers to the research area

The papers grouped under “algebra in a computer environment” range widely
from initial ideas in the subject to the graphical representation of algebraic
functions, and some expand the domain to more general functions and analytic
relationships between variables and their rate of change in “feed-back systems”.
Although these would not all be classifisththematicallywithin algebra, they
cognitivelyembrace algebra concepts, beginning with the translation from real
world problems to algebraic notation, with its surface syntax and underlying
semantic structure, linking with relationships to other representational systems.

The papers also represent very different stages in the research process which
are fruitfully considered from a problem-solving viewpoint, passing through
various phases after the style discussed by Ma&tal. (1982). An initial
entry phase gathers together what is known, what one wants to know, and
what tools one might assemble in preparation foratthi@ck phase where the
empirical work is done. This may result in an impasse or a significant gain,
when it becomes appropriate teview and refine what has been achieved
before either re-entering the problem for a different attackingrthe work in
new areas through a new a spiral of entry, attack and review.

Some of the papers have completed a full research cycle, others describe
only part of a longer span, for instance, the entry phase to new research,
reviewing the literature from earlier phases, proposing theories and setting out
plans of attack.

Boileau et al, are beginning a new phase of attack“lrta pensée
algorithmique dans [linitiation a I'algébre”. They propose to start
the study of algebra with activities that are “both significant and motivating to
the student”, “coding problems ... relating to the students’ prior experience” by
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providing a “tailor-made programming language which will serve as an
intermediate representation ... between the problem to be solved and the final
coding.” They formulate some characteristics of the environment but stop short
of giving information as to the state of the development of the system or any
empirical testing. Their distinction betwete syntactic, internal semanand
external semantiaspects of algebra is one which may prove a useful link with
other papers.

In “believing is seeing: how preconceptions influence the
perception of graphs, Goldenberg begins an entry phase, based on
experiences using computer software and preliminary observations with two
“bright, successful, second year algebra students”. He leads into a discussion of
“how perceptual illusions and shifts of attention from one feature to another
obscure some of what educational use of graphs is supposed to illucidate”,
particularly where the representation lacks familiar perceptual clues, thus
raising some concern as to the efficacy of certain aspects of multiple linked
representations.

Thompson & Thompson introduce some significant new software in
“computer representations of structure in algebra” linking an
algebraic expression of its tree structure allowing free mixing of numbers and
letters. They have made an initial empirical attack with a week’s
instruction/exploration of the software with eight seventh-grade students. They
report that the students “felt no discomfort when letters were first introduced in
to-be-transformed expressions” and that, after an initial period of
experimentation, errors due to inattention to structure were infrequent.

Judah Schwartz also has a reputation for producing innovative software and
his paper on“the representation of function in the algebraic
proposer” is no exception in this respect. The original proposal had hoped to
include empirical research with 12 college freshmen, but, in the event, the paper
Is restricted to a presentation and discussion of the software only, giving a
tantalizing glimpse of the possibilities of providing a word problem an algebraic
description and interrelating it with graphical and numerical representations.

Dreyfus and Eisenberg present a complete research tycl¢he deep
structure of functions”, entering with a theoretical framework for
analysing aspects of the function concept, empirical knowledge of student
misconceptions, and a constructivist approach to abstraction using computer
microworlds. They hypothesise that the understanding of the relationship
between the algebraic and graphical representation of a function is facilitated by
using a specific piece of software and that this can be improved by providing
structured activities for the students. One group of eight students worked in a
highly structured teaching environment whilst a second group were allowed to
explore freely. A pre- and post-test revealed a significant improvement by both
groups on “non-standard” questions, relating to shifting and stretching



transformations on graphs, but the difference between groups was not
significant.

In “Dienes revisited: multiple embodiments in computer
environments”, Lesh & Herre report part of a major on-going project of
research and curriculum development which reveals “significant ways that
computer-based instruction can encourage teachers and students to make greater
use of activities with concrete materials ... at the same time ... implementing
some of the best instructional strategies associated with mathematics
laboratories”. They discuss a symbol-manipulator/function plotter c&ldd
which provides direct links between algebraic manipulation on equations and
the graphical representations of the functions on each side of the equals sign.
The general questions raised are broad and important but the page restriction
regrettably leaves no room to report empirical results.

