Using the computer to represent calculus concepts
(Utiliser l'ordinateur pour se représenter des concepts
du calcul differentiel et intégral)

David Tall

University of Warwick
England

Résumeé
En Angleterre on étudie le calcul a trois niveaux:

1. Quelques éléves de 15/a6s étudient la différentiation et l'intégration des
polynomes d’une fagon intuitive.

1. Tous lesétudiants de mathématiques et scienced@&lé8 ansétudient la
différentiation, I'intégration et les équations différentielles d'une fagjomple,
avec les définitions dynamiques, sans-&athéorie d’analyse formelle.

3 Les étudiants de mathematiques 1d#21 ansétudient la théorie formelle
d’analyse classique a l'universite.

Graphic Calculus(Analyse Graphique) est umaéthodepour I'enseignement de calcul qui
utilise les images dynamiques d’un ordinateur aux niveaux 1 et 2, et donne les idées intuitives a
niveau 3.

Il'y a plusieurdogiciels pour I'ordinateur deBBC dansGraphic Calculus Par exemple, on

peut étudier le concept de la pedfane courbeavec le logicielGradient Le professeur ou
I'étudiant peut taper la formule d’'urienction, enutilisant la notation mathématiquedinaire,

et 'ordinateur dessine leourbe.Ensuite il dessine lpente numérique de la fonctimomme

une courbe et on peut taper une formule pour que l'ordinateur dessine sa courbe et on peut voir
si les deux courbes sont superposées.

Le logicielArea dessine la courbe et ensduite il des$imiee approximative ou la fonction de
I'aire approximative avec I'option de superposer une autre courbe pour comparaison.

'y a les autres logicielpour les équationglifférentielles qui dessinent lesolutions
numeériques dans deux et trois dimensions.

La théorie deGraphic Calculusest unexempled’une “cognitive approach” (une approche
cognitive). Lelogiciel ne montreque les exempled’'un concept,mais ceux-ci aident les
étudiants en construisant le concgpneéral. J'appelle léogiciel un “genericorganiser” (un
organisateur générique) parge’on éspere que leétudiants comprendront les exemples
spécifiqgues comme les exemples génériques (typique du concept général).

La conférence est divisée en quatre parties:

1. Une description bréve de I'enseignement du calcul en Angleterre,

2. La théorie d’'une approche cognitive avec les organisateurs génériques,
3. Une approche cognitive au cald@kaphic Calculus

4. Un rapport d’une étude empirique dans la salle de classe.

Plenary lecture, Le IVéme Ecole d’Eté de Didactique des Mathématiques, Orléans,
Recueil des Textes et Comptes Rend@86), 238—264.
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Introduction

The development of a graphic approach to the calculus which | shall describe
here is part of a more general learning theory in which the computseds

to enhancdearning. In this presentation | shall explain the gen#érabry

which gives rise to aognitive approachto learning mathematicsSuch an
approach is aimed at presenting the concepts to be in a manner appropriate for
the current cognitive development of the pupil. The computpragrammed

to enable the user to manipulate examples of mathematical processes and to see
them dynamically. Through experience in this way, pupils may come to see
specific examplesgsingle entities) ageneric examplegrepresentatives of a
class of examples), which in turn help in the abstraction of tjeneral
concept.

My presentation will consist of four parts:
1. A brief description of the way calculus is taught in England,

2. A theory of learning using the computer: the notiorgeheric
organiset

3. A cognitive approach to the calcul@raphic Calculus
4. Report of empirical studies in the classroom.

1. Teaching Calculus in England
In England the calculus is studied at three different stages:

1. A small number of more able pupils aged 15/16 study the
techniques of differentiation and integration of polynomials in
an intuitive way. (In England the classes in secondary school are
numbered from the first form age 11/12 to the fiftform at
age 15/16. The first public exam called O-leg@idinary level)

Is taken by the most able 20%, to be replaced in 1988 by the
GCSE (General Certificate of Secondary Education) ttaken

by the most able 60%. Only a small percentage of O-level
students study calculus, and eviewer may take it in the new
GCSE.)

2. All students taking mathematics asdences irthe school sixth
form (aged 16/18¥tudy differentiation, integration, arsimple
ideas aboutifferential equations. The work is explained in a
dynamic way (“ax tends toa” or “x-.a") and only a very few
may see the-4 definitions at a later stage.

3. At university mathematics students take courses in mathematical
analysisfrom a more formal point of view, othestudents may
use the calculus in a more practical way.
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The approach to the calculus that | have developed is to give a cognitive
foundation for the ideas at tlgixth-Form level(or earlier),that is in groups
1 and 2 above, in such a way that it is:

(a) complete in itself,
(b) a foundation foeitherformal standarer non-standard analysis.

Calculus is taught in the English Sixth-Form (group 2 abovejasses of ten
to twenty pupils, (though some may be smaller). The general technique is for
the teacher to explain the ideas at the beginning of the lesson, pashays
questions of the pupils as this is done, and then the pcguity outwritten
exercises to practice the techniques. In the latter part of the lessqossible
for the teacher to move around tbkass, speaking individually to the pupils
and helping them with their difficulties.

