Investigating Graphs and the Calculus
in the Sixth Form

Davld Tall and Norman Blackett

The microcomputer presents unrivalled opportunities to $ieigents understandathematical
concepts with its fasthumerical processes,moving graphics andnteractive facilities.
However, the reality of the mathematicalassroom isthat too few microsare currently
available to allowstudentsadequateaccessThe presentrticle describesthe use of asingle

BBC computer in a lower sixth classrodor drawing graphs and providing insigimto the
calculus. The micro was available for most of the mathematics periods during the year and used
whenever it seemed appropriate.

A large part of an A-level pure mathematics course consists of:

() An introduction toreal functions and investigations into thdirehaviour,
usually incorporating a pictorial approach,

(i) Practising algebraic techniques and manipulation of trigonometric identities,

(iii) Introductory calculus with particular emphasis on derived functions and
antiderivatives of combinations gbolynomials, trigonometric functions,
exponentials and logarithms,

(iv) Elementary ideas of proof.

We were concerned to shew agraphical approach could contribute to effective teaching in
each of thesareas.Much of the initialwork appeals to pictures of functions apéttorial
illustrations of finding thelerivative. but because diie limitations of blackboard ancthalk

and static pictures in text-books this quickly gives way to algepraiwessesOur ideawas to

use the computer to give annderstanding othe geometriddeas. For this purpose we
developed and tested tiggaph-drawing program “Supergraph” atite suite ofprograms
“Graphic Calculus”. The plan was to provitiilities for graph drawinghatwere soflexible

that the computer could be switched on whenever we felt the urge to ask a “what if” question in
terms of drawing a graph.

The use ofthe computeproved to have arofoundeffect on the relationshigith the sixth-
formers.They were much more willing tdiscussideas illustrated on the computer as they
typed inexpressionshemselves than they might have been if the conaepts introduced

with the authority of a teacher’'s “talknd chalk”. They werable to conjecturevhat might

happen, suggest possible formulae for derivativestiiestwith the computer and investigate

ideas experimentally before they were proved formally. Their insight intgethimetrical ideas

proved far greater than comparable groups of students who had not used the computer, without
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their ability to do the algebraic manipulations beimgaired. In a wordhey didmathematics
activelyrather than simply learn passivelytla¢ teacher snstigation. Theylearned not only
mathematics, they learned how to learn.

Elementary Graph-Sketching

Some syllabuses postpone graph-sketchimg after differentiation to take advantage of the
derivative in determining maxima and minima. d& approach talifferentiation depended on
an experience of graphs. we studied polynomials and trigonometric functions in four stages:

(i) sketching graphs of polynomials and rational functions,

(i) derivatives of polynomials angowers (including negative and fractional
powers),

(iii) trigonometric functions in radians and trigonometric relationships,

(iv) derivatives of trigonometric functions.
Supergraph is suchfkexible computer prograrthat it can beused by anyevel of pupil or
teacher.One version ofthe programallows superimposition of any number of cartesian,
parametric or polagraphs andnother sacrifices the parametric and polations for a wide
variety of other facilities, includingangents, normals, linegpom optionsetc. Both versions

allow normal algebraic inpuiwith cursormovementfor insertingpowers)and letters other
thanx,y are taken as constants. For example a straight line could be typed as

y=mx+c
or a quadratic as
y=ax2+bx+c

and the constants may be varied to superimpose variatiotie graph includinglamilies and
envelopes. For instance, figure 1 began as the line

y=mx+c (m=1, c=0)

with a succession of graphs fiximg and increasing by 1 eachtime, we sedhat thegraphs
are allparallel. Alternatively, fixingc and varyingm shows that thegraph alwayspasses
through the point given by=0, y=c. By takingm negative it igpossible to see a straiglte
graph with negative gradient, m=0 gives a horizontal graph.
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Figure 1 : a family of straight line graphs
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We didn’'t need to have any spedmok ofdirections touse Supergraph in graph-sketching,
we simply worked from our usual (SMP) text-book and illustrated graphs as they turned up.