Zehavi etal cover a complete research cycle ‘ithe effects of
microcomputer software on intuitive understanding of graphs
and quantitative relationships”. They describes a new piece of
software, Dots and Rulés designed to help intuitions on graphs of linear
relationships, tested using pupils of “average ability”, in three experimental
classes compared with three control classes, selected from similar schools. Tests
were given immediately after the treatment and eight months later and showed
that “although the software seems to have been only moderately effective,
retention of what was learnt was good”. “The results indicate that software of
this kind can be effective in achieving its main goal — creating intuitive
readiness for future concepts.”

Two papers look at the role of programming in Logo and its relationship to
‘paper and pencil’ algebra. Sutherland outlines the preliminary results of a three
year case study on “the use and understanding of algebra-related
concepts within a Logo environment” She reports that “analysis of the
data indicates that most pupd® not naturally choose to use variables in their
Logo programming, although with teacher intervention it is possible to find
motivating problems which provoke pupils to use variables”. Under these
circumstances there is evidence that “pupils can use their Logo derived
understanding in an algebra context”.

In “using micro-computer assisted problem-solving to
explore the concept or literal symbols — a follow-up study”,
Nelson interviewed three “average ability students” a year after a study in which
they had been “taught to use Logo to solve problems involving number
sentences, rectangles and recursion”. They remembered most of the Logo
commands used a year before, though none recalled the MAKE command for
variables and “were able to use literal symbols to represent missing dimensions
of rectangles when writing expressions for area”. The author concludes that
“microcomputer oriented problem solving has a long-term effect on the concept
of literal symbols”.



Two other papers beginning new entry phases of research pass beyond
algebra into concepts linking variables and their rates of changé&Uin
systeme d’apprentissage de [I'abstraction par représentation
graphique”, Nonnon describes software

allowing young pupils to control the motion of an electric train, and
simultaneously to see its position graphed as a function of time, to enable
them to acquire a graphical coding language to predict the interaction between
the variables for distance, speed and time. The prototype software has been
trialled, using pre-test and post-test to show a significant improvement in
predicting and interpreting relationships between the three variables.

Garancon & Janvier report the entry stage into new researcthia
understanding of feedback systems with micro-computer
software”. They formulate the general notion of a feed-back system as “a set
of mathematically defined relations between variables” which can “generally be
expressed as a set of differential or difference equations”. They envisage the
understanding of the system as a form of coordination of three representations
of the system: an iconic representation of the feed-back loop relating the
variables, the superimposition of the cartesian graphs of the variables as
functions of time, and the phase plane diagram representing the implicit
relationship between the variables. Current mathematical research into
dynamical systems shows just how complex these systems can be and one looks
forward with interest to the results of research into students’ understanding of
the specific systems designed for the research program.

2. Common links in the papers

It will already be apparent that the papers cover a wide range of activities. A
closer inspection also shows timat two papers cite a common referernée a
humorous aside, | found it pleasant to see that | am not the only author who
refers to my own papers more than anyone else...) Despite the apparent anarchy
that this may imply, there are certain underlying trends that can be seen.

2.1 Multiple linked representations

More than half the papers use software that links algebraic notation to a
graphical representation, one links a real-world situation with a graph, one links
the algebraic representation of an expression to its binary tree structure.

Kaput (1987) has suggested four sources of meaning in mathematics:

1. By transformations within, and operations on, a particular
representational system,

2. By translation across mathematical representation systems,

3. By translation between mathematical and non-mathematical
representations (such as natural language, visual images, etc.),

4. [Reflective abstraction] By the consolidation and reification of
actions, procedures, and concepts into phenomenological objects



which can then serve as the basis of new actions, procedures and
concepts at a higher level.

