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The human brain is powerfully equipped to process visual information. By using
computer graphics it is possible to tap this power to help students gain a greater
understanding of many mathematical concepts. Furthermore, dynamic representations
of mathematical processes furnish a degree of psychological reality that enables the
mind to manipulate them in a far more fruitful way than could ever be achieved starting
from a static text and pictures in a book. Add to this the possibility of student
exploration using prepared software and the sum total is a potent new force in the
mathematics curriculum.

In this paper we report on the development of interactive high resolution graphics
approaches to various areas in mathematics. The first author has concentrated initially
on the calculus in the U.K. (Tall 1986, Tall et al 1990) and the second is working in the
USA on differential equations with John H. Hubbard (Hubbard and West 1990).

An interactive visual approach is proving successful in other areas, for example, in
geometry (The Geometric Supposer, Cabri Géomètre), in data manipulation (e.g.
Macspin, Mouse Plotter), in probability and statistics (e.g. Robinson & Bowman 1987)
and, more generally, in a wide variety of topics (such as the publications in the
Computer Illustrated Text series, which use computer programs to provide dynamic
illustrations of mathematical concepts).

New approaches to mathematics

The existence of interactive visual software leads to the possibility of exploratory
approaches to mathematics which enables the user to gain intuitive insight into
concepts, providing a cognitive foundation on which meaningful mathematical theories
can be built. For example, the notion of a limit has traditionally caused students
problems (e.g. Cornu 1981, Tall & Vinner 1981). The computer brings new
possibilities to the fore; we may begin by considering the gradient not of the tangent, or
of a chord as it approaches a tangential position, but simply the gradient of the graph
itself. Although a graph may be curved, under high magnification a small part may well
look almost straight. In such a case we may speak of the gradient of the graph as being
the gradient of this magnified (approximately straight) portion. For instance, a tiny part
of the graph y=x2 near x=1 magnifies to a line segment of gradient 2 (figure 1).

To represent the changing gradient of a graph, it is a simple matter to calculate the
expression (f(x+c)-f(x))/c for a small fixed value of c as x varies. As the chord clicks
along the graph for increasing values of x, the numerical value of the gradient for each
successive chord can be plotted as a point and the points outline the graph of the
gradient function (figure 2). In this case the chord gradient function of sinx for small c
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approximates to cosx, which may be checked by superimposing the graph of the latter
for comparison. Thus the gradient of the graph may be investigated experimentally
before any of the traditional formalities of limiting processes are introduced.

The moving graphics also enable the student to get a dynamic idea of the changing
gradient. Students following this approach can see the gradient as a global function, not
simply something calculated at each individual point.

The symbols dx, dy can also be given a meaning as the increments in x,y to the
tangent. Better still, (dx,dy) may be viewed as the tangent vector, a valuable idea when
we come to the meaning of differential equations.

figure 2

Conceptualizing non-differentiable functions

In a traditional course, non-differentiable functions would not be considered until much
later on, if at all. However, if one views a differentiable function as one which is
“locally straight”, then a non-differentiable function is simply one which is not locally
straight. For instance, the graph of |x-1| at x=1, or |sinx| at x=π, each have a “corner” at
the point concerned with different gradients to the left and right. More generally, it is
possible to draw a function that is so wrinkled that it never looks straight anywhere
under high magnification.

figure 1
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An example is the blancmange function bl(x), first constructed by Takagi in 1903. First
a saw-tooth s(x) is constructed by taking the decimal part d=x-INTx of x and defining

s(x)=d if d<
1
2 , otherwise s(x)=1-d.

The sequence of functions

b1(x)=s(x),
b2(x)=s(x)+s(2x)/2,
. . .
bn(x)=s(x)+...+s(2n-1x)/2n-1, ...

tends to the blancmange function (figure 3).

b1

b2

b3

the blancmange

figure 3

The process may be drawn dynamically on a VDU; we regret that it cannot be pictured
satisfactorily in a book, not even this one. But higher magnification of the blancmange
function using prepared software shows it nowhere magnifies to look straight, so it is
nowhere differentiable. This intuitive approach can easily be transformed into a formal
proof of disarming simplicity (Tall 1982).

Visualizing solutions of first order differential equations

In graphical terms, a first order differential equation dy/dx=f(x,y) simply states the
gradient of a solution curve at any point (x,y) and a solution is simply a curve which
has the required gradient everywhere. The Solution Sketcher (Tall 1990) allows the
user to point at any position in the plane and draws a small line segment of the
appropriate direction. This line-segment may be marked on-screen and successive line
segments fitted together to build up an approximate solution curve. More broadly, it is
possible to draw a direction diagram with an array of such segments and to trace a
solution by following the given directions (figure 4).

