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Résumé

En Angleterre on étudie le calcul à trois niveaux:

1. Quelques élèves de 15/16 ans étudient la différentiation et l’intégration des
polynomes d’une façon intuitive.

1. Tous les étudiants de mathématiques et sciences de 16/18 ans étudient la
différentiation, l’intégration et les équations différentielles d’une façon simple,
avec les définitions dynamiques, sans la ε-δ théorie d’analyse formelle.

3 Les étudiants de mathematiques de 18/21 ans étudient la théorie formelle
d’analyse classique à l’université.

Graphic Calculus (Analyse Graphique) est une méthode pour l’enseignement de calcul qui
utilise les images dynamiques d’un ordinateur aux niveaux 1 et 2, et donne les idées intuitives à
niveau 3.

Il y a plusieurs logiciels pour l’ordinateur de BBC dans Graphic Calculus. Par exemple, on
peut étudier le concept de la pente d’une courbe avec le logiciel Gradient. Le professeur ou
l’étudiant peut taper la formule d’une fonction, en utilisant la notation mathématique ordinaire,
et l’ordinateur dessine la courbe. Ensuite il dessine la pente numérique de la fonction comme
une courbe et on peut taper une formule pour que l’ordinateur dessine sa courbe et on peut voir
si les deux courbes sont superposées.

Le logiciel Area     dessine la courbe et ensuite il dessine l’aire approximative ou la fonction de
l’aire approximative avec l’option de superposer une autre courbe pour comparaison.

Il y a les autres logiciels pour les équations différentielles qui dessinent les solutions
numériques dans deux et trois dimensions.

La théorie de Graphic Calculus est un exemple d’une “cognitive approach” (une approche
cognitive). Le logiciel ne montre que les exemples d’un concept, mais ceux-ci aident les
étudiants en construisant le concept général. J’appelle le logiciel un “generic organiser” (un
organisateur générique) parce qu’on éspère que les étudiants comprendront les exemples
spécifiques comme les exemples génériques (typique du concept général).

La conférènce est divisée en quatre parties:

1. Une description brève de l’enseignement du calcul en Angleterre,
2. La théorie d’une approche cognitive avec les organisateurs génériques,
3. Une approche cognitive au calcul: Graphic Calculus,
4. Un rapport d’une étude empirique dans la salle de classe.
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Introduction

The development of a graphic approach to the calculus which I shall describe
here is part of a more general learning theory in which the computer is used
to enhance learning. In this presentation I shall explain the general theory
which gives rise to a cognitive approach to learning mathematics. Such an
approach is aimed at presenting the concepts to be in a manner appropriate for
the current cognitive development of the pupil. The computer is programmed
to enable the user to manipulate examples of mathematical processes and to see
them dynamically. Through experience in this way, pupils may come to see
specific examples (single entities) as generic examples (representatives of a
class of examples), which in turn help in the abstraction of the general
concept.

My presentation will consist of four parts:

1. A brief description of the way calculus is taught in England,

2. A theory of learning using the computer: the notion of generic
organiser.

3. A cognitive approach to the calculus: Graphic Calculus.

4. Report of empirical studies in the classroom.

1. Teaching Calculus in England

In England the calculus is studied at three different stages:

1. A small number of more able pupils aged 15/16 study the
techniques of differentiation and integration of polynomials in
an intuitive way. (In England the classes in secondary school are
numbered from the first form at age 11/12 to the fifth form at
age 15/16. The first public exam called O-level (ordinary level)
is taken by the most able 20%, to be replaced in 1988 by the
GCSE (General Certificate of Secondary Education) to be taken
by the most able 60%. Only a small percentage of O-level
students study calculus, and even fewer may take it in the new
GCSE.)

2. All students taking mathematics and sciences in the school sixth
form (aged 16/18) study differentiation, integration, and simple
ideas about differential equations. The work is explained in a
dynamic way (“as x tends to a” or “x→a”) and only a very few
may see the ε-δ definitions at a later stage.

3. At university mathematics students take courses in mathematical
analysis from a more formal point of view, other students may
use the calculus in a more practical way.
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The approach to the calculus that I have developed is to give a cognitive
foundation for the ideas at the Sixth-Form level (or earlier), that is in groups
1 and 2 above, in such a way that it is:

(a) complete in itself,

(b) a foundation for either formal standard or non-standard analysis.

Calculus is taught in the English Sixth-Form (group 2 above) in classes of ten
to twenty pupils, (though some may be smaller). The general technique is for
the teacher to explain the ideas at the beginning of the lesson, perhaps asking
questions of the pupils as this is done, and then the pupils carry out written
exercises to practice the techniques. In the latter part of the lesson it is possible
for the teacher to move around the class, speaking individually to the pupils
and helping them with their difficulties.