It is helpful to review the papers within this framework to see their span over a
range of activities. For instance, Nonnon links a graphical interpretation to the
real world which

“permet a I'éleve d’acqueérir un langage graphique de codage ... acquis au seul
contact de la réalité, sans support verbal.”

Boileau et al also wish to link the pupils’ experience with mathematical
concepts, this time through programming, whilst other papers concentrate more
on translatiorbetweersystems. When one of those systems is graphical, it is
often seen as a more “intuitive” system. For example, Zeétaal. comment

that the main goal of their software is “creating intuitive readiness for future
concepts”.

Yet Goldenberg warns of difficulties with multi-representational software:

“Common-sense supports the notion that the use of more than one

representation of a function will help learners understand what remains less

clear when only one representation is used. Presented thoughtfully, multiple

linked representations increase redundancy and thus can reduce ambiguities
that might be inherent in any single representation ... taken together, multiple

representations should improve the fidelity of the whole message. The

theoretical arguments ... arc reasonable enough, but they may not be valid.”

His case questioning validity is based on his two subjects’ misconceptions of
the nature of graphs. Other research supports this concern. For example,
Nachmias & Linn (1987) show that a computer-generated graphical
representation of a cooling curve of liquid in real-time was misinterpreted by
30% of the children involved, because the large pixels on-screen gave the
impression that the liquid remained at a constant temperature for a time and
then suddenly dropped a little (to the next pixel level). These students believe in
the absolute veracity of the computer. My own observations using computer
graphs with older children students suggest that it is possible to discuss such
limitations meaningfully, but there are clear indications of conceptual obstacles
that need to be researched.
Lesh & Herre suggest that

“Good problem-solvers are flexible in their use of various representational

systems — they instinctively switch to the most efficient representation at any

given point in the solution process”.
Although preliminary empirical data shows the value of multiple linked
representations, more data of how students of differing ability and experience
cope will be of great value.

2.2 Microworlds and the Role of the Teacher

The vision of Papert was that, by giving children access to rich microworlds,
such as programming in Logo, they would develop “powerful ideas”. The
reality of this vision is that they may not develop the powerful ideas that may be
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deemed desirable. For example, the children in the Sutherland study “did not
naturally choose to use variables in their Logo programming” and teacher
intervention was necessary to provoke suitable activities.

Dreyfus and Eisenberg comment on the “partial success” of several
experiments using microworlds in “achieving a process of abstraction on the
part of the student” and question “whether the framework needs to be revised”.
They conclude that “this does not seem to be appropriate” as the studies were
“rather short term” and “extremely high level activities are required for the
processes involved in abstraction in general”. They hope that “longer and more
systematic exposure to dual and triple representations of mathematical objects
will achieve a clearer effect ... but at present this is simply speculation”.

2.3 The Notion of Variable

A noticeable feature of the papers is the variety of different meanings given to a
variable. The pupils in Sutherland’s study all used (local) variables as inputs to
procedures whilst those in Nelson’s used global variables with the command
MAKE (which they subsequently forgot). Neither paper refers to the difference

between a variable in algebra and in programming. (For instance, a Logo
variable has a nam& and a valueX.)

Although Boileauet al consider elementary algebra as “minimalement
I'algébre des polyndmes en une indeterminée, mais aussi les fonctions linéares,
guadratiques, trigonometriques, exponentielles et logarithmiques”, they later
speak of

“des fonctions (toujours algorithmiquement calculables) definies sur des

ensembles de nombres, éventuallement représentées par des tableaux de

valeurs, des graphes cartésiens, ou des algorithmes de calcul”
which suggests the possibility of more general procedures. Interestingly, no
paper mentions procedural functions even though, when “Al ... earns $6 per
hour if he works 15 hours .... [and] gets paid time and a half for overtime” (in
Lesh & Herre), his actual wage, for any )non-negative) number of hours, can be
calculated in Logo as

TO WAGE "HOURS

IF HOURS<15 [OP 6 * :HOURS] [OP (6 * 15 ) + 9 * (:HOURS — 15)]

END

or in structured BASIC as
DEF FNwage(x): IF x < 15 THEN := 6*x ELSE := 6*15+9*(x—15).