The philosophy of teaching is something like the French notion of the
“didactic triangle” between the pupil, the teacher and the mathenfgcse
1):

Pupil

Teacher Mathematics

Figure 1 : the “Didactic Triangle”

The mathematics ipart of a shared knowledge system, shared by those who
have already learnt to understand it. The respresentative of this culture in the
classroom is the teacher. The mathematias ise mindof the teacher and the
only externalized physical representions are usually in a text book. Here the
mathematics isstatic in fixed words and pictures. The onlgynamic
representation is through the verbal explanation of the teacher and any
diagrams (s)he may draw.

Tall & Vinner 1981 demonstrated some of the problems mestigents
learning the calculus and similar phenomena have also been ndtednice
(Robert 1982; Cornu 1981, 1983tudents havearticular difficulties with
the limiting concept and with the interpretation of wondkhose everyday
meaning is different from the technical mathematical meaning.

This problem is made worse by the method which mathematiosanso
design more advanced curricula. The calculus is often seen as the beginning of
a more formal approach to mathematics, and the topics are often presented in
an order which reflects tHermal developmenif the ideas. For example, the
gradient of a general graph is defined in terms of the derivative, which is itself
defined formally as a limitThereforethe notion of a limit must precede the
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notion of the gradient of a curved graph in a formal presentation. The
problem is thatstudents may initially lack the experience torm the
mathematical concept of the limit and instead form their oamcept imagen

an idiosyncratic manner. Asas been shown by Brousseau this may create an
obstacle for later learning.

A possible solution to thiproblem is to take into account tistudent’s
current state of development and attempt to present him/her with experiences
that enable them to develop suitable mental images of the mathematical
concepts. Instead of #ormal approach in which the mathematicgbre-
requisites are presented in a non-meaningful context before thecamaepts
are described, one may desigeagnitiveapproachin which a global gestalt
of the main concept is given in the early stagest example,instead of
beginning the theory of differentiation with discussion orlimits, one may
present a global gestalt of the notion of the gradient of the graph. This can be
greatly assisted by the use of interactive moving graphics on a computer.

2. A cognitive approach to learning using generic organisers

Various educational psychologists have described principles to organise the
learning of mathematics. For exampbfajsubelet al. 1978 proposes theory

of “meaningful learning” in which the subject matter is presented to the
students in a manner which is intended to be “potentially meaningful”. To help
with this learning, Ausubel postulates the use och@ance organisemwhich is
“introductory material presented iadvanceof, and at a higher level of
generality, inclusiveness and abstraction than tlearning task, explicitly
related both to existing relevant ideas in the cognisirecture and to the
learning task”.Such organisers,by definition require the learner tdave
experience of relevant higher level structure than the task itself. Where the
learner is moving into entirely new grounsljch as the understanding of the
limit concept, a different kind of organising principle may beore
appropriate.

In teaching a new domain of knowledge | have found great inspiration in
the work of Dienes 1960. Based on Piag#tsory of the concrete operational
stage, Dienes designed concrete materials to attbidren to play with
physical objects that represent abstract mathematical conceptssante
format works extremely well with the computer. The idea is to provide the
learner with a computer environment that allows them to exgraenplesof
mathematical processes and concejitg manipulating a number axamples,
their common characteristics may be abstracted to give the geauerept
that is embodied in the examples. One thus arrives at a method of learning a

! Mathematicaprocessesre oftenlater encapsulated as concepts: shall seelater that the
gradient of a grapmay beseen globally as a dynamprocess during drawing bugnce
drawn, the gradient is a statgraph,representing a function, artbat function may itself be
seen as a concept, or a process, of a different kind!



David Tall

new knowledge domain that works in a complementary fashion tadvence
organisers of Ausubel. Instead of looking down on ¢bacepts to béearnt
from a higherlevel one looks at therfrom below, building up the&oncept
from familiar examples.

An environment that provides the user the facilities of manipulating
examples of a concepttérm ageneric organiserThe term “generic’means
that the learner’s attention is directed at certspects othe examples which
embody the more abstract concept. Thus the equality 3+2=2+3 may be seen as
a specificexample of arithmetic in which two additions give gwmeresult,
or as agenericexample of the commutatiyeroperty of addition. The generic
example is seen as a representative of a whole class of examples which embody
the general property.

The existence of generic organiser is no guarantee that the student will
use it sensibly to abstract the general concept. To helpe#raer use the
system to the best advantage, and to help infdh@ation of appropriate
concept imagery, an externarganising agents required, inthe shape of
guidancefrom a teacher, a textbook, or appropriate compugaching
material.

The generic organisers (@Braphic Calculusare all developed with a certain
underlying philosophy. First of all theame program isused for teacher
demonstration and student exploration. This demands thaprtdggams be
flexible in use, so that they are equally suitafole the beginner and for the
experienced user. All options available at any given time specified
onscreen (except possibly for little used technical options that might otherwise
confuse the beginner), and any routine wrongly entered may be aborted to
return to a main list of options. All routines should have variable speeds, with
a default speedbr the beginner, fastespeeddor the expert user, and the
ability to slow down, or stop, for the use of a teacher during demonstration.

The Didactic Tetrahedron

The introduction of the computer brings a new dimension intolébening
situation. There are now four major components, which mayidsed as
forming a tetrahedron in a suitable educational context (figure 2).

It is assumed that theomputer has appropriate software available to
represent the mathematics, and that this software is designed in a manner that
makes the mathematics explicit as possible. It must show theocesse®sf the
mathematics as well as giving the final results of any calculation.