One nice discussion we had concerned the graph of

y=1/(x—a)(x—b)
(note that Supergraph gives division precedence over implied multiplication).
We first drew the grapy=(x—a)(x-b)

for a=1,b=2 and then superimposé#ue graph ofthe reciprocal (figur®). Wecould sedhat
the two graphs hadhe samesign but where x-a)(x-b) was zero the reciprocal had
asymptotes.



y={x—ar{x—bl
y=1ls{(x—ar{x—bd
a=1,b=2

Figure 2 : sketching related graphs

By consideringhe sign ofthe product of the ternfer x<a anda<x<b we could se¢hat the
algebraicexpression 1X-a)(x-b) is very large and negative befoaeand very large and
negative after it. We reinforced this message by substitatizeh to get the expression

y=1/h(a—b+h)

and considering the sign for small value$.ofn this way we linkedhe algebraic ideasith a
pictorial representation.

The interesting investigation was to takd and see what happened.
before drawing the graph the algebraic substitutiath gave
y=1/h2

and it could easily be sedimat thegraph should bé&rge and positive both before and ater
This was confirmed by drawing the picture.

From here it was a simple matter to conjecture what would happen to
y=1/(a—x)3, y=1/(a—x)4, ...

and test the result on the computer. Likewise we could look at a combination such as
y=1/(a—x)(b—x)2.

In some casethe students were not sure thfe scale of thepicture, sothey usedautomatic
scaling to get a sighting before drawing the graph using equal scales. Thisthefped think



about thekind of ranges it is appropriate tivaw the graphs.They soonstarted checking the
graph sketches given thetext-books and weramazed tseehow inaccurate thewere. It
threw the whole question of graph-sketching by old methods somewhat into disrepute!

The gradient of a graph through magnification

Not all students work at the same pace and one day Allan finished his exerdisesfore the
others. He was given the program “Magnify” from the Graphic Calculus Pack and thidvwo
somegraphs,magnify them, and report what happened. Twotloee minutes later hsaid
“They look less curved”. He wagined by otherstudents whdested their conclusion by
magnifying other graphs. They were asked to explain their ideas to the rest of the class.

Was this property of graphs always truedat it sometimedail? Discussion followedMost
of the class were convinced that it was always true. But was it?

They triedall sorts of expressions trause the idea to brealown and failed. The graph
y=absk) (the “absolute value” or “modulus” & was suggested ke teacher. Itclearly had
a “corner” atx=0. Other graphs, such gsabs§?-1) also had corners.

Thus it wasthat thestudents began tappreciate thatome graphs looked straight under high
magnification and somelidn’t. Another program in the paclwas drawn to show the
“blancmangefunction”, which is so wrinkled. neatterhow highly it is magnified, it never
looks straight. An amusing anf@scinatingdiscussion followedClearly there weranany
curves in nature that failed to “look straighthen highly magnifiedEven a ruler is wrinkled
viewed under a microscope.

The nextlesson we looked dhe gradient of graph through this approach.tife graph had

the special property of approximating to a straight line under a magnglasg, wecould talk

about its gradient in a small segment as being the gradient of the magnified (almost) straight
portion.

This proved easy to see (literally!) with the computer. Although we had a routine to display the
limit of the chord froma to b asb tended tca, we found itmuch more profitable to attack the
gradient of thegraph as aynamicpicture.The idea is simpledraw the chord fromx to x+c
(wherec is small, and then let it click along the curvexascreasesind, ateachclick, plot the
gradient of the chord as a point, leaving a trace of gradient points behind (figure 3).
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Flxd)=x
from x=-2 to 2

gradient function
(Fi{x+cd—Fi{xIDIrc
for
c=1-1888

Figure 3: The gradient function of f(x) = x?

The gradient of/=x2 proved to be a revelation, it wastually a straightline when ¢ was
small!

By checking the algebra, we found the gradient frep®) to (x+c, (x+c)2) to be

(x+C)2—x2
C

=2x+c (for cz0)
and it was evident that for small c the gradient would approximate2o

The software included a routine to typey/i#Px and make a comparison with the gradient. Give
or take a pixel, the graphs proved to be identical.

Interestinglyenough,the odd pixel or so differencgrovoked an interestingiscussion in
which it was realized that the graph-drawing routines only calculate a few pointaratigem

up by lines. Aghe picture is actually made up dbts oflight (lessthan 200 by 200 in the
graph-square) it is self-evident that there are likely to be inaccuracies in drawing anyway.