The differential equation

y
dy
dx  = -x

has implicit solutions in the form x2+y2=k, rather than a global explicit solution in the
form y=f(x). At points where the flow-lines meet the x-axis the tangents are vertical and
the interpretation of dy/dx as a function fails, but the vector direction (dx,dy) is valid
with dx=0 and dy≠0. Thus a first-order differential equation is sometimes better viewed
in terms of the direction of the tangent to a solution curve rather than specifying the
derivative.
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Existence o f solutions

There comes a time in every
university course on
differential equations when
honesty should compel the
teacher to admit that the
cookbook methods for
solving differential
equations are inadequate.
Such innocent looking
equations as

dy/dx=y2-x, dy/dx=sin(xy), dy/dx=exy

do not have solutions that can be written in terms of elementary functions. Students
often mistakenly confuse this with the idea that the equations have no solutions at all.
However, if they are able to interact with a computer program that plots a direction field
and then draws solutions numerically following the direction lines, the phenomenon
takes a genuine meaning: “Of course the equations have solutions: we can see them!”
From this cognitive base it is possible to use the computer to analyse solutions in an
entirely new way.

Qualitative analysis of differential equations

New forms of analysis emerge now we can see as many solutions as we wish all at the
same time. In figure 5, notice how the solutions tend to “funnel” together moving to the
lower right-hand side; in the upper right they spray apart (an “antifunnel”). Qualitatively
descriptive terms such as “funnel” and “antifunnel” can be defined precisely to give
powerful theorems with accurate quantitative results (Hubbard & West 1990). For
example, the equation dy/dt=y2-t in figure 5 has two overall behaviours: solutions
either approach vertical asymptotes for finite t or fall into the funnel and approach y=-√t
as t→+∞. In the antifunnel there is a unique solution approaching y=+√t which
separates the two usual behaviours. Furthermore, the qualitative techniques enable us to
estimate the vertical asymptote for a solution through any given point with good
precision.

figure 4
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figure 5

Newton’s Laws

The classical three body problem defies elementary analysis, yet a computer program
can cope with relative ease. The program Planets (Hubbard & West 1990) takes a
configuration of up to ten bodies with specified mass, initial position and velocity and
displays the movement under Newton’s laws (figure 6). The data can be input either
graphically with the cursor, or numerically in a table. The program allows exploration
of possible planetary configurations and it soon becomes plain that stability is the
exception rather than the rule. One may wonder under what circumstances stability
occurs. Other questions arise, such as the reason for the braided rings of Saturn that
were a great surprise when first observed by the Voyager space flight. Nobody had
imagined such a behaviour beforehand, yet braided behaviour showed up in the very
first experiments with the Planets program.
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Figure 7 shows a model of a possible orbit of a tiny satellite round two larger bodies,
alternately oscillating between revolving round one then moving into a position of
superior gravitational pull of the other and moving, for a time, to revolve round the
other (Koçak 1986). Once again, computer exploration shows vividly how three bodies
move in a complex pattern.

The theory of dynamical systems and chaos is a paradigmatic example of a new branch
of mathematics in which the complementary roles of computer generated experiments to
suggest theorems and formal mathematical proof to establish them with logical
precision go hand in hand.

Chaos has become not just a theory but also a method, not just a canon of
beliefs but also a way of doing science. ... To chaos researchers, mathematics
has become an experimental science, with the computer replacing
laboratories full of test tubes and microscopes. Graphic images are the key.
“It’s masochism for a mathematician to do without pictures,” one chaos
specialist would say. “How can they see the relationship between that motion
and this, how can they develop intuition?”. (Gleick 1987, pp. 38-39)

masses in initial position
with velocity vectors

a little later
under the action
of Newton’s Laws

figure 6
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figure 7

Systems of differential equations

The software of Hubbard & West (1990) draws solutions of systems of differential
equations dx/dt=f(x,y), dy/dt=g(x,y) in the x,y plane and also locates singular points
using Newton’s method, drawing separatrices for saddle points (figure 8).

figure 8

In this way the computer may be used to draw solutions of systems of differential
equations that are far too complicated to draw by hand. As a further example, Artigue
and Gautheron (1983) draw the solutions of the polar differential equations

dr/dt=sinr, dθ/dt=cosr

which exhibit limit cycles for r=kπ (figure 9).
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figure 9