If the computer software is in the form of a generic organiser, then it may
be used in a flexible way. | have seen my own software given to putsve
problems without any explanation as to how it should be used. As a challenge,
in the right context, this approach can be most effective. My own preference is
for an initial element ofteachingand discussionwith the teacher using the
organiser to demonstrate examples, slowing down the action to explain what is
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Computer
> ‘

Pupil

LN

Teacher Mathematics

N

Figure 2 : the “Didactic Tetrahedron”

happening, and pausing on occasion in the middle obutine when an
interesting point is reached that is worthyfoifther discussion. The intention
of discussion at this stage isnagotiation of meaninglhe idea is to help the
studentdorm their ownconcept images in a way that is likely to agree with
the interpretation of the mathematical community. This may be done through a
Socratic dialogue between teacher and pupils which is enhanced by the addition
of the computer. The mathematics is no longer just in the head téabker,
or statically recorded in a book. hHas an externatepresentation on the
computer as a dynamic process, under the control of the user, who may be the
teacher, the pupil, or a combination of people working together. Concepts may
be built by seeing examples in action, and tested by predicting what will
happen on artfullychosen examplelefore letting the computecarry them
out.

The enhanced Socratimode of teaching that | use with my owgeneric
organisers begins with teacher demonstration of the concepts corntipiter
and dialogue between teacher and pupils in a context that encoerapesy
and cooperation. At this stage only ooemputer is required for thehole
class. At the earliest opportunity, individual pupils will be typing in their own
suggestions which arise asrasult of the dialogue and, as they gain in
confidence, the teacher playdeascentral role. There may comephase of
operation in which the pupils are using the generic orgari@etheir own
investigations. This mayequire more computers to allow all tlstudents
accessthough | have found that, in a smalldass(say up to ten or twelve
pupils) it is possible to organise a system in which the pupils taketutrnto
work together in small groups. At thesage the operativpart of thedidactic
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tetrahedron is the relationship between the pupil and the mathematical ideas, as
represented on the computer by the generic examples. The t¢alal®mo
directive role, being available only to answer questions which may arise in the
course of the student investigations. At a later, review stag@er discussion

with the pupils is sensible, to probe thaleas and make certain thiteir
concept image is appropriater the wider mathematical community. In this

way the students come to terms with teasthrough experience and build

their concepts in a way which is likely to be potentially meaningful.

3. A cognitive approach to the calculus

The first stage of the cognitive approach @raphic Calculug(Tall, 1986b) is

to establish the idea of thgradient of a curved graph. In formal
development this is approached through the gradient of the tangent, but in the
cognitive approach it is considered tothe gradient of the graph itselfhe
program Magnify allows the user to first draw a graph and tisefect any

part of the graph and magnify it. FiguresBows thegraph off(x)=x2 drawn

from x=-2 to 2, and a small part of the curve centrek=h magnified. The
magnified portion looks (almost) straight and has gradient 2.

If studentsare left to magnify graphs of their choice, they wabon
discover that almost all functions they are able to type into the comipaxer
the property thasmall parts of their graphs magnify to look neaslyaight.
Without intervention from the teacher they miaglieve this to be a general
property of graphs and form anadequate concept image. They megver
have drawn graphs that do not have this property other than, peitxpsix|
(which must be typed into the computer as @sHowever, using the idea of
the absolute value leads toore interesting graphsuch asf(x)=abs(six),
which magnifies at the origin to show two different gradients to the left and
right. (Figure 4).

Further examples that may be drawn usingpgtegram are graphsuch as
f(x)=sinx+sin(10x)/100 (which looks like sixito normal scale, butas tiny
oscillations showing up on magnification), &)=sinx+abs(sin(108))/100,
which has manyorners that cannot beeen on agicture drawn from,say,

=-5 to 5. Furtherexamples, which could not be contemplated without the
computer, may be drawn andliscussed, including f(x)=xsin(1k),
f(x)=x2sin(1k), f(x)=(x+absk))sin(1k), f(x)=xel’x, and the comparison of
f(x)=absk), f(x)=sqgr2), f(xX)=sqr2+0.0001). All ofthese (except the last!)
are smooth except for isolated places where they go wrong.

Again, the concept image of the students would ben@mwow if it were
left here.Graphic Calculugncludes a singl@rogram that draws a recursively
defined fractal graph, which I call the “blancmange function” (after an English
jelly which it resembles in picture}. The blancmange functioyrbl(x) is so

! paradoxically, the English refer to this jelly using the French term “blancmange”, but the French refer to it
using the English name “le pudding”.
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wrinkled, that nowhere will it magnify to look like a straight line (Jesl,
1985, or 1986b). It is possible fmrove, using an argument depending on
magnification, that the function is nowhere differentiable (Tall, 1982). Thus
thecognitiveidea that a differentiable graph will magnify to look straight can
be turned into amathematical proof of the existence of anowhere
differentiable function.

2
f{x)=x
Cmagn.x16
[1.85
[ 1
.8.95
C ? 95 | %.95
t + =1

_1 X

y=1
=1

Choose: A

F:new function__R:range
T:transfer small window
C:cursor mode E:end

Figure 3 : a “locally straight” graph

f{(x)=abs{(sinx)

14
12
M R 3
-2 -8.4
x=08
y=8
-4
Choose: )
F:new function__R:range
T:transfer small window
C:cursor mode E:end

Figure 4 : a graph with a “corner”
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If a new function is formed by dividing the blancmange function byery

large number,say c(x)=Dbl(x)/1010, then c(x) is so small that its graph is
indistinguishabldrom thex-axis when drawn to a normal scale. The pictures
of f(X)=x2 andg(x)=x2+c(x) differ by only a tiny amount and they look the
same on aomputer screen. In fact tH@BC computerhas only nine digit
accuracy and so the difference betw#ghandg(x) is so small, the computer
cannot detect it. Yet one graph is everywhere differentiable and the other is
nowhere differentiable....

