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The human brain ipowerfully equipped to process visual information. By using
computer graphics it ipossible totap this power tohelp studentsgain a greater
understanding of manyathematicaconcepts. Furthermorelynamicrepresentations

of mathematicaprocesses furnish degree of psychological reality that enables the
mind to manipulate them in a far more fruitful way than could ever be achieved starting
from a static textand pictures in &ook. Add to this the possibility of student
explorationusing prepared software atite sum total is a potentnew force in the
mathematics curriculum.

In this paper we report othe development of interactiieigh resolution graphics
approaches to various areas in mathemafiosfirst author hasconcentrated initially
on the calculus in the U.K. (Tall 1986, Tatlal 1990) and the second is working in the
USA on differential equations with John H. Hubbard (Hubbard and West 1990).

An interactivevisual approach is proving successful in othezas, for example, in
geometry The GeometricSupposer Cabri Géometrg in data manipulatione.g.
Macspin Mouse Plotte), in probability and statistics (e.g. Robinson & Bowman 1987)
and, more generally, in a wideariety of topics(such asthe publications in the
Computerlllustrated Text series, which useomputerprograms to providelynamic
illustrations of mathematical concepts).

New approaches to mathematics

The existence of interactiveisual software leads tthe possibility of exploratory
approaches tanathematicswhich enablesthe user to gain intuitive insightinto
concepts, providing a cognitive foundation on which meaningathematicatheories

can bebuilt. For examplethe notion of alimit has traditionally causedstudents
problems (e.g. Cornu 1981,Tall & Vinner 1981). The computerbrings new
possibilities to the fore; we may begin by considering the gradient not tdrtbent, or

of a chord as it approachedamgentialposition, but simplthe gradient of theyraph

itself. Although a graph may be curved, under high magnification a small part may well
look almost straight. In such a case we may speak of the gradigetgrph as being

the gradient of this magnified (approximately straight) portieor. instance, éiny part

of the graply=x2 nearx=1 magpnifies to a line segment of gradient 2 (figure 1).

To represent the changing gradient ofjiraph, it is asimple matter to calculate the
expressionf(x+c)-f(x))/c for asmall fixed value ot asx varies. Asthe chordclicks
along the graph for increasing valuexpfthe numerical value of the gradidat each
successive chordan be plotted as a point and theints outline thegraph of the
gradient function (figure 2). In this case the chord gradient function »ffeirsmall c

1The authors are grateful to Professor John H. Hubbard for his assistance in the preparation of an
earlier version of this article.
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figure 1

approximates to caswhich may be checked bguperimposinghe graph ofthe latter
for comparison. Thushe gradient of thgraph may be investigated experimentally
before any of the traditional formalities of limiting processes are introduced.

The movinggraphics alsanable the student to get a dynardea of the changing
gradient. Students following this approach can see the gradient as afglatien not
simply something calculated at each individual point.

The symbolsdx, dy canalso be given a meaning #ise increments irx,y to the
tangent. Better still,dx,dy) may be viewed as thangent vectgra valuable ideavhen
we come to the meaning of differential equations.
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figure 2

Conceptualizing non-differentiable functions

In a traditional course, non-differentiable functions would not be considerednuati
later on, if at all. However, ifone views adifferentiable function as onehich is
“locally straight”, then a non-differentiable function is simply one whichaslocally
straight. For instance, the graph»efl| atx=1, or |six| atx=Tt, each have &orner” at
the point concernedith different gradients tthe leftandright. More generally, it is
possible to draw a functiahat is sowrinkled that it neverlooks straightanywhere
under high magnification.



An example is thélancmange function @), first constructed by Takagi it903. First
a saw-tooths(x) is constructed by taking the decimal msx-INTx of x and defining

s(x)=d if d<z , otherwises(x)=1-d.
The sequence of functions

b1(X)=s(x),
b2(X)=s(x)+s(2x)/2,

br(X)=S(X)+... +5(20-1x)/20-1, ..

tends to the blancmange function (figure 3).

the blancmange

figure 3

The process may be drawn dynamically ovilJ; we regret that it cannot be pictured
satisfactorily in a book, not even those. But higher magnification of the blancmange
function using prepared softwasbows it nowherenagnifies to lookstraight, so it is
nowhere differentiable. This intuitive approach can easilyrdoesformed into a formal
proof of disarming simplicity (Tall 1982).