The philosophy of teaching is something like the French notion of the
“didactic triangle” between the pupil, the teacher and the mathematics (figure
1):

Pupil

Teacher Mathematics

Figure 1 : the “Didactic Triangle”

The mathematics is part of a shared knowledge system, shared by those who
have already learnt to understand it. The respresentative of this culture in the
classroom is the teacher. The mathematics is in the mind of the teacher and the
only externalized physical representions are usually in a text book. Here the
mathematics is static in fixed words and pictures. The only dynamic
representation is through the verbal explanation of the teacher and any
diagrams (s)he may draw.

Tall & Vinner 1981 demonstrated some of the problems met by students
learning the calculus and similar phenomena have also been noted in France
(Robert 1982; Cornu 1981, 1983). Students have particular difficulties with
the limiting concept and with the interpretation of words whose everyday
meaning is different from the technical mathematical meaning.

This problem is made worse by the method which mathematicians use to
design more advanced curricula. The calculus is often seen as the beginning of
a more formal approach to mathematics, and the topics are often presented in
an order which reflects the formal development of the ideas. For example, the
gradient of a general graph is defined in terms of the derivative, which is itself
defined formally as a limit. Therefore the notion of a limit must precede the



Calculus and the Computer École d’Été, Orleans, 1986

notion of the gradient of a curved graph in a formal presentation. The
problem is that students may initially lack the experience to form the
mathematical concept of the limit and instead form their own concept image in
an idiosyncratic manner. As has been shown by Brousseau this may create an
obstacle for later learning.

A possible solution to this problem is to take into account the student’s
current state of development and attempt to present him/her with experiences
that enable them to develop suitable mental images of the mathematical
concepts. Instead of a formal approach, in which the mathematical pre-
requisites are presented in a non-meaningful context before the main concepts
are described, one may design a cognitive approach in which a global gestalt
of the main concept is given in the early stages. For example, instead of
beginning the theory of differentiation with a discussion on limits, one may
present a global gestalt of the notion of the gradient of the graph. This can be
greatly assisted by the use of interactive moving graphics on a computer.

2. A cognitive approach to learning using generic organisers

Various educational psychologists have described principles to organise the
learning of mathematics. For example, Ausubel et al. 1978 proposes a theory
of “meaningful learning” in which the subject matter is presented to the
students in a manner which is intended to be “potentially meaningful”. To help
with this learning, Ausubel postulates the use of an advance organiser, which is
“introductory material presented in advance of, and at a higher level of
generality, inclusiveness and abstraction than the learning task, explicitly
related both to existing relevant ideas in the cognitive structure and to the
learning task”. Such organisers, by definition, require the learner to have
experience of relevant higher level structure than the task itself. Where the
learner is moving into entirely new ground, such as the understanding of the
limit concept, a different kind of organising principle may be more
appropriate.

In teaching a new domain of knowledge I have found great inspiration in
the work of Dienes 1960. Based on Piaget’s theory of the concrete operational
stage, Dienes designed concrete materials to allow children to play with
physical objects that represent abstract mathematical concepts. The same
format works extremely well with the computer. The idea is to provide the
learner with a computer environment that allows them to explore examples of
mathematical processes and concepts1. By manipulating a number of examples,
their common characteristics may be abstracted to give the general concept
that is embodied in the examples. One thus arrives at a method of learning a

                                                
1 Mathematical processes are often later encapsulated as concepts: we shall see later that the
gradient of a graph may be seen globally as a dynamic process during drawing but, once
drawn, the gradient is a static graph, representing a function, and that function may itself be
seen as a concept, or a process, of a different kind!
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new knowledge domain that works in a complementary fashion to the advance
organisers of Ausubel. Instead of looking down on the concepts to be learnt
from a higher level one looks at them from below, building up the concept
from familiar examples.

An environment that provides the user the facilities of manipulating
examples of a concept I term a generic organiser. The term “generic” means
that the learner’s attention is directed at certain aspects of the examples which
embody the more abstract concept. Thus the equality 3+2=2+3 may be seen as
a specific example of arithmetic in which two additions give the same result,
or as a generic example of the commutative property of addition. The generic
example is seen as a representative of a whole class of examples which embody
the general property.

The existence of a generic organiser is no guarantee that the student will
use it sensibly to abstract the general concept. To help the learner use the
system to the best advantage, and to help in the formation of appropriate
concept imagery, an external organising agent is required, in the shape of
guidance from a teacher, a textbook, or appropriate computer teaching
material.

The generic organisers in Graphic Calculus are all developed with a certain
underlying philosophy. First of all the same program is used for teacher
demonstration and student exploration. This demands that the programs be
flexible in use, so that they are equally suitable for the beginner and for the
experienced user. All options available at any given time are specified
onscreen (except possibly for little used technical options that might otherwise
confuse the beginner), and any routine wrongly entered may be aborted to
return to a main list of options. All routines should have variable speeds, with
a default speed for the beginner, faster speeds for the expert user, and the
ability to slow down, or stop, for the use of a teacher during demonstration.

The Didactic Tetrahedron

The introduction of the computer brings a new dimension into the learning
situation. There are now four major components, which may be viewed as
forming a tetrahedron in a suitable educational context (figure 2).