It is a matter of taste as to whether avnishes tointroduce these ideas to
students early on in the calculus. My own preference is to do swalsable
source of discussion and apportunity to develop &roaderconcept image.
However, they are available to introduce whenever the teacher considers
appropriate.

Once one is aware that many standard graphs magnify up to look locally
straight, it becomes an eagyatter tocast one’seye along the graph and
mentally magnify it toseeits gradient changing. Th@rogram Gradient
includes a routine that moves steps along graph, drawing theextended
chord through the points ov&rx+c on the graph (for fixe@) asx increases,
simultaneously plotting the gradient of the chord as it proceeds. Figure 5
shows the gradient of the graph ofxslyeing built up. It clearly approximates
to the graph of cos

f{x)=sinx
from x=-35 to 5

\\\\\\:4
gradient function

—\\\ ST (fF(x+c)—-Ff(xI)))/c

1 T t T y T for
-4 2 2
et i " c=1-71806

Figure 5 : the gradient function of gin

The programallows the student to type in a formula which they think
describes the gradient graph and to compare it with the numerozddiylated
gradient. In this way they get a good feelingwdfy the gradient of theine
graph should be theosinegraph, even though they may not yet have the
knowledge or ability toperform the symbolic manipulation tgseethat the
limit of
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sin(x+h)—sinx
h

ash tends to zero is caslt is also possible to go direct to the global image of
the gradient of the graph without going through the formal limit process at a
point. Thus the global gestalt of the gradient function can arise early in the
development of the subject.

In practice in the classroom | build up the concept of the gradient of the
graph by starting witly=x2 and handling successively in three ways:

f(x+h)—f(x)

(1) the numerical limit of h ash gets small at a

numerical value ok (calculated by the computer as in figure 6),
(2) Thesymbolic limit
f(x+th)—f(x) _ (x+h)2—x2  2xh+h2
h a h ~ h
and so the gradient gets close x0a2h gets small.

(3) Theglobal gradientdrawn by the computer, compared with the
graph ofy=2x.

= X+h, (for hz0),

f{x)=sinx

from x=-1 to 2
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Figure 6 : Calculating a gradient at a point

This is done by teacher explanation and discus#itier this it is a relatively
simple matter to allow the pupils to play with the computer andutess the
gradient ofx3 using method (3). Working in small groups, thgyess the
formula 32 with little difficulty (although it may take a fevwpreliminary
guesses, such a8 or 2x2 before getting a satisfactory picture). Frdmre
they invariably guess the general formula that the derivativ® of nx*-1 and

are able to go on to test it in otheases, such as=33, -1, -2, 1/2, om,
checking to see ithe correct picture is drawn and where there might be
difficulties (such ax negative when n is not an integer).
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Other functions attacked easily by graphical methods include s,
Inx, exp. Less obvious ones include(absk)), whosegradient everywhere
(except zero) is ¥/ and tar, which | did not think that students would able
to guess, but those with experience of drawing the graphsigafnometric
functions are often successful. (Figure 7.)

f{x)=tanx
from x=—-2«w to 2w

gradient function
(F(x+c)—-Ff(xd)7c
for
c=1718

Figure 7 : the gradient of tan

Students say that the gradient graph (the dotted one in the picture) is the kind
of shape one might gétom squaring the tangraph (to make ieverywhere
positive), but then this would be zero whet0, where the dottegraph
seems to havg=1. Thus the gradient graph of tamight be tafx+1...

Another investigation is prompted by noting that the gradientxaf 2he
same shape, but lower, whilst the gradient 0fs3the same shape, bhigher.
Somewhere between 2 and 3 there might be a humbechethat theradient
of exis again & This is a way in which students magethat the number e
arises in a very natural way.

The Gradient program isavailable in the classroom throughout thest
introduction of the theory of differentiation, but it is naged all thetime.
There is much time devoted to the usual development of the formulae for
differentiation, with the computer available to draw a picture whenever it is
appropriate. For example, duringsassion calculatingerivatives byformal
methods, the students may use ¢benputer to check thdheir formulaegive
the right graphs. They may be quite surprisedséethat a smallerror in
calculation, such as a minus sign where there should be a plus sign, can give a
totally wrong graph. This underlines thecessity to takeare over algebraic
manipulation.

-11 -
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Integration

Just asdifferentiation may benefit by introducing the global gestalt of the
gradient function using the generic organisgradient so integration may
benefit from introducing the globaestalt of the area function at a&arly
stage. The calculation of the approximate area under a graph could be done by
a programmable calculater (see Neill & Shuard, 1982), but the numbers that
arise may not be very enlighteningless the studentse given considerable
help. For example, the approximations to the area uffgprx2 from 0 to 1
using 10 strips are:

lower sum: 0.285

upper sum: 0.385,
which are hardly helpful irsuggesting that theeue area is 1/3. Even with
1000 strips the results:

lower sum: 0.3328335

upper sum: 0.3338335
are only a little more suggestive. Psychologically, one carfabebetter
convinced by approximate pictures than by accurate numerical calculations.