Putting on a show

That eveningvasthe OpenEvening, giving parentthe opportunity to seahe kind of work

going on inthe sixth form centre. As usu#ihe Science Departments halfitheir experiments

on display and mathematics was keen to competeobti®us weapon wathe computer. On

the spur ofthe moment werganisedsmall groups of students frore calculus set tcome

and investigate the gradients of graphs in front of the visitors. Each group was given a sheet of



challenges. Theknew the gradient ok2 was X, could theyguessthe gradient of3, and
when they had done that, could they guess the forfoute? This waseasy.The first group
drew the gradient function (figure 4) and saw that it was a U-dhatpelearly notx2, so they
guessed frontheir earlier experience that it might k& By superimposing this graph and
comparing with the gradient they saw the error of thelys andimmediatelymoved on to try
2x2, then refined their guess t@231t worked!
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Flx)=x
from x=-2 to 2

gradient function
(Fi{x+cd—F{xIdrcC
for
c=1-188
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Figure 4: The gradient of f(x) = x3

A quick conference and they guessed that the gradieftadist benx"-1, Any mathematician
might think theywould try out this expressiosystematically witm=3. Not abit of it: their
first check wa$=33. The computer creaked a bit and dutifully dteevgraphs andonfirmed
their suspicions.

The nexttask was tdry the formulafor n=—1, —2and others such as=-1/2? and it went
according to plan.

Following thisthe challenges leapt aheatth a brief description of angles in radians and a
challenge tdfind the gradient functiorfor sinx, drawingthe graph from - to 2rt. (The
programs allowrt to be typed in as pi which translates to Greek bettmeeoperator’'s very
eyes.)They cracked the probleimmediately onseeing the gradierdrawn and guessed the
gradient of costoo. They were pressing on eagerly now.

The next bastion to fall was the discovery thabBd ¥ had similarshaped gradient functions
and that somewhere in between was a number k such that the derivitiieearfainkX. Then
they conjectured the derivative of the natural logarithnx,ofand even managethat of
In(abs))...

This wasexpected to take theisome time, but itvas all over in a fewminutes withthem



asking for more. They were challenged to find the gradient functionxofftgare 5).

fFix>)=tanx
from x=—-3ns2 to 3Inr2

gradient function
(Fi{x+cd—F{xIdrcC
for
c=1-18888

Figure 5 : The gradient of tanx

The response wathat the gradient of tanlookedlike the square ofthe tanxgraph,except it

was 1 where (taB¥ was 0, so the gradient was probably 1#ta(They had to be showihat

the version of the program being used required the inplit-@arx)2. It wasn't possible to fit
every refinement into the tiny BBC memory.)

They followed this up with other curves thfeir interest and eventualydmitted defeatvhen
they couldn't guess the formula for the derivative of the semicircledyL2-

Other groups had similar successes. The difficulty kegping the earlier experimenters away
to give the later ones a chance.

New Methods of Approach

We followed up with more student use of the programs in the regular mathematics classes. Ww
quickly realized that with one micro for sixteen students we needed a more systematic approach
for its usethan at the Opertvening. Anextra computer at this stageould have been
invaluable.With only one computer we dividdtie class intogroups ofthree orso. Asthey

went through a set of regulalifferentiation exercises they took it inturns to go to the
computer type in their functions and chethat theirresult actually worked. The rules were
simples they were assigned exeraisenbers the first group tothe first question.the second

to the second, and so on, until all the groups were exhatistedthefirst group hadhe next
guestion andhe process repeate@hey could go up at anyme whenthey had completed a

given exercise and the system of staggering the questions meant that they coulditetren
exercises until therevas afree space to try theomputer.They were told to bring any



interesting features of thgraph tothe attention of thevhole group, sooccasionallywork
stopped to see what they had found.

They soon got used tahe idea of visualizing the gradiefuinction as a dynamiprocess,
looking along thegraph,seeing the gradierthange, andvisualizing the gradient as another
graph.

Fitting in with the Physics Department

One day several of the students who had missed the Open Evening experience canies® the
sayingthat thePhysicsdepartment had started on Simple Harmonic Motion and they didn’t
understand the derivatives of sine and cosine. We switchéaearomputer andent through

the exercise for them. Even though we fgatito cover the trigonometrfcinctions in radians,
this proved most helpful and thgyofessed satisfactory insigimto what was going on.
ExceptBrian. Hedidn’t see whatll thefuss was aboutWhat hewantedwas to betold the
formula so that he could learnaihd passthe exam.All this computerstuff was a waste of
time.