Visualizing solutions of first order differential equations

In graphicalterms, a first ordedifferential equatiordy/dx=f(x,y) simply states the
gradient of a solution curve at any pofrty) and a solution is simply a curve which
hasthe required gradiergverywhere.The Solution Sketche(Tall 1990) allows the
user topoint at any position irthe plane anddiraws asmall line segment of the
appropriate direction. This line-segmenay be markedn-screen and successiuee
segments fitted together to build up an approximate solatiove. More broadly, it is
possible to draw direction diagram with an array eluch segments and tace a
solution by following the given directions (figure 4).

The differential equation

dy
ydx = X

has implicit solutions in théorm x2+y2=Kk, rather than a global expligblution in the
form y=f(x). At points where the flow-lines meet tk@xis the tangents are vertical and
the interpretation ofly/dx as a functiorfails, but the vector directiondk,dy) is valid

with dx=0 and dy0. Thus a first-order differential equation is sometimes better viewed
in terms of the direction of the tangent tes@ution curve rather than specifying the
derivative.
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dy/dx=y2-x, dy/dx=sin(xy), dy/dx=exy

do not havesolutionsthat can be written in terms of elementfumctions. Students
often mistakenly confuse this withe idea that thequations have nsolutions at all.
However, if they are able to interact with a computer program that plots a dirsition
and thendraws solutionswumerically following the directionlines, the phenomenon
takes a genuine meaninf coursethe equations haveolutions: wecan seethem!”
From thiscognitive base it ipossible to uséhe computer to analysslutions in an
entirely new way.

Qualitative analysis of differential equations

New forms of analysis emerge now we can see as many solutions as vl atighe
same time. In figure 5, notice how the solutions tend to “funnel” together moving to the
lower right-hand side; in the upper right they spray apart (an “antifunq@iglitatively
descriptive termsuch as‘funnel” and “antifunnel” can be defined precisely to give
powerful theorems witlaccurate quantitativeesults (Hubbard &West 1990). For
example,the equationdy/dt=y2-t in figure 5 has twooverall behaviourssolutions
either approach vertical asymptotes for finite fall into the funnel and approagh-v't
ast-+ow, In the antifunnel there is a unig®lution approaching/=+vt which
separates the two usual behaviours. Furthermore, the qualitative techniques enable us to
estimate the vertical asymptoter a solution through angiven point with good
precision.
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Newton’s Laws

The classical threbody problem defies elementagnalysis,yet a computer program
can copewith relative ease.The programPlanets(Hubbard & West 1990) takes a
configuration of up tden bodies with specifiesnass,initial position and velocity and
displaysthe movementinder Newton’s laws (figuré). The data can be inpéither
graphically with thecursor, ornumerically in aable. The programallows exploration
of possibleplanetary configurations and #ioon becomes plain that stability is the
exception rather than theile. One maywonder under whatircumstances stability
occurs.Otherquestions arise, such #w reason forthe braidedrings of Saturrthat
were a greasurprise when first observed ltlye Voyager spac#light. Nobody had
imaginedsuch a behaviour beforeharyt braided behaviowshowed up inthe very
first experiments with the Planets program.



Figure 7 shows aodel of apossible orbit of diny satelliteround twolargerbodies,
alternately oscillating betweearvolving round oneghen moving into a position of
superiorgravitational pull of the other angchoving, for a time, taevolve round the
other (Kogak 1986). Once again, computer exploration shows vividlythi@ebodies
move in a complex pattern.

The theory of dynamical systems and chaos is a paradigexaticple of anew branch

of mathematics in which the complementary roles of computer generated experiments to
suggest theorems anfdrmal mathematicalproof to establishthem with logical
precision go hand in hand.

Chaos has become not just a theory but also a method, not just a canon of
beliefs but also a way of doing science. ... To chaos researchers, mathematics
has become an experimental science, with the computer replacing
laboratories full of test tubes and microscopes. Graphic images are the key.
“It's masochism for a mathematician to do without pictures,” one chaos
specialist would say. “How can they see the relationship between that motion
and this, how can they develop intuition?”. (Gleick 1987, pp. 38-39)
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Systems of differential equations

The software of Hubbard &Vest(1990) draws solutions of systems afferential

equationdx/dt=f(x,y), dy/dt=g(x,y) in thex,y plane and also locates singular points

using Newton’s method, drawing separatrices for saddle points (figure 8).
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In this waythe computer may based to draw solutions of systems differential
equations that are far t@omplicated tadraw by hand. As &urther exampleArtigue
and Gautheron (1983) draw the solutions of the polar differential equations

dr/dt=sinr, d@/dt=cos

which exhibit limit cycles for=kr (figure 9).
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Generalizing the concept of visual solutions
A second order differential equation such as

d2x/dt2=-t
no longer has aimple direction field int(x) spacebecause througkach point {x)
there is a different solutiorfor each starting directiorv=dx/dt. However, this
differential equation is equivalent to the simultaneous linear equations:

dx/dt=v

dv/dt=—,

and in three dimensionat,X,v) these equations determine a unique tangent vector

dxsdt=w
dvrdt=—x
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(dt,dx,dv) in the direction (1,-t). Hence the idea of a direction fialidesgeneralize,
but it must be visualized in three dimensionigk,¢) space. Figure 10 shows two
solutions of the differential equation spirallinghrough ¢,x,v) space andtheir
projections onto the-x andt-v planes.