Using the computer with a group of students, my approach is first to

discuss these area calculations, supported by pictures. The students are asked to
suggest what they think the area is under the ct(ex2 from x=0 to x=1.
They write down their guess. Varioualuesare given, from about quarter
to a third, with othelguesses such &3, 0.325, and so on. Then wee the
program AREA to calculate an approximate value, with the choicdirsit
ordinate, mid-ordinate or last ordinate. In thésethe first and last ordinates
give upper and lower sums. But teidentsare not interested in these. They
prefer the mid-ordinatebecause they guessghtly, that it will give amore
accurate answer. (Figure 8.)

Ad(x)
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w
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QN TS
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Figure 8 : the area undgex?



David Tall

They are not impressed with the idea of using upper and lower sums to give an
over-estimate and an under-estimate of the rdmdause the calculations are
SO inaccurate (as we saw earlier).

The studentsare also right to distrust this method of introducing the
concept because it wastegeeat deal of information. It fails tase all the
intermediate calculations. If these intermediate calculaBoasplotted for the
area fromx=0 to x=5, the resulting graph givesfar more usefulglobal
gestalt: the area function. Figure 9 shows a very clesslgctedoicture. The
graph is that of the functiof(x)=x2, and the individual points represent the
approximate area function from O x0 (As a static picture in a paper it may
not be very clear, but plotted in real time the growth of the area function is
easier to understand.)

2

f{x)=x

from x=8 to 5
Area A(x)
from
a=e

120 to
b=5
step

(15 c=1-16
Mid ordinate

10

LS

2 3 4

Figure 9 : the area function undex?

Students with a little experience of graph-sketching seathat the dotted
graph (the approximate area function) looks like a higher powertioanx2.
A reasonable guess might k® But it is notx3 because it crosses tbeiginal
graph wherex=3, and herg/=x2=9. As 3 is 27, a betteguessfor the area
function might bex3/3. Thus,in one intuitive leapmany students caseethe
idea behind the global area function. From here | go atisitussthe sign of
the area, when the value gfis positive or negative, and when the step is
positive or negativeThe students do ndiind thisideadifficult. The graph is
again drawrdynamicallyand, in a picture such &gure 10, they willsee the
area build up from right to left, with aegative step, and they wslee the
signs of ordinate and step being combined to give the sign of atea
calculation.

-13-
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f{x)=sinx
from x=0 to 2w

Area A(x)
sren
a=
-2 to
b=8

v step
e g c=—nw/4

Mid ordinate
-8.08000

Figure 10 : the sign of the area usingegativestep is positive below and negative above

From here, | redraw the area function figx)=x2, calculatedfrom O to x,

first for x positive using a positive step 0.1, and then | challengsttiteents

to sketch thegraph of the area function for megative step —0.1. There is
usually an interesting discussion. Thegethat for x negative the ordinate is
positive so they conjecture a negative step times a positive ordinate gives a
negative calculation that will give an area graph below thefarisegative x.

It will also be symmetrical to reflect the symmetry of the graph, so the
resulting sketch of the graph is as in figure 11.

2
f{x)=x
from x=-3 to 3

Area A(x)

A Mid ordinate

-

|
N4

Figure 11 : the area frorx0 using a negative step has a negative value

Of course it is!'The area graph is conjectured tofppe=x3/3, and this is the
shape one would expect... . Theogramincludes a routine to superimpose
the graph ofy=x3/3 to see how it compares with the graph of the approximate
area. To this degree of accuracy the graphs are indistinguishable.
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As there are only about 200 pixels horizontally and vertically on the
screen, an accuracy of 1 in 200 (only 0.5%) gives a reasonable picture, an
accuracy that would be unacceptable in a numerical calculation. So, using a
pictorial approach, not only does one get a dynamic fedbingthe growing
area, and an insight into positive and negative calculations, this isi@so
with reasonable arithmetic andses all the intermediate calculations to
advantage. Again, one or two moexamples: the area functicinom the
origin for x, x3 and possiblyO, and the studentse ready to conjecture that
the area undefi(x)=x" is x"*+1/(n+1).

In Tall 1986a, | demonstrate how tlpeogram Area can suggest the idea
for the fundamental theorem of calculus, by stretching the graph horizontally,
leaving the verticakcale unchanged'he graphy=f(x) looks horizontal and
the area fronx to x+h is approximatelyf(x)* h. But this is alsA(x+h)—A(X),
giving the approximation:

A(x+h)—A(x) = f(x)*h,
and a reason why
A(x+h)—A(X)
h

=1(x),

leading to the fundamental theorem:
A'(xX)=f(x).

One may wonder why aequalitycan be deduced by taking the limit of an
inequality. The reason is seen pictorially because the more one pultgapé
horizontally, the flatter it gets and the better the approximation becomes. In
fact, here one can introduce the standaréd definition of continuity.
Pictorially, a graph is continuous>ata if, given a pixel width £ (for a fixed
y-scale), there exists a small interaald such that when the graph is drawn on
the screen with the-range stretched froractual coordinatea—0 to a+9d, then
the graph lies in a pixel heighfa)xe. Thus continuity arises from theeed to
make the fundamental theorem precise. It need not be introduced without
reason (to the student) at an earlstage. This is yet another example of
didactic inversion in the sense described by Freudenthal. A cognitive
development need not follow the same sequence as a logical development.