More Graph Sketching

We returned to graph-sketching to stutte trigonometricfunctions. The students were
encouraged to sketch tlgeaphs of sine and cosinethe time-honoured method dfawing a
circleradius 1 and transferrinthe values ofy=sinx to anx-y graph ashe anglex turned

(several times) through full circle (figure 6).
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Figure 6

We could have programmed a computer to doditaving for us. but there is something
essential in the act of reading the values round the circle and physically transfemmtp the
graph. Inthe samdessonthey drew cog, then moved on to thieinctionssin2x, 2sirx, and
other similar expressions.



Once again the physical act of drawing proved indispensable. For ingt2so requires the
y-value fory=sinx to be readmultiplied by 2 and thenew graphplotted whilst y=sin2x

requiresthe y-value to be read frorg=sinx, then thex-value halved to givéhe new graph.
None of this action would have come out on the computer.

But when the initial graphs had been drawn and the physical effort made, it was a luxury to sit
back and draw sk 2sirx, 3sirx, to see thgrowingy-values,then sirx, sin, sinX to see
the reducing size.

After studying the angle formulae such as
sin(@t+b)=sin(@)cosp)+cos@)sin()

which we “proved” bythe “modern” matrixmethod, we foundhat it was met with some
resistance. But superimposing the graphs of

sin@+x)
and
sin@cos<+cos@)sinx
at least gave some feeling of confidence.
We had an interesting experience with drawingsinx+bcos.

What would the graph look like, say foe=3, b=4 ? Thestudents had no ide&ven the
physical sketching proved hard. So we compared this with the formula for

ksin(p+x)=kcosf)sinx+ksin(p)co.

We requireda=kcos(), b=ksin(p) which gavek=(a2+b2), tanf)=b/a.

So we drewy=asinx+bcox (for a=3, b=4) and superimposegksin(p+x) where
k=sgr@z+b?), p=atnf/a).

Lo and behold, the superimposed graph was, pixel for pixel, identical with the original.

Local Behaviour
The students had grave difficulties sketching the graghfex.

Imagining the graph of=sinx and squaring, most afiem ended umvith a sketch withcusps



where the graph met thxeaxis (figure 7).

ﬂk sketeh  of  sin2x
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Figure 7

When the true graph was drawn, they expressed saldesurprise.But it was easy to focus
their attention on the fact that tgeaph ofy=sinx near the origirwas much the same asx,
so the graph of=(sinx)2 must be similar tg=x2. Hence theounded shape #e origin, and
also at every multiple at.

Following up this idea, what woulthe graph ofy=sin3x look like? Theysketched it and
compared it with the computer picture which proved to look muchdilet every multiple oft
(figure 8). A picture in a book only conveys part of the feeling of the graph growing in front of
your eyes on a computer screen, especially when that graph is drawn to your bidding.

L

Figure 8

Proof of the formulae

When wecame toderive the formulador the derivatives okine and cosine we were in the
fortunate position ofknowing the answers before we went throughhe trigonometric
manipulation. Thestudentsexperience of the gradient progratoodthem ingood stead and



they could se¢hat the gradienfrom x to x+h would bemuch the same as the gradient from
x—h to x+h. So the approximate gradient was

sin(x+h)—sinx-h)
2h

The fabled formulae transformed this to

sinxcoh+cosxsinh—(sirxcodr—cosxsinh)
2h

or

sinh
COX R -

Their experience witlthe localbehaviour of thegraph of sim showedthem that, near the
origin,

Sinx

X

was approximately 1 and this was reinforced by furthecussions of well-known ideas. For
small h therefore the gradient of teme curve approximated to cosvhich was as expected.
The cosine curvéollowed similarly, includingthe magicminus sign inthe derivative—sinx.
But this minus sign now had a physical interpretation: when the gradient function Xovass
drawn it simply turned out to be the graph oksipside down (figure 9).

fFi{x)=cosx

from x=—8 to B8

gradient function
CFlx+cd—FixIdrec
for
c=1-1888

figure 9 : The graph of the gradient of sinx



Gradient Sketching

By this time, without being taught explicitlfhe students were very good at sketching
gradients. Those following a standakdevel coursefaced withthe graph in figure 10might
consider drawing its gradient in a number of stages.

“The graphlooks like x3+I, soits derivative will be 82 and a sketch of this
can now be drawn.”

A

+2

figure 10 : what is the gradient of this graph?