Generalizing the concept of visual solutions

A second order differential equation such as

d2x/dt2=-t

no longer has a simple direction field in (t,x) space, because through each point (t,x)
there is a different solution for each starting direction v=dx/dt. However, this
differential equation is equivalent to the simultaneous linear equations:

dx/dt=v

dv/dt=–t,

and in three dimensional (t,x,v) these equations determine a unique tangent vector

figure 10
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(dt,dx,dv) in the direction (1,v,–t). Hence the idea of a direction field does generalize,
but it must be visualized in three dimensional (t,x,v) space. Figure 10 shows two
solutions of the differential equation spiralling through (t,x,v) space and their
projections onto the t–x and t–v planes.

Visual exploration in geometry

Euclidean geometry traditionally served to introduce students to a deductive system. In
many countries (such as the United Kingdom) it has all but disappeared from the
mathematics curriculum. Computers now give the opportunity to manipulate
geometrical figures to build up intuitions for possible theorems (Geometric Supposer
Schwartz & Yerushalmy, 1985, Cabri Géomètre 1987). The initial phase of study of
geometry can now be an experimental science, in which the student can use the
computer to construct a figure and experiment with it.

figure 11

Visual Data Processing

It is now possible to explore data visually, for example, to see a line of best fit for data
in two or three dimensions. MacSpin allows up to ten categories of data, from which
any three can be selected and displayed. Though only represented as a projection of
three dimensions onto the two-dimensional screen, the data may be rotated and viewed
dynamically from any angle to give a sense of depth that is not visible in a static picture
(figure 12). Individual points may be selected and inspected to see where the data
originates to identify interesting information, such as outlying values. Rotating the data
in the figure suggests that it clusters together in a way which intimates that the three
components are correlated.
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figure 12

Modern spreadsheets, statistical packages and data handling packages now include
visual representation of data which encourages the user to explore and communicate
complex information in visual ways.

The ability to present and manipulate information visually is becoming widely available
in a many different areas in mathematics. For example, Robinson & Bowman (1986)
introduce probability and statistics using computer graphics with the intention of giving
a ‘feel’ for probability distributions rather than go into details of the mathematics. More
generally, the Computer Illustrated Texts (starting with Harding 1985) are designed to
use simple computer programs to provide interactive illustrations of mathematical ideas
which can be explored by the student in place of static pictures in a book.

Is programming essential?

We have not explicitly mentioned programming so far. In the U.K. a growing body of
expertise is growing in which students are expected to handle short programs (usually
in structured BASIC or Logo) to carry out mathematical algorithms. From here it is
intended that they move on to prepared software that uses the underlying algorithms in
a more interactive manner. The early computer illustrated texts assumed that the
programming would be sufficiently simple that it would allow the student to modify the
programs, but this became an impossible ideal in later texts. Programming requires a
serious investment in time and effort. However, it can pay vast dividends if the
investment is sufficiently generous.

Dubinsky has evidence that having students make certain programming constructions
(in the computer language ISETL) can lead to their making parallel mathematical
constructions in their minds and thereby come to understand various mathematical
concepts (see, for example, Dubinsky & Schwingendorf 1990). Clearly a spectrum of
approaches may be possible with varying amounts of programming, depending on the
time and commitment available.
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New Styles of Learning

Software is becoming widely available to give graphical representations in calculus,
differential equations, geometry, data handling, numerical analysis, and many other
areas in mathematics. This is usually predicated on a new kind of learning experience
— one in which the student may explore and manipulate the ideas, to investigate
patterns, to conjecture theorems and to test their theories experimentally before going
on to prove them in a more formal context.

For instance, in the calculus students may investigate the gradients of functions such as
sine, cosine, tangent, exponential and logarithm, and conjecture their formulae before
they are derived formally (Tall 1986, 1987). In differential equations they may explore
problems at the boundaries of research (such as the rings of Saturn) and make the
mental link between the friendly world of (mostly linear) equations that can be solved
by formulae and the strange world of those (usually non-linear) that can not (Hubbard
and West 1990).

This form of learning is not a replacement for formal deduction, but a precursor and a
complement to it. It enables the less able student to grasp essential ideas that would
previously be too difficult when framed in a purely formal theory and for the more able
student to build a cognitive base for the formal theory to follow. It enables a wide range
of students to integrate their knowledge structure through their powers of visualization.
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