Differential Equations

The student usually meets differential equations in the simple form of knowing
the gradiendy/dx=f(x), and seeking thgraphy=I(x) with this gradient. This
information may be represented graphically by drawing an array of lamert
segments through pointg,y) with gradientf(x), as in figure 12. A solution of

the differential equation may then be visualized as a curve which follows the
direction lines. A formal solution satisfiégx)=f(x).

The gradient direction is a function &f alone, so the solution curves will
clearly differ by a constant. Or do they? Closer inspection will showthieat
is only true for a connected component of the domain. The numerical method
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Figure 12 : line segments (through each poin) ©f gradient 142

of plotting a solution curve by following the direction lines uses a constajnt
along the graph rather than a fixedtep. Thus a solution curve df/dx=1/x2
starting to the left of the origin will always stay on the left, whilst a solution to
the right will always stay to the right. Thus two different solution curves may
differ by a constant only over each connected component of the domain. They
differ not by a constant, but by a “locally constant function”...

A generalization of this idea is when the gradidgtdx is a function of
both x andy:

dy/dx=f(x,y).

The idea of a solution is basically the same: draw a direction diagram and
trace a solution by following the given directions.
For instance, the differential equation:

dy/dx=—xly
has a direction diagram as in figure 13:

dysdx=—x-y

JER R g S improved
.-’.a’.a’,-’,-’.-.-.—-—__—q’ﬂ-\.*-\.x\\-\xxx EtEP b‘_-l SteP
A el U Y step
for LY a.z2
Ve v ol x=—1.5359
[ V] y=2.5785
P y

Pl duy-sdx

g | =8.59537
Yhon

Vb

oW

Vo step no. 77
oo

Yoo

W M e —

M, e e e e me e —a

Figure 13 : a solution afy/dx =—x/y
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The solutions of this equation araplicit, in the form:
x2+y2=constant.

The *“first order differentialequation program” inGraphic Calculusis
programmed to trace the solution curves numberically, using a choice of an x-
step or y-step, in such a way that it can tremend closed loops. At points
where the tangent is vertical the interpretationlytix as a real function fails,

but one may regard th@ngent vector as the vectodx(dy), which allows
dx=0, dy non-zero to represent the vertical direction. Thus a dirder
differential equation magometimes be betteegarded as givinghformation
about the directiondk,dy) of the tangent to an implicit solution curvather

than a formula for the derivative of an explicit functiorxof

Thus one may usefully distinguish betwesifferential equations (which
specify the direction of the tangent) addrivative equations (which specify
the derivative of an explicit function). The concept of a differential equation is
more general than that of a derivative equation, which it includespescal
case.

Using pictures to visualize the direction of the solution curves can often
cruelly expose the limitations anddownright misrepresentations about
differential equations in many elementary textbooks.

Graphic Calculusalso includes grogram to drawsolutions of second
order differential equations in the form:

d2y/dx2 = f(x,y,dy/dX).
Even a relatively simple equation such as

d2y/dx2 = —x
does not have a direction field in tkey plane. There are an infinilrrumber
of solutions through each point, of@ each starting directionFigure 14

shows solutions drawn numerically startiftgm the origin and movingway
in various directions.

14 d2ysdx2=-y

improved
step by step

fixed x—step
a.125

x=2.8888
y=2.5412

dy-dx
=—1.1798

1- diyrsrdx2
4 =—2.95412

Figure 14 : several solutions ddy/dx2 =—x passing through the origin
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Solution of such equatiorsre often attacked by introducing a new variable
v=dy/dx, and writing the original equation in terms of twast-order
equations:

dy/dx =v

dv/dx = .
These equations tell us that at every point in three dimensspaak X,y,v).
there is a uniquely defined direction:

(dx,dy,dv) = (dx,vdx,—xdx)
which is in the direction (£,—x). Once more the solution may be visualized in
terms of following the given direction field, but this timethree dimensions,
not two.

A further program in Graphic Calculus draws solutions ofsuch
simultaneous differential equations in three dimensions, building up the
solution numerically by following the direction at each point, with the
projections of the curve in three-space being shown simultaneously ir,yhe (
and &,v) planes. The understanding of the nature of the solutiayrdatly
aided by seeing it evolve dynamically in spdfigure 15). The graphics on
the BBC computer are colour-coded to aid in the visualization, producing a
mental image that is very difficult to intimate in a static black and white
picture.

Figure 15 : a three-dimensional picture of a solutiodxaft=v, dv/dt=—x

A more extended approach to differential equations using dynamic interactive
computer graphics on tHdacintoshcomputer have been used extensively by
Hubbard and West &ornell University, and will feature in Hubba&West

(to appear). Further details are given in Tall & West, 1986.
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4. Empirical Studies in the Classroom

To test the theory of a cognitive approach using generic organisers, the
differentiation programs déraphic Calculuswvere used in threelasses in two
different schools and therogress of thestudents compared using matched
pairs selected from five other classes in the same schools. Somestfidasts

had studied the calculimefore and iwas possible to consider matchgdlirs

both with, and without calculus experience.

In each school the control and experimental growised anagreed
textbook, with the experimental group given additional support from the
generic organisers iGraphic Calculus Data was also collectddom a third
school using the computgrograms, where the organisers functiorless
well, and from universitystudents who had not used a computer in the
learning of calculus.