It is assumed that the computer has appropriate software available to
represent the mathematics, and that this software is designed in a manner that
makes the mathematics as explicit as possible. It must show the processes of the
mathematics as well as giving the final results of any calculation.

If the computer software is in the form of a generic organiser, then it may
be used in a flexible way. I have seen my own software given to pupils to solve
problems without any explanation as to how it should be used. As a challenge,
in the right context, this approach can be most effective. My own preference is
for an initial element of teaching and discussion with the teacher using the
organiser to demonstrate examples, slowing down the action to explain what is
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happening, and pausing on occasion in the middle of a routine when an
interesting point is reached that is worthy of further discussion. The intention
of discussion at this stage is a negotiation of meaning. The idea is to help the
students form their own concept images in a way that is likely to agree with
the interpretation of the mathematical community. This may be done through a
Socratic dialogue between teacher and pupils which is enhanced by the addition
of the computer. The mathematics is no longer just in the head of the teacher,
or statically recorded in a book. It has an external representation on the
computer as a dynamic process, under the control of the user, who may be the
teacher, the pupil, or a combination of people working together. Concepts may
be built by seeing examples in action, and tested by predicting what will
happen on artfully chosen examples before letting the computer carry them
out.

The enhanced Socratic mode of teaching that I use with my own generic
organisers begins with teacher demonstration of the concepts on the computer
and dialogue between teacher and pupils in a context that encourages enquiry
and cooperation. At this stage only one computer is required for the whole
class. At the earliest opportunity, individual pupils will be typing in their own
suggestions which arise as a result of the dialogue and, as they gain in
confidence, the teacher plays a less central role. There may come a phase of
operation in which the pupils are using the generic organiser for their own
investigations. This may require more computers to allow all the students
access, though I have found that, in a smaller class (say up to ten or twelve
pupils) it is possible to organise a system in which the pupils take it in turn to
work together in small groups. At this stage the operative part of the didactic

Pupil

Teacher Mathematics

Computer

Context

Figure 2 : the “Didactic Tetrahedron”
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tetrahedron is the relationship between the pupil and the mathematical ideas, as
represented on the computer by the generic examples. The teacher takes no
directive role, being available only to answer questions which may arise in the
course of the student investigations. At a later, review stage, further discussion
with the pupils is sensible, to probe their ideas and make certain that their
concept image is appropriate for the wider mathematical community. In this
way the students come to terms with the ideas through experience and build
their concepts in a way which is likely to be potentially meaningful.

3. A cognitive approach to the calculus

The first stage of the cognitive approach in Graphic Calculus (Tall, 1986b) is
to establish the idea of the gradient of a curved graph. In a formal
development this is approached through the gradient of the tangent, but in the
cognitive approach it is considered to be the gradient of the graph itself. The
program Magnify allows the user to first draw a graph and then select any
part of the graph and magnify it. Figure 3 shows the graph of f(x)=x2 drawn
from x=–2 to 2, and a small part of the curve centred on x=1 magnified. The
magnified portion looks (almost) straight and has gradient 2.

If students are left to magnify graphs of their choice, they will soon
discover that almost all functions they are able to type into the computer have
the property that small parts of their graphs magnify to look nearly straight.
Without intervention from the teacher they may believe this to be a general
property of graphs and form an inadequate concept image. They may never
have drawn graphs that do not have this property other than, perhaps, f(x)= |x|
(which must be typed into the computer as abs(x)). However, using the idea of
the absolute value leads to more interesting graphs, such as f(x)=abs(sinx),
which magnifies at the origin to show two different gradients to the left and
right. (Figure 4).

Further examples that may be drawn using the program are graphs such as
f(x)=sinx+sin(100x)/100 (which looks like sinx to normal scale, but has tiny
oscillations showing up on magnification), or f(x)=sinx+abs(sin(100x))/100,
which has many corners that cannot be seen on a picture drawn from, say,
x=–5 to 5. Further examples, which could not be contemplated without the
computer, may be drawn and discussed, including f(x)=xsin(1/x),
f(x)=x2sin(1/x), f(x)=(x+abs(x))sin(1/x), f(x)=xe1/x, and the comparison of
f(x)=abs(x), f(x)=sqr(x2), f(x)=sqr(x2+0.0001). All of these (except the last!)
are smooth except for isolated places where they go wrong.

Again, the concept image of the students would be too narrow if it were
left here. Graphic Calculus includes a single program that draws a recursively
defined fractal graph, which I call the “blancmange function” (after an English
jelly which it resembles in a picture)1. The blancmange function y=bl(x) is so
                                                
1 Paradoxically, the English refer to this jelly using the French term “blancmange”, but the French refer to it
using the English name “le pudding”.
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wrinkled, that nowhere will it magnify to look like a straight line (see Tall,
1985, or 1986b). It is possible to prove, using an argument depending on
magnification, that the function is nowhere differentiable (Tall, 1982). Thus
the cognitive idea that a differentiable graph will magnify to look straight can
be turned into a mathematical proof of the existence of a nowhere
differentiable function.