Either of these will easily generate a full table of values for his wage against the
number of hours worked (normal and overtime), giving a more interesting and
realistic function than the algebraic expression for overtime only.

In Thompson'’sExpressions Microworldletters have a more abstract use,
standing either for numbers or other expressions, whilst, in some other papers,
variables are parts of formulae related to graphical representations. Only Lesh &



Herre and Thompson & Thompson concern themselves witmémgpulation

of expressions. Lesh & Herre make the important observation that “the
possibility of first describing, then calculating is one of the key
features that distinguishes algebra from arithmetic”. It is telling to note that
Sutherland’s Logo pupils without algebra experience use variables ostiyréo
numbers, not to manipulate them.

2.4 Research methodology

Of the eleven papers presented, only two have a traditional experimental v.
control methodology, two use pre- and post-tests with the experimental students
only whilst others used observational techniques or clinical interviews.
Sutherland chose ethnographic methodology “as being the only one possible in
an area where technology, pedagogy and the approach to mathematical content
were all innovatory”. Perhaps different techniques are required in different
phases of research, with ethnographic methods more suited to the entry phase
and a traditional methodology more suited to review, though this division is
clearly not hard and fast.

3. Major questions that still need to be answered
3.1 Algebra in a computer environment

First and foremost we must begin to address ourselves to the role of algebra in a
future computer-oriented paradigm. Most of the research presented here is
concerned with the manner in which traditional algebra may be enhanced by the
computer with little emphasis on a modern procedural approach. Many
interesting functions such as the price of a postage stamp as a function of
weight, are given procedurally rather than as a simple formula. Modern
computer programs, such as the modelling prog&teilla (1986), allow
functions to be typed in as formulae, as logical expressions, or even as
piecewise straight graphs specified using an on-screen pointer under the control
of a mouse. The new IHewlett Packard HP 28C symbolic calculator allows
variables to have values including complex numbers, vectors, matrices and lists;
thus a list of information such as the details required for drawing a graph
(ranges, independent variable, number of points etc.) can be stored as a variable
and recalled when required.

An important global question framing all our research should therefore be

How can we direct our use of the computer in
mathematics education to the concentrate on the
algebra of the future, in addition to the algebra of
the past and present?

In particular we should spend a little time thinking about the role of symbolic
manipulators. My own hunch in using them is that they (at present) offer a
powerful way of handling theyntax,but the user needs to have a coherent
understanding of theemantics.



It is important also to address ourselves to the question of the needs of

different user populations. Several of the research papers talk about pupils of
“average ability” (a term which is sometimes a little difficult to interpret).
Twenty years ago (in Britain at any rap)pils of average ability did not study
algebra.Leitzel & Demana (1987) suggest arithmeticapproach to algebra.
May we sometimes be wasting our time looking at the difficulties of sections of
the population for which formal algebra may be of no relevance? Should all
children study the same kind of algebra, or do we need different types of
algebra for different populations?

3.2 Multiple Linked Representations

Given the high profile of dynamically linked representations, it is clearly
important to obtain far more empirical evidence of their use. In particular we
should ask:

In what ways do students, of differing ages, abilities
and experience, use dynamically linked
representations in different curriculum contexts, and
how do they conceptualize the relationships between
the representations? What cognitive obstacles are
likely to occur in their use?

What is a suitable theory (or theories) underlying
the provision of suitable developmental sequences?

In what ways can multiple linked representations be
integrated into the curriculum for learning,
teaching, problem-solving, and assessment?

Here we note that the links between representations can take differing forms, for
example Garancon & Janvier view the understanding of feed-back systems as a
coordination of three distinct representations, one of which istdtemenbf

the problem (the feed-back loop) and otherssatations.Other systems simply
translate §mbolic information into graphical form.

For a given system, are there simple translations
between two representations, or does the
relationship involve some kind of solution process?