In one experimentatlassthe teacher allowed me to take those parts of the
lessonswhere the computewas to be used, in thether two classes the
teachers were given an overall plan to follow, but were left to intetpi®tin
their own way. Itwas intended that thexperimental groups should be taught
in an enhanced Socratic mode (though this terminolegyg not given to the
teachers at the time). The plan was the teachers to introduce the notion of
gradient of a graph using the prograMagnify and Gradient and to lead
class discussion3.hey were to encourage the pupilsuse theprograms for
investigations and to chedkeir formal differentiation by using therogram
to compare the numerical global gradient function with the derivatives thay
had calculated. The teachers in all groups kept a detailed diamphenf
activities and, by and large, the three experimetitasedollowed the agreed
programme. Howevelthose using the computer in the third school did not
follow the programme as specified, with disastrous consequences.

The pre-test included a question on calculating the “rate of change” between
two points on a curved graph whietas used apart of the information to
select matched pairs on the pre-test (figure 16).

. ;
Find the average rate of 3

change between the following ‘\\
points on the graph:

(Note: the "average rate of
change" from P to Q means the 2 (4
gradient of PQ) A

(i) from C to D .....
(ii) from D to E ..... >
(iii) from A to B ..... - \§ i ' y ®
(iv) from B to C ..... NG '

(v) from C to E .....
(vi) from D to C .....

-
L

—=3
Figure 16 : identifying the gradient of a curve through various points

The interesting question here is part (vi). The line DC is slopipg
suggesting a positiveesult, but the actual-direction from D to C isdown
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suggesting a negativesult. Thisimposes a conflict situation, in which 41%
changed their respondée®m pre-test to post-test, withimost equal numbers
in each direction. Only 26% give tlterrect response (with positive sign) on
both occasions an83% get it wrong both times, mainly due to emor in
sign. Although the matched pairs with previous calculus experience show a
significant improvement on this question (at the 2.5% level), this should not be
taken too seriously, as both control and experimental results are subject to
conflicting changes ompart (vi). The diaries of the teachers show ttias
situation was notliscussedluring thelessonsand it would be an interesting
one to consider in future research.

The idea of the tangent as the limiting position of the exterclextd
proves to have difficulties for both experimental and control studentprén
test and post-test they wessked the question ifigure 17 (inspired by a
guestion inCornu 1983.

() Write down the gradient of the
straight line through A B..

(i) Write down the gradient of AT..
Explain how you might find the
gradient of ATfrom first principles.

AY T
k2 B

A

>

/1k X
/

Figure 17 : the relationship between the gradient of a chord and of a tangent

It was hoped that some of the students might calculategrhdient of the
chord as
% =k+1 (for k£1),

give the gradient of the tangent at (1,1) as 2, and then note tlaterds to
1, so the chord gradiekt1 tends to 2. On the pre-test 16 students (10% of
those tested) obtained the vak#el for the gradient of the chord and 2 for the
gradient of the tangent, but onlgne suggested dimiting argument. The
evidence is not conclusive, but it does not give much support to the idea that
the limiting argument is amtuitive notion, in thesensethat it might be
evoked spontaneously by the student meeting the idea for the first time.

In every classroom the derivative was discussed in terms of the limit of the
gradient of the chord through two points as one tended to the other. One might
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expect this to make some impact on the students. There werguestions on

the post-test that might be expected to produce an explanation using a limiting
argument. They were the question above on “first principles” in figure 13 and
three open-ended questions asking respectivety an explanation of the
“gradient of a graph”, the “tangent to a graph” and the “derivative of a
function”. In table 18 are the numbers sttidents responding with a limiting
notion from thematched pairs androm the students at university. The
matched pairs are broken down into those without previcakulus
experience (Exp and Contr) and those with previous experience (Exp* and
Contr*):

Exp Contr Exp* Contr* | University
(N=12)] (N=12) [ N=27) | (N=27) (N=44)

1st principles 4 1 6 6 14
gradient 1 0 1 0 8
tangent 2 0 1 0 5
derivative 0 0 0 0 3

Table 18 : Students responding with the limit concept

The low level of responses indicate the high cognitive demand of this general
concept, reinforcing the opinion that, although the notion of a limit is the
natural foundation of anathematicadevelopment of the calculus, it is not a
natural starting point for eognitivedevelopment.

The limit notion, as explained in the classroom, gdyaamicnotion, using
the terminology X tends toa” or “x-a”’. In addition the students sometimes
responded with gore-dynamic concept, where points on the graph are
described as being “very close”, or even ‘“infinitely close”, without any
indication of a limiting argument. Table 1hows the significance that the
experimental students giveore dynamic/pre-dynamic responses than the
control students, using a Wilcoxon matched pairs test. Column 1 are the 12
matched pairs without previous calculus experience and coluame 2he 27

matched pairs with previous experience:

Without previous With previous
calculus calculus
1st principles n.s.* 5%
gradient 0.5% 1%
tangent 5% 1%

Table 19 : significance that experimental students are more likely to give a dynamic response
to the limit concept
(Here n.s. means “not significant” and n.s.* means “not significant at the 5%
level, but significant at 10%.)
The question concerning the meaning of the derivative of a function could
have had a limiting response, but none of the experimental or cehidants
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responded in this way. However, the experimental students wittabcuilus

experience were more likely to describe the derivative in terms of the gradient

of the graph (table 20).

Without previous With previous
calculus calculus
gradient 1% n.s.*
gradient function 5% n.s.