Figure 3 : a “locally straight” graph

Figure 4 : a graph with a “corner”
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If a new function is formed by dividing the blancmange function by a very
large number, say c(x)=bl(x)/1010, then c(x) is so small that its graph is
indistinguishable from the x-axis when drawn to a normal scale. The pictures
of f(x)=x2 and g(x)=x2+c(x) differ by only a tiny amount and they look the
same on a computer screen. In fact the BBC computer has only nine digit
accuracy and so the difference between f(x) and g(x) is so small, the computer
cannot detect it. Yet one graph is everywhere differentiable and the other is
nowhere differentiable....

It is a matter of taste as to whether one wishes to introduce these ideas to
students early on in the calculus. My own preference is to do so as a valuable
source of discussion and an opportunity to develop a broader concept image.
However, they are available to introduce whenever the teacher considers
appropriate.

Once one is aware that many standard graphs magnify up to look locally
straight, it becomes an easy matter to cast one’s eye along the graph and
mentally magnify it to see its gradient changing. The program Gradient
includes a routine that moves in steps along a graph, drawing the extended
chord through the points over x, x+c on the graph (for fixed c) as x increases,
simultaneously plotting the gradient of the chord as it proceeds. Figure 5
shows the gradient of the graph of sinx being built up. It clearly approximates
to the graph of cosx.

Figure 5 : the gradient function of sinx

The program allows the student to type in a formula which they think
describes the gradient graph and to compare it with the numerically calculated
gradient. In this way they get a good feeling of why the gradient of the sine
graph should be the cosine graph, even though they may not yet have the
knowledge or ability to perform the symbolic manipulation to see that the
limit of
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sin(x+h)–sinx
h   

as h tends to zero is cosx. It is also possible to go direct to the global image of
the gradient of the graph without going through the formal limit process at a
point. Thus the global gestalt of the gradient function can arise early in the
development of the subject.

In practice in the classroom I build up the concept of the gradient of the
graph by starting with y=x2 and handling successively in three ways:

(1) the numerical limit of  
f(x+h)–f(x)

h    as h gets small at a

numerical value of x (calculated by the computer as in figure 6),

(2) The symbolic limit:

f(x+h)–f(x)
h    = 

(x+h)2–x2

h    = 
2xh+h2

h    = 2x+h, (for h≠0),

and so the gradient gets close to 2x as h gets small.

(3) The global gradient drawn by the computer, compared with the
graph of y=2x.

Figure 6 : Calculating a gradient at a point

This is done by teacher explanation and discussion. After this it is a relatively
simple matter to allow the pupils to play with the computer and to guess the
gradient of x3 using method (3). Working in small groups, they guess the
formula 3x2 with little difficulty (although it may take a few preliminary
guesses, such as x4 or 2x2 before getting a satisfactory picture). From here
they invariably guess the general formula that the derivative of xn is nxn–1 and
are able to go on to test it in other cases, such as n=33, –1, –2, 1/2, or π,
checking to see if the correct picture is drawn and where there might be
difficulties (such as x negative when n is not an integer).
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Other functions attacked easily by graphical methods include sinx, cosx,
lnx, expx. Less obvious ones include ln(abs(x)), whose gradient everywhere
(except zero) is 1/x, and tanx, which I did not think that students would be able
to guess, but those with experience of drawing the graphs of trigonometric
functions are often successful. (Figure 7.)

Figure 7 : the gradient of tanx

Students say that the gradient graph (the dotted one in the picture) is the kind
of shape one might get from squaring the tanx graph (to make it everywhere
positive), but then this would be zero where x=0, where the dotted graph
seems to have y=1. Thus the gradient graph of tanx might be tan2x+1...

Another investigation is prompted by noting that the gradient of 2x is the
same shape, but lower, whilst the gradient of 3x is the same shape, but higher.
Somewhere between 2 and 3 there might be a number e such that the gradient
of ex is again ex. This is a way in which students may see that the number e
arises in a very natural way.

The Gradient program is available in the classroom throughout the first
introduction of the theory of differentiation, but it is not used all the time.
There is much time devoted to the usual development of the formulae for
differentiation, with the computer available to draw a picture whenever it is
appropriate. For example, during a session calculating derivatives by formal
methods, the students may use the computer to check that their formulae give
the right graphs. They may be quite surprised to see that a small error in
calculation, such as a minus sign where there should be a plus sign, can give a
totally wrong graph. This underlines the necessity to take care over algebraic
manipulation.
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Integration

Just as differentiation may benefit by introducing the global gestalt of the
gradient function using the generic organiser Gradient, so integration may
benefit from introducing the global gestalt of the area function at an early
stage. The calculation of the approximate area under a graph could be done by
a programmable calculater (see Neill & Shuard, 1982), but the numbers that
arise may not be very enlightening unless the students are given considerable
help. For example, the approximations to the area under f(x)=x2 from 0 to 1
using 10 strips are:

lower sum: 0.285
upper sum: 0.385,

which are hardly helpful in suggesting that the true area is 1/3. Even with
1000 strips the results:

lower sum: 0.3328335
upper sum: 0.3338335

are only a little more suggestive. Psychologically, one can be far better
convinced by approximate pictures than by accurate numerical calculations.