But a student with a dynamic view of the gradient would say

“The gradientstarts offlarge andpositive, it diminishesrapidly until the
gradient is zero at therigin, then increases just as rapidly agbeyond this
point.”

Thus a sketch othe derivative could belrawn in a single procedure. Slightiyore
complicatedgraphs which would confudle standard student (because (s)he couldo&ss
the formula)would beequally well handled by the studewith a dynamicimage of the
gradient. In tests between control agerimentalgroupsthe improvementvas statistically
highly significant.

Hand-waving

Using the programs for differentiation had an unforseen effect. They outliasiedsefulness

very quickly. This is not to say that they weren’t used on occasioih ilaterstages because

they were alwayshere todraw adifficult derivative. Butthe students couldhow interpret a

static picture on the blackboard or a vague hand-wave in the air as a dynamic representation of
a gradientfunction. When wecame todiscussthe properties oimaxima and minima they



respondedmmediately toquestions abouthe gradient of thegraph at, before, or after, the
turning points.

Anti-differentiation and the arbitrary constant

The idea of antiderivative is usually blessed wiith name “indefinite integral” iour A-level.
It is a misnomer if ever there weome. Itmeans that wé&now f(x) and we want to find a
function A) such that A(X)=f(x). We can look at this two waythe standard way (I want to
look for a formula which differentiates to givexf and the pictorialvay (I knowthe gradient
f(x) of the graphy=A(x), can Idraw asuitable grapHor A(x)?). It doesn’ttake long to
consider the pictorial approach and it has an unforseen benefit.

Through an array of points the plane wadraw shortline segments of gradientX). Then
y=A(X) is obtained by following alonthe directions given (figurél). Because the gradient
depends only orx, not ony, the possible graphs throughwertical line allhave the same
direction. Thus the solutions differ by a constant.
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Figure 11 : A curve of gradient 1/x

However, if the function ¥) is undefinedsomewhere, for instance xf€1/x is undefined for
x=0, then we can'’t trace thsolutions through thisalue ofx. A solution of A(x)=1/x by
tracing the directions wilie on one side othe originonly and nofcross it. Thughe “added
constant” only applies on one side of the origin. It is perfgubsible to shifthe parts of the
solution oneitherside ofthe origin up odown bydifferent constants. Thus wget the truth
about the “arbitrary constant”: it @mnly valid in aconnectedart of the domain of k). Too
difficult for students to understand? Try it and see!



Effects on Algebra

The algebraic techniques necessary to answer standard sixth form questions were developed in
conjunction with the appreciation of visual concepts. Interestingly, it became obvious that skills
in one of these areas did not necessarily imply skill inother. Colin, whocould soon talk

fluently and intelligently about the behaviour fainctions nearasymptotes, sketcderived
functions, appreciate differentiability and the geometry of translation and reflectgmays,

found great difficulty insuccessfully developinthree or more lines adlgebra. By contrast

David, who found little difficulty with algebraic manipulation, often being amongstirgtein

finishing an exercise, needed several prompts to appreciate the picture of dbmiimmitions

he was dealing with. However, the results shown graphically certainly providiation for
proceeding to a more formal algebraic approach, with the sequence

illustration - conjecture— proof

being the most successful method of interestingckiags inthe nature of algebrajroof such
as the derivative of".

The computegraphics also provided a good wayabkeckingresults. The sense oftriumph
wheny=(1-x2)1/2 was differentiated by the chairule. the resultdrawn onthe computer and
found to be identical to theuperimposed computer-drawlerivative far exceedetthat usually
experienced by looking up the answer in the answer book!

In a similarway, innocuougooking algebraicerrors in usinghe formulaefor differentiation
were shown to produamarkedly differenigraphs fromthe actualerivative, thusunderlining
the importance of careful algebra.

Algebraic difficulties are such a recurring problem that they need a total rethuokvithey are
introduced earlier in the curriculum. (See Tall & Thomas 19?7?.)

Insight into area

The next stage in the course was to investigatar@under a graph by summing rectangles.
The computer picture of therocessquickly showedthe effect of increasing the number of
rectangles by reducing theidth of each rectangle to gain a better approximation toatka
under the curve. The program shades the rectangles differently according to the sigare# the
(figure 12). Before anycalculationwas performed by theclass they werable to appreciate
how the signs ofthe ordinate and thetep combine to giveéhe sign for the area of each
rectangle.
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Figure 12 : The area, calculated taking sign into account

When itcame toperforming the algebraecessary to surthe area of rectanglasmdery=x2

there was the usual trouble wih? , but they did make more sense of the limit of the sum
as the width of the strip tended to zero after seeingdluelationperformed on theomputer.
After looking at the results for the area ungex andy=x2 from x=0 to x=b they were willing
to conjecture the resuior the areaundery=x3 for x=0 to x=b. The algebra required &how
this result would haveertainlylost many ofthe group, but the computewas able tosupport
their conjecture.