Table 20 : significance that experimental students are more likely to describe the derivative
in terms of the gradient (function)
It seems here that the experimental students who are meeting the derivative for
the first time are more likely t®ee it as d‘gradient function” than the
corresponding control students, but the constoldents meeting thealculus
for the second time are growing to understand the concept better.

However, this interpretation must be treated with caution. Ghleulus
students with previous experience were using a text-book that described the
derivative as the gradient function, and hence this response is to be expected.
These controlstudents do noseethe derivative pictorially as a gradient
function, as is shown by the following question from the post-test (figure 21):

Sketch the derivatives of the following graphs:

A

€©)) (b 1

>

—1 1 >
-1

Figure 21 : Sketching the gradient graphs for given graphs

The performances of the three experimerdialsses(KE, BE1l, BE2) are
visibly better than the contrallasse§KC and BC1 to BC4), and on a level
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comparable with the university studerits). The other school (CEhich
also used the generic organisers, failed dismally (table 22):

Graph (@) (b) (c) (d) Total
Maximum 5 5 5 5 20
KE 4.93 4.50 4.36 4.03 17.86
BE2 4.62 4.25 4.44 3.94 17.25
BE1 5.00 3.92 3.50 2.00 15.83
BC4 4.55 3.18 2.82 2.18 12.73
BC2 4.11 3.78 1.56 0.94 10.32
KC 3.67 4.00 0.78 0.00 8.44
BC3 2.36 1.71 0.14 0.07 4.29
BC1 1.93 0.87 0.00 0.20 3.00
CE 0.73 0.24 0.08 0.04 1.08
U 4.89 4.55 4.45 3.84 17.73

Table 22 : Student responses to sketching derivative graphs

The reason for the poor performance of the CE group is two-fold: first the
students obtained lower marks than any other group on the pre-test (level with
BC1 and marginally below BE1 on the first question in figure 12). Second, the
students in CE used the computer on just one occasion, usingateoage,

less than once each. Threequarters of the CE students complained thagsthe
used it “too little” or “far too little” and of twelve commentdom the CE
group about unhelpfulaspects, nine mentionedither “lack of time”,
“confusion as to the aims of tipgogram”, or that it'kept going wrong”. The
evidence strongly suggested a weakness in the use of the software.

By contrast, the three experimental groups KE (with whomorked),

BE1 and BE2 were far more positive in thattitudes and almost any
statistical test would show the improvement in their scores. Dividing them into
their matched pairs once more, and using a one-tail Wilctegirto compare

their performances oreach individual question, shows thexperimental
studentsperforming significantly better than the contradtudents on all
qguestions, except for the pairs without calculus experience on question 1. Even
here the experimental studemsrformed better, but not at the S&vel of
significance.

These results show that, although the control students with more experience
use theterm “gradient function” for the derivative, they are not atlle to
sketch the gradient function as a graph.

A further question (again takdrom Cornu, 1983khowed agraphwhich
was thederivative of one of three others. Thiidents had to say which, and
give a reason for their opinion (figure 23).
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Graph 1 is the derivative y=f'(x) of a function y=f(x)
defined for 0=<x<8.

Which of the graphs 2, 3, 4 could be
the original graph y=f(x)?

Give the reasons for your choice:

4z fx)?

Figure 23 : identifying the graph with a given gradient

The performance of the groups followed a similar pattern to table 18. 67% of
the experimental students gave ttwerect response (b) with a correct reason,
a similar level ofsuccess athose at university (68%), whilst only 8% of the
control students were able to do the same.

Noneof the group CE managed to givearect response together with a
sensible reason, and more than half of them failed to respond.

If one classifies a student tperform well” by obtaining 15 out of 20 on
table 18 together with a correct response (with reason) taubkstion in
figure 19, then there are 26 out of 42 experimentatlents in thicategory
(62%) but only 2 out of 72 control students. The probabilitysoth an
extreme distribution occurring by chance is less than 19n 10

Further testsare described in Tall, 1986d. They show that there is no
significant difference between the performances of control and experimental
groups on formal differentiation, but that the experimental groups are
significantly better at sketching gradients, recognising gradient functions and
defining non-differentiable functions (though the latter is cognitivelgre
demanding and fewer students are successful atagh$. They also show that
the experimental students are far more likelyse@ethe derivative in dynamic
or pre-dynamic terms.
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One phenomenon that caused me sawoecernwas that a significant
number of experimentatudents were likely toegard theangent to acurve
in pre-dynamic terms as a line through “two verpse points”. However,
closer analysis showed thidere is an evegreater problem with theontrol
students seeing the tangent as a line which “touchesuhe at one point
only” with the possible additional property that it “does not cross the curve”.

It is my conclusion that we can develop a cognitive approach to the tangent
by defining a “practical tangent” to be a line through two velnse points on
a curve. This can prove to be very useful in a pre-calculus course. It is an
operativedefinition, which can be used to draw a very good approximation to
a tangent beforecalculus is discussed. Thaformal definition in terms of
“touching” and “not crossing” is only useftibr rough sketches and gives a
concept image thatauses obstacles learning at a later stage. The practical
definition is useful for calculations at an easliiage and can be useddefine
the “theoretical tangent” in terms of the limiting process whensthidents
have developed sufficient sophistication to be able to cope with the idea.

Once more, empirical researchas demonstrated a process diflactic
inversionthat gives an alternative cognitive approach to mathematics. In this
case the cognitive approach, in the shape of the practical tangent, proves to be
surprisingly good mathematics!
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