Using the computer with a group of students, my approach is first to
discuss these area calculations, supported by pictures. The students are asked to
suggest what they think the area is under the curve f(x)=x2 from x=0 to x=1.
They write down their guess. Various values are given, from about a quarter
to a third, with other guesses such as 0.3, 0.325, and so on. Then we use the
program AREA to calculate an approximate value, with the choice of first
ordinate, mid-ordinate or last ordinate. In this case the first and last ordinates
give upper and lower sums. But the students are not interested in these. They
prefer the mid-ordinate because they guess, rightly, that it will give a more
accurate answer. (Figure 8.)

Figure 8 : the area under y=x2
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They are not impressed with the idea of using upper and lower sums to give an
over-estimate and an under-estimate of the result because the calculations are
so inaccurate (as we saw earlier).

The students are also right to distrust this method of introducing the
concept because it wastes a great deal of information. It fails to use all the
intermediate calculations. If these intermediate calculations are plotted for the
area from x=0 to x=5, the resulting graph gives a far more useful global
gestalt: the area function. Figure 9 shows a very cleverly selected picture. The
graph is that of the function f(x)=x2, and the individual points represent the
approximate area function from 0 to x. (As a static picture in a paper it may
not be very clear, but plotted in real time the growth of the area function is
easier to understand.)

Figure 9 : the area function under y=x2

Students with a little experience of graph-sketching can see that the dotted
graph (the approximate area function) looks like a higher power of x than x2.
A reasonable guess might be x3. But it is not x3 because it crosses the original
graph where x=3, and here y=x2=9. As 33 is 27, a better guess for the area
function might be x3/3. Thus, in one intuitive leap, many students can see the
idea behind the global area function. From here I go on to discuss the sign of
the area, when the value of y is positive or negative, and when the step is
positive or negative. The students do not find this idea difficult. The graph is
again drawn dynamically and, in a picture such as figure 10, they will see the
area build up from right to left, with a negative step, and they will see the
signs of ordinate and step being combined to give the sign of the area
calculation.
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Figure 10 : the sign of the area using a negative step is positive below and negative above

From here, I redraw the area function for f(x)=x2, calculated from 0 to x,
first for x positive using a positive step 0.1, and then I challenge the students
to sketch the graph of the area function for a negative step –0.1. There is
usually an interesting discussion. They see that for x negative the ordinate is
positive, so they conjecture a negative step times a positive ordinate gives a
negative calculation that will give an area graph below the axis for negative x.
It will also be symmetrical to reflect the symmetry of the graph, so the
resulting sketch of the graph is as in figure 11.

Figure 11 : the area from x=0 using a negative step has a negative value

Of course it is! The area graph is conjectured to be f(x)=x3/3, and this is the
shape one would expect… . The program includes a routine to superimpose
the graph of y=x3/3 to see how it compares with the graph of the approximate
area. To this degree of accuracy the graphs are indistinguishable.
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As there are only about 200 pixels horizontally and vertically on the
screen, an accuracy of 1 in 200 (only 0.5%) gives a reasonable picture, an
accuracy that would be unacceptable in a numerical calculation. So, using a
pictorial approach, not only does one get a dynamic feeling for the growing
area, and an insight into positive and negative calculations, this is also done
with reasonable arithmetic and uses all the intermediate calculations to
advantage. Again, one or two more examples: the area function from the
origin for x, x3 and possibly x0, and the students are ready to conjecture that
the area under f(x)=xn is xn+1/(n+1).

In Tall 1986a, I demonstrate how the program Area can suggest the idea
for the fundamental theorem of calculus, by stretching the graph horizontally,
leaving the vertical scale unchanged. The graph y=f(x) looks horizontal and
the area from x to x+h is approximately f(x)* h. But this is also A(x+h)–A(x),
giving the approximation:

A(x+h)–A(x) ≈ f(x)* h,
and a reason why

A(x+h)–A(x)
h    ≈ f(x),

leading to the fundamental theorem:
A'(x)=f(x).

One may wonder why an equality can be deduced by taking the limit of an
inequality. The reason is seen pictorially because the more one pulls the graph
horizontally, the flatter it gets and the better the approximation becomes. In
fact, here one can introduce the standard ε−δ definition of continuity.
Pictorially, a graph is continuous at x=a if, given a pixel width ±ε (for a fixed
y-scale), there exists a small interval a±δ such that when the graph is drawn on
the screen with the x-range stretched from actual coordinates a–δ to a+δ, then
the graph lies in a pixel height f(a)±ε. Thus continuity arises from the need to
make the fundamental theorem precise. It need not be introduced without
reason (to the student) at an earlier stage. This is yet another example of
didactic inversion in the sense described by Freudenthal. A cognitive
development need not follow the same sequence as a logical development.