At this point we looked briefly at the other numerical methiodsestimating area given in the
package, such abe trapeziunrule, Simpson'sule and the mid-ordinateule, to compare
results. The class were soon able to see the relative efficiency of these methodkegaod
guesses as to whether they would overestimate or underestimate the area under a given curve.

We progressed tthe standard notatiorfor integration. After seeing the rectangles being
drawn, it was a relatively simple matter for the class to appreciate that thieoanea=a to x=c

is thesum ofthe areagrom x=a to x=b andx=b to x=c and, more importantlythat the area
from x=b to x=a is minusthe area fronx=a to x=b.

They had conjectured the result of the Fundamental Theorem of Caloulseme easy
polynomials, had it confirmed for more difficult examples, and were now rfeadpme form
of proof of the general result.

The idea behind the fundamental theomsas illustrated on the computer by stretching e
range of a graph over a small interval. Jhange was left unchanged ate increase irea

from x to x+h was examined. We chos)fsinx as a typicalllustration, using ranges from
x=0.99 to 1.01 ang=—2 to 2 (figure 13). It can be seen that a horizontal stretch flattens out the



graph to give the area calculation in the form
A(x+h)—A(X) = hf(x).
The more thex-range is stretchedhe flatter thegraph gets andhe better the approximation

becomes. By rewriting it in the form

A(x+h)-A
(-AQ)

and allowing h to tend to zero gives the fundamental theorem:
A’ (x) = f(x).

The students found quite natural to examine tlggaph stretched in thiway and weelt that
they had a betteunderstanding othe fundamental theorem than otlstndents following a
more standard text-book approach.

Flx)=s5inx
from x=.99 to 1.81
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Figure 13

What we didn't do

Although students worked interactively with prepared software throughewtear we did not
askthem to write theiown programs ogive detailed explanations of tleenstruction of the
programs irnthe package. This was a conscious decistoggring in mind thescope of the
presentA-level syllabus andhe restrictedime available. But this is not tgay that such
developments would not have been desirable: the great majority stuithents werénterested

in programming in BASIC, most having their own micros, and they often expregessbt in

how the programs worked. It is easy to see that programs on the lines dlt{@B2Programs

for the Mathematics Classroom” published by the Mathematical Association could be employed



in an A-levelcourse, withthe algorithms employed enhancing thederstanding ofnany
concepts. At present lack of time restricts such developments in the current A-level syllabus.

The Upper Sixth

Most of the foundations of the A-level syllabus have been laid in the first year and the computer
played an integral part throughout. In the upper sixth the computer will continueat@ilzadle

in every lesson. Our experience usthg computer athis level showsthat it ismostvaluable

when wemeetsuch topics aghe exponentiafunction, logarithmic function and Taylor’s
series. However, it is likely to be used less than in the lower sixth &seeene involved with
answering standardxaminationquestions. Westill usethe programs on occasion theck
resultsgraphicallybut, perhaps as importarihe graphical imagewhich studentxan now
visualize in theirmind’s eye will be appealed to even in quick blackboard a&hdlk
explanations.

The future

Our experience shows that the computer can be used as aadpafict to the current A-level.
Even more mileage can be achiewadbugh designing a newurriculum that takes the new
possibilities intoaccount. A fullyintegratedapproach, withthe students programmintieir

own algorithms as well asusing prepared software wouldequire a provision for
microcomputers currently beyond the financial resourcabeofiverageschool. In thisrespect
schools lag behind the provisions students have in their own homes. (Our class praxed to

18 computers between sixteen students, only one not having his own madhmenaylook
forward optimistically to a time when computers can realize a fuller potential in a much broader
mathematics curriculum.

In the meantime it is clear that a single computer in a classroom caetdoadvantage in the
current syllabus. The same techniques should also prove helpfukatlianage, inparticular
the exploratory investigations of a dynamical graphic approach on the computer usede
give a meaning to the calculus concepts taught for the 16+ examination.