Visual exploration in geometry

Euclidean geometry traditionally served to introduce studentsléal@ctivesystem. In
many countriegsuch asthe United Kingdom) it hasall but disappeared from the
mathematics curriculum. Computers nowgive the opportunity to manipulate
geometricaffigures to build up intuitiongor possible theoremsGgeometricSupposer
Schwartz & Yerushalmy]l985, Cabri Géometrel987). The initial phase of study of
geometry camow be anexperimentalscience, in whichthe student caruse the
computer to construct a figure and experiment with it.
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Visual Data Processing

It is now possible to explore data visually, for example, to dew @f bestfit for data

in two orthreedimensionsMacSpinallows up toten categories odlata, from which

any three can be selected atidplayed. Though only represented apr@jection of

three dimensions onto the two-dimensional scréendata may be rotateshd viewed
dynamically from any angle to give a sense of depth that is not visible in a static picture
(figure 12). Individual pointsmay be selected and inspected to edwre the data
originates to identify interesting information, such as outlyialyes.Rotating thedata

in the figuresuggestghat it clusters together in way which intimates that the three
components are correlated.
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Modern spreadsheetsstatistical packages andhta handling packagesow include
visual representation afatawhich encouragethe user toexplore andcommunicate
complex information in visual ways.

The ability to present and manipulate information visually is becoming wadeiable

in a many different areas in mathematiésr example, Robinson & Bowman (1986)
introduce probability and statistics using computer graphics with the intention of giving
a ‘feel’ for probability distributions rather than go into details of the mathemktm®
generally, th&€Computerlllustrated Texts(starting with Harding 1985redesigned to

use simple computer programs to provigieractive illustrations omathematicaldeas
which can be explored by the student in place of static pictures in a book.

Is programming essential?

We have not explicitly mentioned programming so far. InUki€. agrowing body of
expertise is growing in which studerase expected to handéhort programs (usually

in structured BASIC or Logo) to carry outathematicablgorithms. Fromhere it is
intended that they move on to prepared softilaseusesthe underlying algorithms in

a more interactivenanner. The early computer illustrated texssumedthat the
programming would be sufficiently simple that it would allow the student to modify the
programs but thisbecame aimmpossibleideal in latertexts. Programming requires a
seriousinvestment intime and effort. However, itcan payvast dividends if the
investment is sufficiently generous.

Dubinsky hasevidence thahaving studentsnake certairprogramming constructions

(in the computer language ISETL) c#erad to their making paralleinathematical
constructions in their minds and therebgme tounderstand variousnathematical
concepts (see, for example, Dubinsky & Schwingentl®€0). Clearly a spectrum of
approaches may be possible with varying amounts of programming, depending on the
time and commitment available.
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New Styles of Learning

Software isbecoming widelyavailable to give graphicakpresentations in calculus,
differential equations, geometryatahandling, numericalanalysis,and many other
areas in mathematics. This is usually predicated memakind oflearning experience
— one in whichthe student may explore amdanipulate theideas, toinvestigate
patterns, taconjecturetheorems and ttesttheir theories experimentally befogming
on toprovethem in a more formal context.

For instance, in the calculus students may investigate the gradients of functions such as
sine, cosine, tangengxponential and logarithm, amnjecture their formulae before

they are derived formally (Tall 1986987). Indifferential equations they may explore
problems athe boundaries of research (suchthe rings of Saturn) andnake the

mental linkbetween the friendlyvorld of (mostlylinear) equationshat can besolved

by formulae and the strange world of those (usually non-lileatr)cannot (Hubbard

and West 1990).

This form of learning is not eeplacementor formal deduction, but g@recursorand a
complemento it. It enables thdess able student to grasgssential ideas thatould
previously be too difficult when framed in a purely formal theory andhfermoreable
student to build a cognitive base for the formal theory to follow. It enables a wide range
of students to integrate their knowledge structure through their powers of visualization.
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