Differential Equations

The student usually meets differential equations in the simple form of knowing
the gradient dy/dx=f(x), and seeking the graph y=I(x) with this gradient. This
information may be represented graphically by drawing an array of short line
segments through points (x,y) with gradient f(x), as in figure 12. A solution of
the differential equation may then be visualized as a curve which follows the
direction lines. A formal solution satisfies I'(x)=f(x).

The gradient direction is a function of x alone, so the solution curves will
clearly differ by a constant. Or do they? Closer inspection will show that this
is only true for a connected component of the domain. The numerical method
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of plotting a solution curve by following the direction lines uses a constant step
along the graph rather than a fixed x-step. Thus a solution curve of dy/dx=1/x2

starting to the left of the origin will always stay on the left, whilst a solution to
the right will always stay to the right. Thus two different solution curves may
differ by a constant only over each connected component of the domain. They
differ not by a constant, but by a “locally constant function”...

A generalization of this idea is when the gradient dy/dx is a function of
both x and y:

dy/dx=f(x,y).

The idea of a solution is basically the same: draw a direction diagram and
trace a solution by following the given directions.

For instance, the differential equation:

dy/dx=–x/y

has a direction diagram as in figure 13:

Figure 13 : a solution of dy/dx =–x/y

Figure 12 : line segments (through each point (x,y) of gradient 1/x2
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The solutions of this equation are implicit, in the form:

x2+y2=constant.

The “first order differential equation program” in Graphic Calculus is
programmed to trace the solution curves numberically, using a choice of an x-
step or y-step, in such a way that it can trace round closed loops. At points
where the tangent is vertical the interpretation of dy/dx as a real function fails,
but one may regard the tangent vector as the vector (dx,dy), which allows
dx=0, dy non-zero to represent the vertical direction. Thus a first order
differential equation may sometimes be better regarded as giving information
about the direction (dx,dy) of the tangent to an implicit solution curve, rather
than a formula for the derivative of an explicit function of x.

Thus one may usefully distinguish between differential equations (which
specify the direction of the tangent) and derivative equations (which specify
the derivative of an explicit function). The concept of a differential equation is
more general than that of a derivative equation, which it includes as a special
case.

Using pictures to visualize the direction of the solution curves can often
cruelly expose the limitations and downright misrepresentations about
differential equations in many elementary textbooks.

Graphic Calculus also includes a program to draw solutions of second
order differential equations in the form:

d2y/dx2 = f(x,y,dy/dx).

Even a relatively simple equation such as

d2y/dx2 = –x

does not have a direction field in the x-y plane. There are an infinite number
of solutions through each point, one for each starting direction. Figure 14
shows solutions drawn numerically starting from the origin and moving away
in various directions.

Figure 14 : several solutions of d2y/dx2 =–x passing through the origin
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Solution of such equations are often attacked by introducing a new variable
v=dy/dx, and writing the original equation in terms of two first-order
equations:

dy/dx = v
dv/dx = –x.

These equations tell us that at every point in three dimensional space (x,y,v).
there is a uniquely defined direction:

(dx,dy,dv) = (dx,vdx,–xdx)
which is in the direction (1,v,–x). Once more the solution may be visualized in
terms of following the given direction field, but this time in three dimensions,
not two.

A further program in Graphic Calculus draws solutions of such
simultaneous differential equations in three dimensions, building up the
solution numerically by following the direction at each point, with the
projections of the curve in three-space being shown simultaneously in the (x,y)
and (x,v) planes. The understanding of the nature of the solution is greatly
aided by seeing it evolve dynamically in space (figure 15). The graphics on
the BBC computer are colour-coded to aid in the visualization, producing a
mental image that is very difficult to intimate in a static black and white
picture.

Figure 15 : a three-dimensional picture of a solution of dx/dt=v, dv/dt=–x

A more extended approach to differential equations using dynamic interactive
computer graphics on the Macintosh computer have been used extensively by
Hubbard and West at Cornell University, and will feature in Hubbard &West
(to appear). Further details are given in Tall & West, 1986.
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4. Empirical Studies in the Classroom

To test the theory of a cognitive approach using generic organisers, the
differentiation programs of Graphic Calculus were used in three classes in two
different schools and the progress of the students compared using matched
pairs selected from five other classes in the same schools. Some of the students
had studied the calculus before and it was possible to consider matched pairs
both with, and without calculus experience.

In each school the control and experimental groups used an agreed
textbook, with the experimental group given additional support from the
generic organisers in Graphic Calculus. Data was also collected from a third
school using the computer programs, where the organisers functioned less
well, and from university students who had not used a computer in the
learning of calculus.