Does the *“understanding” of the relationship
between two representations involve a direct logical
relationship, or is it an intuitive one, or perhaps a
combination of the two?

It would be useful to debate the interplay between syntax and semantics, in
terms of the classification proposed by Kaput, the notions of syntax and
internal/external semantics of Boileatial and the new evaluation of Dienes’
principles as described by Lesh & Herre.



3.3 Programming

Two clearly distinct threads arise in the papers, one proposing specially
designed software to enhance learning, the other to encourage constructive acts
through programming. These may be seen as totally separate methods of
approach, or as beingpmplementaryfulfilling two different, but essential,

roles. We ask:

In what way are programming and the use of
prepared software complementary, and what
constitutes an optimum combination of the two in
terms of understanding and efficiency (time on
task)?

Boileauet al speak of a new language for learning algebra, whilst other papers
use Logo. It is important to discuss what kind of computer language is
appropriate, not just for doing algebra, but also for developing a growing
awareness of algebraic structure during the learning process.

3.4 The Role of the Teacher

Lesh & Herre suggest that the use of certain software will encourage teachers to
take a “mathematics laboratory” approach to learning and teaching, but Boileau
et alremark that

“En depit de ces progres theoriques, les enseignants en mathématiques sont
relativement dépourvus quand il s'agit d’aider les éleves a se représenter les
relations des problemes algébriques narratifs.”

| suggest thateachers are not convinced by theoretical research, but by ideas
and materials thatvork, for them,in the classroomThe role of the teacher
should surely be an explicit part of our theories of mathematics education. With

the complexity of the representational systems and the need for teachers to
embrace computer technology, we must ask:

How can we encourage teachers to participate
actively in our work so that our research is both
relevant and suitable for implementation?

3.5 Artificial Intelligence

Few of the papers mention the use of tutoring systems, thoudtxfinessions
Microworld and the symbol manipulator/function plott@AM are both written

in Lisp, which gives them the possibility of being used in a more
diagnostic/predictive mode. THexpressions Microwod has been explicitly
written todo nothingif it is given an inappropriate command by the user, thus
encouraging users to think about the consequences of their own a&iiivis.

can produce solution path “traces” to create many instructional capabilities and
do other things that are intended to “help students go beloriagngto think
about thinking”. One view is that it is the teacher and the pupil who provide



the intelligence, in a way that cannot be provided by the machine, another uses
the machine to infer action from a database of knowledge.

Particularly in the case of algebra, which has both a syntactic and a semantic
role to play in mathematics, we should ask:

In what ways can computer environments be
designed and used to provide intelligent support to
the learning process?

3.6 Constructivism

This conference has constructivism as a major theme, and it is implicit in
several of the articles, if not always explicit. My own belief is that learning is
facilitated by the intelligent action of the pupil, with the teacher acting as a
guide and mentor, and | have been struck by the power of the computer to
provide a cybernetic environment that acts in a reasonable and predictive way to
enable the pupil to build and test new concepts represented dynamically by the
software. But do we all share this belief?
Davis (1986) poses the fundamental question:

Every educational use of computers is based upon
someone’s specific philosophy of what, exactly, is to
be learned, and upon someone’s philosophy of
effective pedagogy. These *“foundations” are, at
present, extremely insecure.

In the prescnt case, exactly how do we want our
students to think about algebra?

To this one must add:

llow can we use computers to encourage students’
active participation to develop this algebraic
thinking and to think about thinking ?

4. The Way Ahead

| am aware that although some of the questions | have highlighted are phrased
as research questions, others are not. Our discussion must include an attempt to
focus on specific research hypotheses. It was part of my brief to seek indications
from the papers as to how to tackle the highlighted problems. As most of the
authors concentrate on putting over their own message in a limited seven page
span, it would not be fair to expect the papers to be addressed explicitly to
gueslions formulated after the papers were written, however, | am confident that
the collective wisdom and experience of the authors may be brought to bear in
the discussion at P.M.E.
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