In one experimental class the teacher allowed me to take those parts of the
lessons where the computer was to be used, in the other two classes the
teachers were given an overall plan to follow, but were left to interpret this in
their own way. It was intended that the experimental groups should be taught
in an enhanced Socratic mode (though this terminology was not given to the
teachers at the time). The plan was for the teachers to introduce the notion of
gradient of a graph using the programs Magnify and Gradient, and to lead
class discussions. They were to encourage the pupils to use the programs for
investigations and to check their formal differentiation by using the program
to compare the numerical global gradient function with the derivatives thay
had calculated. The teachers in all groups kept a detailed diary of their
activities and, by and large, the three experimental classes followed the agreed
programme. However, those using the computer in the third school did not
follow the programme as specified, with disastrous consequences.

The pre-test included a question on calculating the “rate of change” between
two points on a curved graph which was used as part of the information to
select matched pairs on the pre-test (figure 16).

Figure 16 : identifying the gradient of a curve through various points

The interesting question here is part (vi). The line DC is sloping up,
suggesting a positive result, but the actual y-direction from D to C is down,
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suggesting a negative result. This imposes a conflict situation, in which 41%
changed their response from pre-test to post-test, with almost equal numbers
in each direction. Only 26% give the correct response (with positive sign) on
both occasions and 33% get it wrong both times, mainly due to an error in
sign. Although the matched pairs with previous calculus experience show a
significant improvement on this question (at the 2.5% level), this should not be
taken too seriously, as both control and experimental results are subject to
conflicting changes on part (vi). The diaries of the teachers show that this
situation was not discussed during the lessons and it would be an interesting
one to consider in future research.

The idea of the tangent as the limiting position of the extended chord
proves to have difficulties for both experimental and control students. On pre-
test and post-test they were asked the question in figure 17 (inspired by a
question in Cornu 1983).

 (i) Write down the gradient of the
straight line through A, B...

(ii) Write down the gradient of AT...
Explain how you might find the
gradient of AT from first principles.

B

A

k

2k

1

1 x

y T

Figure 17 : the relationship between the gradient of a chord and of a tangent

It was hoped that some of the students might calculate the gradient of the
chord as

k2–1
k–1   = k+1 (for k≠1),

give the gradient of the tangent at (1,1) as 2, and then note that, as k tends to
1, so the chord gradient k+1 tends to 2. On the pre-test 16 students (10% of
those tested) obtained the value k+1 for the gradient of the chord and 2 for the
gradient of the tangent, but only one suggested a limiting argument. The
evidence is not conclusive, but it does not give much support to the idea that
the limiting argument is an intuitive notion, in the sense that it might be
evoked spontaneously by the student meeting the idea for the first time.

In every classroom the derivative was discussed in terms of the limit of the
gradient of the chord through two points as one tended to the other. One might
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expect this to make some impact on the students. There were four questions on
the post-test that might be expected to produce an explanation using a limiting
argument. They were the question above on “first principles” in figure 13 and
three open-ended questions asking respectively for an explanation of the
“gradient of a graph”, the “tangent to a graph” and the “derivative of a
function”. In table 18 are the numbers of students responding with a limiting
notion from the matched pairs and from the students at university. The
matched pairs are broken down into those without previous calculus
experience (Exp and Contr) and those with previous experience (Exp* and
Contr*):

Exp Contr Exp* Contr* University
(N=12) (N=12) (N=27) (N=27) (N=44)

1st principles 4 1 6 6 14
gradient 1 0 1 0 8
tangent 2 0 1 0 5
derivative 0 0 0 0 3

Table 18 : Students responding with the limit concept

The low level of responses indicate the high cognitive demand of this general
concept, reinforcing the opinion that, although the notion of a limit is the
natural foundation of a mathematical development of the calculus, it is not a
natural starting point for a cognitive development.

The limit notion, as explained in the classroom, is a dynamic notion, using
the terminology “x tends to a” or “x→a”. In addition the students sometimes
responded with a pre-dynamic concept, where points on the graph are
described as being “very close”, or even “infinitely close”, without any
indication of a limiting argument. Table 19 shows the significance that the
experimental students give more dynamic/pre-dynamic responses than the
control students, using a Wilcoxon matched pairs test. Column 1 are the 12
matched pairs without previous calculus experience and column 2 are the 27
matched pairs with previous experience:

Without previous With previous
calculus calculus

1st principles n.s.* 5%
gradient 0.5% 1%
tangent 5% 1%

Table 19 : significance that experimental students are more likely to give a dynamic response
to the limit concept

(Here n.s. means “not significant” and n.s.* means “not significant at the 5%
level, but significant at 10%.)

The question concerning the meaning of the derivative of a function could
have had a limiting response, but none of the experimental or control students
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responded in this way. However, the experimental students without calculus
experience were more likely to describe the derivative in terms of the gradient
of the graph (table 20).

Without previous With previous
calculus  calculus

gradient 1% n.s.*
gradient function 5% n.s.

Table 20 : significance that experimental students are more likely to describe the derivative
in terms of the gradient (function)

It seems here that the experimental students who are meeting the derivative for
the first time are more likely to see it as a “gradient function” than the
corresponding control students, but the control students meeting the calculus
for the second time are growing to understand the concept better.

However, this interpretation must be treated with caution. The calculus
students with previous experience were using a text-book that described the
derivative as the gradient function, and hence this response is to be expected.
These control students do not see the derivative pictorially as a gradient
function, as is shown by the following question from the post-test (figure 21):

Figure 21 : Sketching the gradient graphs for given graphs

The performances of the three experimental classes (KE, BE1, BE2) are
visibly better than the control classes (KC and BC1 to BC4), and on a level
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comparable with the university students (U). The other school (CE), which
also used the generic organisers, failed dismally (table 22):

Graph (a) (b) (c) (d) Total
Maximum 5 5 5 5 20

KE 4.93 4.50 4.36 4.03 17.86
  BE2 4.62 4.25 4.44 3.94 17.25
  BE1 5.00 3.92 3.50 2.00 15.83

BC4 4.55 3.18 2.82 2.18 12.73
  BC2 4.11 3.78 1.56 0.94 10.32
  KC 3.67 4.00 0.78 0.00 8.44
  BC3 2.36 1.71 0.14 0.07 4.29
  BC1 1.93 0.87 0.00 0.20 3.00

CE 0.73 0.24 0.08 0.04 1.08

U 4.89 4.55 4.45 3.84 17.73

Table 22 : Student responses to sketching derivative graphs

The reason for the poor performance of the CE group is two-fold: first the
students obtained lower marks than any other group on the pre-test (level with
BC1 and marginally below BE1 on the first question in figure 12). Second, the
students in CE used the computer on just one occasion, using it, on average,
less than once each. Threequarters of the CE students complained that the class
used it “too little” or “far too little” and of twelve comments from the CE
group about unhelpful aspects, nine mentioned either “lack of time”,
“confusion as to the aims of the program”, or that it “kept going wrong”. The
evidence strongly suggested a weakness in the use of the software.

By contrast, the three experimental groups KE (with whom I worked),
BE1 and BE2 were far more positive in their attitudes and almost any
statistical test would show the improvement in their scores. Dividing them into
their matched pairs once more, and using a one-tail Wilcoxon test to compare
their performances on each individual question, shows the experimental
students performing significantly better than the control students on all
questions, except for the pairs without calculus experience on question 1. Even
here the experimental students performed better, but not at the 5% level of
significance.

These results show that, although the control students with more experience
use the term “gradient function” for the derivative, they are not all able to
sketch the gradient function as a graph.

A further question (again taken from Cornu, 1983) showed a graph which
was the derivative of one of three others. The students had to say which, and
give a reason for their opinion (figure 23).
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Figure 23 : identifying the graph with a given gradient

The performance of the groups followed a similar pattern to table 18. 67% of
the experimental students gave the correct response (b) with a correct reason,
a similar level of success as those at university (68%), whilst only 8% of the
control students were able to do the same.

None of the group CE managed to give a correct response together with a
sensible reason, and more than half of them failed to respond.

If one classifies a student to “perform well” by obtaining 15 out of 20 on
table 18 together with a correct response (with reason) to the question in
figure 19, then there are 26 out of 42 experimental students in this category
(62%) but only 2 out of 72 control students. The probability of such an
extreme distribution occurring by chance is less than 1 in 109 !

Further tests are described in Tall, 1986d. They show that there is no
significant difference between the performances of control and experimental
groups on formal differentiation, but that the experimental groups are
significantly better at sketching gradients, recognising gradient functions and
defining non-differentiable functions (though the latter is cognitively more
demanding and fewer students are successful at this task). They also show that
the experimental students are far more likely to see the derivative in dynamic
or pre-dynamic terms.
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One phenomenon that caused me some concern was that a significant
number of experimental students were likely to regard the tangent to a curve
in pre-dynamic terms as a line through “two very close points”. However,
closer analysis showed that there is an even greater problem with the control
students seeing the tangent as a line which “touches the curve at one point
only” with the possible additional property that it “does not cross the curve”.

It is my conclusion that we can develop a cognitive approach to the tangent
by defining a “practical tangent” to be a line through two very close points on
a curve. This can prove to be very useful in a pre-calculus course. It is an
operative definition, which can be used to draw a very good approximation to
a tangent before calculus is discussed. The informal definition in terms of
“touching” and “not crossing” is only useful for rough sketches and gives a
concept image that causes obstacles to learning at a later stage. The practical
definition is useful for calculations at an early stage and can be used to define
the “theoretical tangent” in terms of the limiting process when the students
have developed sufficient sophistication to be able to cope with the idea.

Once more, empirical research has demonstrated a process of didactic
inversion that gives an alternative cognitive approach to mathematics. In this
case the cognitive approach, in the shape of the practical tangent, proves to be
surprisingly good mathematics!
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